Directional Solidification Microstructure Evolvement of Al-4.5Cu Alloy under Different Pulling Velocity Conditions

  • Chunhua Tang
  • Cui Liang
  • Jinjun Tang
  • Meng Xu
  • Guangming Zhang
Conference paper
Part of the Advances in Intelligent and Soft Computing book series (AINSC, volume 146)

Abstract

Directional solidification microstructure of Bridgman system was simulated using phase-field method, and different pulling velocity calculated results were obtained. When the pulling velocity is 0.08 cm/s, the columnar crystals competitively grow. The space between columnar crystals is the biggest. When the pulling velocity is 0.90 cm/s, the columnar crystals become thinner and competitively grow all the time, and the microsegregation is bigger. When the pulling velocity is 1.60 cm/s, planar interface comes back, and solute trapping takes place. The columnar crystals become much thinner, and microsegregation decreases. When the pulling velocity is 1.80 cm/s, the grain boundary of columnar crystals becomes unconspicuous, and the degree of microsegregation approaches 1. At the same time, the transverse solute profiles is also studied in this paper.

Keywords

Numerical Simulation Directional solidification phase-field model microsegregation Al-4.5Cu alloy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wheeler, A.A., Boettinger, W.J., McFadden, G.B.: Phys. Rev. A 45, 7424–7439 (1992)CrossRefGoogle Scholar
  2. 2.
    Wheeler, A.A., Boettinger, W.J., McFadden, G.B.: Phys. Rev. E 47, 1893–1909 (1993)CrossRefGoogle Scholar
  3. 3.
    Boettinger, W.J., Warren, J.A.: Metall. Mater. Trans. A 27, 657–669 (1996)CrossRefGoogle Scholar
  4. 4.
    Warren, J.A., Boettinger, W.J.: Acta Metall. Mater. 43, 689–703 (1995)CrossRefGoogle Scholar
  5. 5.
    Boettinger, W.J., Warren, J.A.: J. Cryst. Growth 200, 583–591 (1999)CrossRefGoogle Scholar
  6. 6.
    Kim, S.G., Kim, W.T., Suzuki, T.: Phys. Rev. E 60, 7186–7197 (1999)CrossRefGoogle Scholar
  7. 7.
    Kim, S.G., Kim, W.T., Suzuki, T.: Phys. Rev. E 58, 3316–3323 (1998)CrossRefGoogle Scholar
  8. 8.
    Boettinger, W.J., Warren, J.A., Beckermann, C., Karma, A.: Annu. Rev. Mater. Sci. 32, 163–194 (2002)CrossRefGoogle Scholar
  9. 9.
    Kim, S.G., Kim, W.T.: Mat. Sci. Eng. A-Struct., 304–306, 281 (2001)Google Scholar
  10. 10.
    Diepers, H.–J., Ma, D., Steinbach, I.: J. Cryst. Growth, 237–239, 149 (2002)Google Scholar
  11. 11.
    Bi, Z., Sekerka, R.F.: Cryst. Growth, 237–239, 138 (2002)Google Scholar
  12. 12.
    Costa Filho, R.N., Kosterlitz, J.M., Granato, E.: Physica A 354, 333 (2005)CrossRefGoogle Scholar
  13. 13.
    Lan, C.W., Chang, Y.C.: J. Cryst. Growth 250, 525 (2003)CrossRefGoogle Scholar
  14. 14.
    Lan, C.W., Shih, C.J., Lee, M.H.: Acta. Mater. 53, 2285 (2005)CrossRefGoogle Scholar
  15. 15.
    Lan, C.W., Lee, M.H., Chuang, M.H., Shih, C.J.: J. Cryst. Growth 295, 202 (2006)CrossRefGoogle Scholar
  16. 16.
    Singer, H.M., Singer-Loginova, I., Bilgram, J.H., Amberg, G.: J. Cryst. Growth 296, 58 (2006)CrossRefGoogle Scholar
  17. 17.
    Plapp, M.: J. Cryst. Growth 303, 49 (2007)CrossRefGoogle Scholar
  18. 18.
    Tang, J., Jiang, J., Tang, C., Chen, D., Hou, L.: Advanced Materials Research 295, 468–472 (2011)CrossRefGoogle Scholar
  19. 19.
    Tang, J.J.: PhD Thesis, Harbin Institute of Technology (2009)Google Scholar

Copyright information

© Springer-Verlag GmbH Berlin Heidelberg 2012

Authors and Affiliations

  • Chunhua Tang
    • 1
  • Cui Liang
    • 2
  • Jinjun Tang
    • 3
  • Meng Xu
    • 4
  • Guangming Zhang
    • 3
  1. 1.Shandong International UniversityJinanChina
  2. 2.Ningbo Product Technology Service Company LimitedNingboChina
  3. 3.Ningbo Sub-academy of the National Weapons Science Research AcademyNingboChina
  4. 4.Shandong Institute of Commerce and TechnologyJinanChina

Personalised recommendations