Revising Belief without Revealing Secrets

  • Joachim Biskup
  • Cornelia Tadros
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7153)


In multiagent systems, agents interact and in particular exchange information to achieve a joint goal, e.g., arrange a meeting, negotiate a sales contract etc. An agent, as a rational reasoner, is able to incorporate new information into her belief about her environment (belief revision) or to share her belief with other agents (query answering). Yet, such an agent might be interested to hide confidential parts of her belief from other negotiating agents while these agents are supposed to reason about her reactions to revisions and queries. We study how an agent can control her reactions to revisions and queries requested by another agent who may attempt to skeptically entail confidential beliefs. As our main contribution, we present procedures that provably enforce confidentiality, to be employed by the reacting agent.


Confidential Belief Belief Revision Multiagent System Inference Control Skeptical Entailment 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Beierle, C., Kern-Isberner, G.: A Conceptual Agent Model Based on a Uniform Approach to Various Belief Operations. In: Mertsching, B., Hund, M., Aziz, Z. (eds.) KI 2009. LNCS, vol. 5803, pp. 273–280. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  2. 2.
    Benferhat, S., Dubois, D., Prade, H.: Nonmonotonic reasoning, conditional objects and possibility theory. Artif. Intell. 92(1-2), 259–276 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Biskup, J.: Usability Confinement of Server Reactions: Maintaining Inference-Proof Client Views by Controlled Interaction Execution. In: Kikuchi, S., Sachdeva, S., Bhalla, S. (eds.) DNIS 2010. LNCS, vol. 5999, pp. 80–106. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  4. 4.
    Biskup, J., Bonatti, P.A.: Controlled query evaluation for enforcing confidentiality in complete information systems. Int. J. Inf. Sec. 3(1), 14–27 (2004)CrossRefGoogle Scholar
  5. 5.
    Biskup, J., Gogolin, C., Seiler, J., Weibert, T.: Inference-proof view update transactions with forwarded refreshments. Journal of Computer Security 19(3), 487–529 (2011)CrossRefGoogle Scholar
  6. 6.
    Biskup, J., Kern-Isberner, G., Thimm, M.: Towards enforcement of confidentiality in agent interactions. In: Pagnucco, M., Thielscher, M. (eds.) NMR 2008. pp. 104–112. The University of New South Wales (2008)Google Scholar
  7. 7.
    Biskup, J., Tadros, C.: Inference-Proof View Update Transactions with Minimal Refusals. In: Garcia-Alfaro, J. (ed.) DPM 2011 and SETOP 2011. LNCS, vol. 7122, pp. 104–121. Springer, Heidelberg (2012)Google Scholar
  8. 8.
    Biskup, J., Weibert, T.: Keeping secrets in incomplete databases. Int. J. Inf. Sec. 7(3), 199–217 (2008)CrossRefGoogle Scholar
  9. 9.
    Booth, R., Nittka, A.: Reconstructing an agent’s epistemic state from observations about its beliefs and non-beliefs. J. Log. Comput. 18(5), 755–782 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Dubois, D.: Three scenarios for the revision of epistemic states. J. Log. Comput. 18(5), 721–738 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Eiter, T., Lukasiewicz, T.: Complexity results for default reasoning from conditional knowledge bases. In: Cohn, A.G., Giunchiglia, F., Selman, B. (eds.) KR 2000, pp. 62–73. Morgan Kaufmann, San Francisco (2000)Google Scholar
  12. 12.
    Friedman, N., Halpern, J.Y.: Plausibility measures and default reasoning. J. ACM 48(4), 648–685 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Garcia, B.B., Brasil Jr., S.M.: Towards Default Reasoning through MAX-SAT. In: Bittencourt, G., Ramalho, G.L. (eds.) SBIA 2002. LNCS (LNAI), vol. 2507, pp. 52–62. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  14. 14.
    Goldszmidt, M., Pearl, J.: On the consistency of defeasible databases. Artif. Intell. 52(2), 121–149 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Kern-Isberner, G.: Linking iterated belief change operations to nonmonotonic reasoning. In: Brewka, G., Lang, J. (eds.) KR 2008, pp. 166–176. AAAI Press, Menlo Park (2008)Google Scholar
  16. 16.
    Spohn, W.: Ordinal conditional functions: A dynamic theory of epistemic states. In: Skyrms, B., Harper, W.L. (eds.) Irvine Conference on Probability and Causation. Causation in Decision, Belief Change, and Statistics, vol. II, pp. 105–134. Kluwer, Dordrecht (1988)CrossRefGoogle Scholar
  17. 17.
    Wiese, L.: Keeping Secrets in Possibilistic Knowledge Bases with Necessity-Valued Privacy Policies. In: Hüllermeier, E., Kruse, R., Hoffmann, F. (eds.) IPMU 2010. LNCS, vol. 6178, pp. 655–664. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  18. 18.
    Wooldridge, M.J.: An Introduction to Multiagent Systems. Wiley, Chichester (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Joachim Biskup
    • 1
  • Cornelia Tadros
    • 1
  1. 1.Technische Universität DortmundGermany

Personalised recommendations