On Real-Valued Evaluation of Propositional Formulas

  • Aleksandar Perović
  • Dragan Doder
  • Zoran Ognjanović
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7153)


Arguably, [0,1]-valued evaluation of formulas is dominant form of representation of uncertainty, believes, preferences and so on despite some theoretical issues - most notable one is incompleteness of any unrestricted finitary formalization. We offer an infinitary propositional logic (formulas remain finite strings of symbols, but we use infinitary inference rules with countably many premises, primarily in order to address the incompleteness issue) which is expressible enough to capture finitely additive probabilistic evaluations, some special cases of truth functionality (evaluations in Lukasiewicz, product, Gödel and \(\L\mathrm\Pi\frac{1}{2}\) logics) and the usual comparison of such evaluations. The main technical result is the proof of completeness theorem (every consistent set of formulas is satisfiable).


Fuzzy Logic Inference Rule Propositional Formula Completeness Theorem Possibility Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barwise, J.: Admissible sets and structures: an approach to definability theory. Springer, Heidelberg (1975)CrossRefzbMATHGoogle Scholar
  2. 2.
    Benferhat, S., Dubois, D., Prade, H.: Possibilistic and standard probabilistic semantics of conditional knowledge bases. Journal of Logic and Computation 9(6), 873–895 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bezzazi, H., Makinson, D., Pino Pérez, R.: Beyond rational monotony: some strong non-Horn rules for nonmonotonic inference relations. Journal of Logic and Computation 7(5), 605–631 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Boutilier, C.: Modal logics for qualitative possibility theory. International J. Approx. Reason. 10, 173–201 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Canny, J.: Some algebraic and geometric computations in PSPACE. In: Proc. of XX ACM Symposium on Theory of Computing, pp. 460–467 (1987)Google Scholar
  6. 6.
    Doder, D., Rašković, M., Marković, Z., Ognjanović, Z.: Measures of inconsistency and defaults. International Journal of Approximate Reasoning 51, 832–845 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Doder, D., Marinković, B., Maksimović, P., Perović, A.: A logic with conditional probability operators. Publications de l’Institut Mathématique 87(101), 85–96 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Doder, D., Marković, Z., Ognjanović, Z., Perović, A., Rašković, M.: A Probabilistic Temporal Logic That Can Model Reasoning about Evidence. In: Link, S., Prade, H. (eds.) FoIKS 2010. LNCS, vol. 5956, pp. 9–24. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  9. 9.
    Doder, D., Perović, A., Ognjanović, Z.: Probabilistic Approach to Nonmonotonic Consequence Relations. In: Liu, W. (ed.) ECSQARU 2011. LNCS, vol. 6717, pp. 459–471. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  10. 10.
    Doder, D.: A logic with big-stepped probabilities that can model nonmonotonic reasoning of system P. Publications de l’Institut Mathématique 90(104), 13–22 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Dubois, D.: Belief structures, possibility theory and decomposable confidence relations on finite sets. Comput. Artificial Intelligence 5(5), 403–416 (1986)zbMATHGoogle Scholar
  12. 12.
    Dubois, D., Prade, H.: Conditional objects, possibility theory and default rules. In: Crocco, G., et al. (eds.) Conditionals: From Philosophy to Computer Science, pp. 311–346. Oxford University Press (1995)Google Scholar
  13. 13.
    Dubois, D., Prade, H.: Qualitative possibility functions and integrals. In: Pap, E. (ed.) Handbook of Measure Theory, pp. 1499–1522. North-Holland (2002)Google Scholar
  14. 14.
    Esteva, F., Godo, L., Montagna, F.: The ŁΠ and \(\L\Pi\frac{1}{2}\) logics: two complete fuzzy logics joining Łukasiewicz and product logic. Archive for Mathematical Logic 40, 39–67 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Fagin, R., Halpern, J.: Reasoning about knowledge and probability. Journal of the ACM 41(2), 340–367 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Fagin, R., Halpern, J., Megiddo, N.: A logic for reasoning about probabilities. Information and Computation 87(1-2), 78–128 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    del Cerro, L.F., Herzig, A.: A Modal Analysis of Possibility Theory. In: Jorrand, P., Kelemen, J. (eds.) FAIR 1991. LNCS, vol. 535, pp. 11–18. Springer, Heidelberg (1991)CrossRefGoogle Scholar
  18. 18.
    Flaminio, T.: Strong non-standard completeness for fuzzy logic. Soft Comput. 12(4), 321–333 (2008)CrossRefzbMATHGoogle Scholar
  19. 19.
    Gabbay, D.: Theoretical foundations for non-monotonic reasoning in expert systems. In: Logics and Models of Concurrent Systems, pp. 439–457. Springer, Heidelberg (1985)CrossRefGoogle Scholar
  20. 20.
    Grabisch, M., Labreuche, C.: Bi-capacities for decision making on bipolar scales. In: EUROFUSE Workshop in Information Systems, Varena, Italy, September 2002, pp. 185–190 (2002)Google Scholar
  21. 21.
    Godo, L., Marchioni, E.: Coherent conditional probability in a fuzzy logic setting. Logic Journal of the IGPL 14(3), 457–481 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Hailperin, T.: Sentential Probability Logic. Associated University Presses, Inc. (1996)Google Scholar
  23. 23.
    Hájek, P., Esteva, F., Godo, L.: Fuzzy logic and probability. In: Besnard, P., Hanks, S. (eds.) Proc. 11th Conf. Uncertainty in AI, Montreal, Canada, pp. 237–244 (1995)Google Scholar
  24. 24.
    Hájek, P.: Methamathematics of Fuzzy Logic. Kluwer Academic Publishers (1998)Google Scholar
  25. 25.
    Halpern, J., Pucella, R.: A logic for reasoning about evidence. Journal of Artificial Intelligence Research 26, 1–34 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Halpern, J.: Reasoning about Uncertainty. The MIT Press (2003)Google Scholar
  27. 27.
    Heifetz, A., Mongin, P.: Probability logic for type spaces. Games and Economic Behavior 35, 31–53 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Kraus, S., Lehmann, D., Magidor, M.: Nonmonotonic reasoning, preferential models and cumulative logics. Artificial Intelligence 44(1-2), 167–207 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Kunen, K.: Set theory - an introduction to independence proofs. Elsevier (1980)Google Scholar
  30. 30.
    Lehmann, D.: Generalized qualitative probability: Savage revisited. In: Horvitz, E., Jensen, F. (eds.) Procs. of 12 th Conference on Uncertainty in Artificial Intelligence (UAI 1996), pp. 381–388 (1996)Google Scholar
  31. 31.
    Lehmann, D., Magidor, M.: What does a conditional knowledge base entail? Artificial Intelligence 55, 1–60 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Lewis, D.: Counterfactuals. Basil Blackwell, London (1973)zbMATHGoogle Scholar
  33. 33.
    Lukasiewicz, T.: Probabilistic Default Reasoning with Conditional Constraints. Annals of Mathematics and Artificial Intelligence 34, 35–88 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Lukasiewicz, T.: Weak nonmonotonic probabilistic logics. Artificial Intelligence 168(1-2), 119–161 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Lukasiewicz, T.: Nonmonotonic probabilistic logics under variable-strength inheritance with overriding: Complexity, algorithms, and implementation. International Journal of Approximate Reasoning 44(3), 301–321 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Marchioni, E., Godo, L.: A Logic for Reasoning about Coherent Conditional Probability: A Modal Fuzzy Logic Approach. In: Alferes, J.J., Leite, J. (eds.) JELIA 2004. LNCS (LNAI), vol. 3229, pp. 213–225. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  37. 37.
    Marchioni, E., Montagna, F.: On triangular norms and uninorms definable in \(\L\Pi\frac{1}{2}\). International Journal of Approximate Reasoning 47(2), 179–201 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Marker, D.: Model Theory: An Introduction. Springer, Heidelberg (2002)zbMATHGoogle Scholar
  39. 39.
    Makinson, D.: General patterns in nonmonotonic reasoning. In: Handbook of Logic in Artificial Intelligence and Logic Programming. Non Monotonic Reasoning and Uncertain Reasoning, vol. 3, pp. 35–110. Clarendon Press, Oxford (1994)Google Scholar
  40. 40.
    Narens, L.: On qualitative axiomatizations for probability theory. Journal of Philosophical Logic 9(2), 143–151 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Nilsson, N.: Probabilistic logic. Artificial Intelligence 28, 71–87 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Ognjanović, Z., Rašković, M.: A logic with higher order probabilities. Publications de l’institut mathematique, Nouvelle série, tome 60(74), 1–4 (1996)MathSciNetzbMATHGoogle Scholar
  43. 43.
    Ognjanović, Z., Rašković, M.: Some probability logics with new types of probability operators. J. Log. Comput. 9(2), 181–195 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Ognjanović, Z., Rašković, M.: Some first-order probability logics. Theoretical Computer Science 247(1-2), 191–212 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Ognjanović, Z., Marković, Z., Rašković, M.: Completeness Theorem for a Logic with imprecise and conditional probabilities. Publications de L’Institute Matematique (Beograd) 78(92), 35–49 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    Ognjanović, Z.: Discrete linear-time probabilistic logics: completeness, decidability, complexity. J. Log. Comput. 16(2), 257–285 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  47. 47.
    Ognjanović, Z., Perović, A., Rašković, M.: Logic with the qualitative probability operator. Logic Journal of the IGPL 16(2), 105–120 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    Ognjanović, Z., Doder, D., Marković, Z.: A Branching Time Logic with Two Types of Probability Operators. In: Benferhat, S., Grant, J. (eds.) SUM 2011. LNCS, vol. 6929, pp. 219–232. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  49. 49.
    Perović, A., Ognjanović, Z., Rašković, M., Marković, Z.: A Probabilistic Logic with Polynomial Weight Formulas. In: Hartmann, S., Kern-Isberner, G. (eds.) FoIKS 2008. LNCS, vol. 4932, pp. 239–252. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  50. 50.
    Perović, A., Ognjanović, Z., Rašković, M., Radojević, D.G.: Finitely additive probability measures on classical propositional formulas definable by Gödel’s t-norm and product t-norm. Fuzzy Sets and Systems 169(1), 65–90 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  51. 51.
    Perović, A., Ognjanović, Z., Rašković, M., Marković, Z.: Qualitative Possibilities and Necessities. In: Sossai, C., Chemello, G. (eds.) ECSQARU 2009. LNCS (LNAI), vol. 5590, pp. 651–662. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  52. 52.
    Rašković, M.: Classical logic with some probability operators. Publications de l’institut mathematique, Nouvelle série, tome 53(67), 1–3 (1993)MathSciNetzbMATHGoogle Scholar
  53. 53.
    Rašković, M., Ognjanović, Z.: A first order probability logic LP Q. Publications de l’institut mathematique, Nouvelle série, tome 65(79), 1–7 (1999)MathSciNetzbMATHGoogle Scholar
  54. 54.
    Rašković, M., Ognjanović, Z., Marković, Z.: A Logic with Conditional Probabilities. In: Alferes, J.J., Leite, J. (eds.) JELIA 2004. LNCS (LNAI), vol. 3229, pp. 226–238. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  55. 55.
    van der Hoek, W.: Some considerations on the logic P F D: a logic combining modality and probability. Journal of Applied Non-Classical Logics 7(3), 287–307 (1997)MathSciNetCrossRefGoogle Scholar
  56. 56.
    Wellman, M.P.: Some varieties of qualitative probability. In: Proceedings of the 5th International Conference on Information Processing and the Management of Uncertainty, Paris (1994)Google Scholar
  57. 57.
    Zadeh, L.: Fuzzy sets. Information and Control 8(3), 338–353 (1965)MathSciNetCrossRefzbMATHGoogle Scholar
  58. 58.
    Zhu, Z., Xiao, W.: Two Representation Theorems for Non-monotonic Inference Relations. Journal of Logic and Computation 17(4), 727–747 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  59. 59.
    Zhu, Z., Zhang, D., Chen, S., Zhu, W.: Some contributions to nonmonotonic consequence. Journal of Computer Science and Technology 16(4), 297–314 (2001)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Aleksandar Perović
    • 1
  • Dragan Doder
    • 2
  • Zoran Ognjanović
    • 3
  1. 1.Faculty of Transportation and Traffic EngineeringUniversity of BelgradeSerbia
  2. 2.Faculty of Mechanical EngineeringUniversity of BelgradeSerbia
  3. 3.Mathematical Institute of Serbian Academy of Sciences and ArtsSerbia

Personalised recommendations