Detecting Suspect Answers in the Presence of Inconsistent Information
Abstract
In the presence of inconsistent information, two classical approaches consist in (i) cleaning the information by means of an automated process, for instance by performing a minimal set of updates aimed at restoring consistency, (ii) returning only the answers that are certain with respect to a given query, as in consistent query answering. In this paper, we propose an alternative approach, somewhat inspired by artificial intelligence works, which is aimed at warning the user about the presence of suspect answers in a query result. Roughly speaking, the idea is that such elements can be identified inasmuch as they can be found in the answers to contradictory queries. This idea may also be refined by introducing some gradedness in terms of cardinality or similarity.
Keywords
Functional Dependency Integrity Constraint Information Fusion Conjunctive Query Inconsistent InformationPreview
Unable to display preview. Download preview PDF.
References
- 1.Konieczny, S., Grégoire, E.: Logic-based information fusion in artificial intelligence. Information Fusion 7(1), 4–18 (2006)CrossRefGoogle Scholar
- 2.Gabbay, D., Hunter, T.: Making Inconsistency Respectable (part 1). In: Jorrand, P., Kelemen, J. (eds.) FAIR 1991. LNCS (LNAI), vol. 535, pp. 19–32. Springer, Heidelberg (1991)CrossRefGoogle Scholar
- 3.Besnard, P., Hunter, A.: Reasoning with Actual and Potential Contradictions. In: Gabbay, D.M., Smets, P. (eds.) Handbook of Defeasible Reasoning and Uncertainty Management Systems, vol. 2. Springer, Heidelberg (1998)Google Scholar
- 4.Benferhat, S., Dubois, D., Prade, H.: An overview of inconsistency-tolerant inferences in prioritized knowledge bases. In: Dubois, D., Prade, H., Klement, E. (eds.) Fuzzy Sets, Logic and Reasoning about Knowledge. Applied Logic Series, vol. 15, pp. 395–417. Kluwer, Dordrecht (1999)CrossRefGoogle Scholar
- 5.Carnielli, W.A., Coniglio, M.E., Marcos, J.: Logics of formal inconsistency. In: Gabbay, D., Guenthner, F. (eds.) Handbook of Philosophical Logic, 2nd edn., vol. 14, pp. 1–93. Springer, Heidelberg (2007)Google Scholar
- 6.Besnard, P., Hunter, A.: Quasi-Classical Logic: Non-Trivializable Classical Reasoning from Inconsistent Information. In: Froidevaux, C., Kohlas, J. (eds.) ECSQARU 1995. LNCS, vol. 946, pp. 44–51. Springer, Heidelberg (1995)CrossRefGoogle Scholar
- 7.Decker, H., Martinenghi, D.: Getting rid of straitjackets for flexible integrity checking. In: DEXA Workshops, pp. 360–364. IEEE Computer Society (2007)Google Scholar
- 8.Martinenghi, D., Christiansen, H., Decker, H.: Integrity checking and maintenance in relational and deductive databases and beyond. In: Ma, Z. (ed.) Intelligent Databases: Technologies and Applications, pp. 238–285. Idea Group (2006)Google Scholar
- 9.Decker, H., Martinenghi, D.: Avenues to flexible data integrity checking. In: DEXA Workshops, pp. 425–429. IEEE Computer Society (2006)Google Scholar
- 10.Arenas, M., Bertossi, L.E., Chomicki, J.: Answer sets for consistent query answering in inconsistent databases. TPLP 3(4-5), 393–424 (2003)MathSciNetMATHGoogle Scholar
- 11.Wijsen, J.: Project-Join-Repair: An Approach to Consistent Query Answering Under Functional Dependencies. In: Larsen, H.L., Pasi, G., Ortiz-Arroyo, D., Andreasen, T., Christiansen, H. (eds.) FQAS 2006. LNCS (LNAI), vol. 4027, pp. 1–12. Springer, Heidelberg (2006)CrossRefGoogle Scholar
- 12.Martinez, M.V., Pugliese, A., Simari, G.I., Subrahmanian, V.S., Prade, H.: How Dirty Is Your Relational Database? An Axiomatic Approach. In: Mellouli, K. (ed.) ECSQARU 2007. LNCS (LNAI), vol. 4724, pp. 103–114. Springer, Heidelberg (2007)CrossRefGoogle Scholar
- 13.Bohannon, P., Fan, W., Geerts, F., Jia, X., Kementsietsidis, A.: Conditional functional dependencies for data cleaning. In: Proc. of ICDE, pp. 746–755 (2007)Google Scholar
- 14.Pivert, O., Prade, H.: Handling Dirty Databases: From User Warning to Data Cleaning — Towards an Interactive Approach. In: Deshpande, A., Hunter, A. (eds.) SUM 2010. LNCS (LNAI), vol. 6379, pp. 292–305. Springer, Heidelberg (2010)CrossRefGoogle Scholar
- 15.Wijsen, J.: Condensed Representation of Database Repairs for Consistent Query Answering. In: Calvanese, D., Lenzerini, M., Motwani, R. (eds.) ICDT 2003. LNCS, vol. 2572, pp. 375–390. Springer, Heidelberg (2002)Google Scholar
- 16.Bohannon, P., Flaster, M., Fan, W., Rastogi, R.: A cost-based model and effective heuristic for repairing constraints by value modification. In: Proc. of SIGMOD, pp. 143–154 (2005)Google Scholar
- 17.Fan, W., Geerts, F., Jia, X.: Conditional Dependencies: A Principled Approach to Improving Data Quality. In: Sexton, A.P. (ed.) BNCOD 2009. LNCS, vol. 5588, pp. 8–20. Springer, Heidelberg (2009)CrossRefGoogle Scholar
- 18.Kolahi, S., Lakshmanan, L.V.S.: On approximating optimum repairs for functional dependency violations. In: Proc. of ICDT 2009, pp. 53–62 (2009)Google Scholar
- 19.Bertossi, L.: Database Repairing and Consistent Query Answering. Synthesis Lecture Notes on Data Management. Morgan & Claypool (2011)Google Scholar
- 20.Rahm, E., Do, H.H.: Data cleaning: Problems and current approaches. IEEE Data Eng. Bull. 23(4), 3–13 (2000)Google Scholar
- 21.Fan, W., Geerts, F., Jia, X.: Semandaq: a data quality system based on conditional functional dependencies. PVLDB 1(2), 1460–1463 (2008)Google Scholar
- 22.Cong, G., Fan, W., Geerts, F., Jia, X., Ma, S.: Improving data quality: Consistency and accuracy. In: Proc. VLDB, pp. 315–326 (2007)Google Scholar
- 23.Bertossi, L.E.: Consistent query answering in databases. SIGMOD Record 35(2), 68–76 (2006)CrossRefGoogle Scholar
- 24.Chomicki, J.: Consistent Query Answering: Five Easy Pieces. In: Schwentick, T., Suciu, D. (eds.) ICDT 2007. LNCS, vol. 4353, pp. 1–17. Springer, Heidelberg (2006)CrossRefGoogle Scholar
- 25.Rescher, N., Manor, R.: On inference from inconsistent premises. Theory and Decision 1, 179–219 (1970)CrossRefMATHGoogle Scholar
- 26.Chomicki, J.: Consistent Query Answering: The First Ten Years. In: Greco, S., Lukasiewicz, T. (eds.) SUM 2008. LNCS (LNAI), vol. 5291, pp. 1–3. Springer, Heidelberg (2008)CrossRefGoogle Scholar
- 27.Lipski, W.: On semantic issues connected with incomplete information databases. ACM Transactions on Database Systems 4(3), 262–296 (1979)CrossRefGoogle Scholar
- 28.Baral, C., Kraus, S., Minker, J., Subrahmanian, V.S.: Combining knowledge bases consisting of first-order analysis. Computational Intelligence 8, 45–71 (1992)CrossRefGoogle Scholar
- 29.Wijsen, J.: Database repairing using updates. ACM Trans. Database Syst. 30(3), 722–768 (2005)CrossRefGoogle Scholar
- 30.Bertossi, L.E., Bravo, L., Franconi, E., Lopatenko, A.: The complexity and approximation of fixing numerical attributes in databases under integrity constraints. Inf. Syst. 33(4-5), 407–434 (2008)CrossRefMATHGoogle Scholar
- 31.Meliou, A., Gatterbauer, W., Halpern, J.Y., Koch, C., Moore, K.F., Suciu, D.: Causality in databases. IEEE Data Eng. Bull. 33(3), 59–67 (2010)Google Scholar
- 32.de Calmès, M., Dubois, D., Hüllermeier, E., Prade, H., Sedes, F.: Flexibility and fuzzy case-based evaluation in querying: An illustration in an experimental setting. Inter. J. of Uncertainty, Fuzziness and Knowledge-Based Systems 11(1), 43–66 (2003)CrossRefMATHGoogle Scholar