On Lifted Inference for a Relational Probabilistic Conditional Logic with Maximum Entropy Semantics

  • Annika Krämer
  • Christoph Beierle
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7153)


When extending probabilistic logic to a relational setting, it is desirable to still be able to use efficient inference mechanisms developed for the propositional case. In this paper, we investigate the relational probabilistic conditional logic FO-PCL whose semantics employs the principle of maximum entropy. While in general, this semantics is defined via the ground instances of the rules in an FO-PCL knowledge base \(\mathcal{R}\), the maximum entropy model can be computed on the level of rules rather than on the level of instances of the rules if \(\mathcal{R}\) is parametrically uniform, thus providing lifted inference.We elaborate in detail the reasons precluding \(\mathcal{R}\) from being parametrically uniform. Based on this investigation, we derive a new syntactic criterion for parametric uniformity and develop an algorithm that transforms any FO-PCL knowledge base \(\mathcal{R}\) into an equivalent knowledge base \(\mathcal{R'}\) that is parametrically uniform.


Knowledge Base Maximum Entropy Transformation Rule Probabilistic Logic Predicate Symbol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adams, E.W.: The Logic of Conditionals. D. Reidel Publishing Company, Dordrecht (1975)CrossRefzbMATHGoogle Scholar
  2. 2.
    Beierle, C., Finthammer, M., Kern-Isberner, G., Thimm, M.: Evaluation and Comparison Criteria for Approaches to Probabilistic Relational Knowledge Representation. In: Bach, J., Edelkamp, S. (eds.) KI 2011. LNCS (LNAI), vol. 7006, pp. 63–74. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  3. 3.
    Broecheler, M., Simari, G.I., Subrahmanian, V.S.: Using Histograms to Better Answer Queries to Probabilistic Logic Programs. In: Hill, P.M., Warren, D.S. (eds.) ICLP 2009. LNCS, vol. 5649, pp. 40–54. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  4. 4.
    Delgrande, J.P.: On First-Order Conditional Logics. Artificial Intelligence 105(1-2), 105–137 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Fagin, R., Halpern, J.Y.: Reasoning about knowledge and probability. J. ACM 41(2), 340–367 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Fagin, R., Halpern, J.Y., Megiddo, N.: A logic for reasoning about probabilities. Information and Computation 87(1-2), 78–128 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Fisseler, J.: Learning and Modeling with Probabilistic Conditional Logic. Dissertations in Artificial Intelligence, vol. 328. IOS Press, Amsterdam (2010)zbMATHGoogle Scholar
  8. 8.
    Getoor, L., Taskar, B. (eds.): Introduction to Statistical Relational Learning. MIT Press (2007)Google Scholar
  9. 9.
    Halpern, J.Y.: Reasoning About Uncertainty. MIT Press (2005)Google Scholar
  10. 10.
    Janning, R., Beierle, C.: Transformation Rules for First-Order Probabilistic Conditional Logic Yielding Parametric Uniformity. In: Bach, J., Edelkamp, S. (eds.) KI 2011. LNCS (LNAI), vol. 7006, pp. 157–168. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  11. 11.
    Kern-Isberner, G.: Characterizing the principle of minimum cross-entropy within a conditional-logical framework. Artificial Intelligence 98, 169–208 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Kern-Isberner, G.: Conditionals in Nonmonotonic Reasoning and Belief Revision. LNCS, vol. 2087, p. 190. Springer, Heidelberg (2001)zbMATHGoogle Scholar
  13. 13.
    Kern-Isberner, G., Lukasiewicz, T.: Combining probabilistic logic programming with the power of maximum entropy. Artificial Intelligence, Special Issue on Nonmonotonic Reasoning 157(1-2), 139–202 (2004)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Krämer, A.: Transformation rules for lifted inference in relational probabilistic logic knowledge bases. B.Sc. Thesis, Dept. of Computer Science, FernUniversität in Hagen, Germany (2011)Google Scholar
  15. 15.
    Nilsson, N.J.: Probabilistic logic. Artif. Intell., 71–87 (1986)Google Scholar
  16. 16.
    Nute, D., Cross, C.B.: Conditional logic. In: Gabbay, D.M., Guenthner, F. (eds.) Handbook of Philosophical Logic, vol. 4, pp. 1–98. Kluwer Academic Publishers (2002)Google Scholar
  17. 17.
    Paris, J.B.: The uncertain reasoner’s companion - A mathematical perspective. Cambridge University Press (1994)Google Scholar
  18. 18.
    Paris, J.B., Vencovska, A.: In defence of the maximum entropy inference process. International Journal of Approximate Reasoning 17(1), 77–103 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Poole, D.: First-order probabilistic inference. In: Gottlob, G., Walsh, T. (eds.) Proceedings of the Eighteenth International Joint Conference on Artificial Intelligence (IJCAI 2003), pp. 985–991. Morgan Kaufmann (2003)Google Scholar
  20. 20.
    Rödder, W., Kern-Isberner, G.: Representation and extraction of information by probabilistic logic. Information Systems 21(8), 637–652 (1996)CrossRefzbMATHGoogle Scholar
  21. 21.
    Thimm, M.: Probabilistic Reasoning with Incomplete and Inconsistent Beliefs. Dissertation, Technische Universität Dortmund (2011)Google Scholar
  22. 22.
    Thimm, M., Kern-Isberner, G., Fisseler, J.: Relational Probabilistic Conditional Reasoning at Maximum Entropy. In: Liu, W. (ed.) ECSQARU 2011. LNCS, vol. 6717, pp. 447–458. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  23. 23.
    Yue, A., Liu, W., Hunter, A.: Measuring the Ignorance and Degree of Satisfaction for Answering Queries in Imprecise Probabilistic Logic Programs. In: Greco, S., Lukasiewicz, T. (eds.) SUM 2008. LNCS (LNAI), vol. 5291, pp. 386–400. Springer, Heidelberg (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Annika Krämer
    • 1
  • Christoph Beierle
    • 1
  1. 1.Fak. für Mathematik und InformatikFernUniversität in HagenHagenGermany

Personalised recommendations