Dendritic Crystal Growth Evolution of Al-2.6Cu Alloy under Different Supersaturation Conditions

  • Mingan Zhou
Conference paper
Part of the Advances in Intelligent and Soft Computing book series (AINSC, volume 146)


In this paper, dendritic crystal growth evolution of Al-2.6Cu (at.%) alloy are investigated by using the phase-field model coupling concentration field equations under different supersaturation conditions. The calculated results indicate that the supersaturation, which is larger in lower initial temperature, plays a very important role in dendritic crystal growth and microsegregation. With the initial temperature decreasing and supersaturation increasing, secondary branches change from sparseness, thickness, and disappearing. The larger supersaturation causes higher faster dendrite growth velocity and solid phase ratio. The change of microsegregation degree is correspondingly complicated. When initial temperature is higher than 829K, the microsegregation degree increases. When the initial temperature lower than 829K, the microsegregation degree reduces rapidly. The simulated results agree well with the solidification theory.


Numerical Simulation phase-field model dendrite growth microsegregation Al-Cu alloy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wheeler, A., Boettinger, W.J., McFadden, G.B.: Phys. Rev. A 45, 7424–7439 (1992)CrossRefGoogle Scholar
  2. 2.
    Wheeler, A., Boettinger, W.J., McFadden, G.B.: Phys. Rev. E 47, 1893–1909 (1993)CrossRefGoogle Scholar
  3. 3.
    Boettinger, W.J., Warren, J.A.: Metall. Mater. Trans. A 27, 657–669 (1996)CrossRefGoogle Scholar
  4. 4.
    Warren, J.A., Boettinger, W.J.: Acta Metall. Mater 43, 689–703 (1995)CrossRefGoogle Scholar
  5. 5.
    Boettinger, W.J., Warren, J.A.: J. Cryst. Growth 200, 583–591 (1999)CrossRefGoogle Scholar
  6. 6.
    Kim, S.G., Kim, W.T., Suzuki, T.: Phys. Rev. E 60, 7186–7197 (1999)CrossRefGoogle Scholar
  7. 7.
    Kim, S.G., Kim, W.T., Suzuki, T.: Phys. Rev. E 58, 3316–3323 (1998)CrossRefGoogle Scholar
  8. 8.
    Boettinger, W.J., Warren, J.A., Beckermann, C., Karma, A.: Annu. Rev. Mater. Sci. 32, 163–194 (2002)CrossRefGoogle Scholar
  9. 9.
    Kim, S.G., Kim, W.T.: Mat. Sci. Eng. A-Struct., 304–306, 281 (2001)Google Scholar
  10. 10.
    Diepers, H.–J., Ma, D., Steinbach, I.: J. Cryst. Growth, 237–239, 149 (2002)Google Scholar
  11. 11.
    Bi, Z., Sekerka, R.F.: J. Cryst. Growth, 237–239, 138 (2002)Google Scholar
  12. 12.
    Guo, J.J., Li, X.Z., Su, Y.Q., Wu, S.P., Li, B.S., Fu, H.Z.: Rare Metal Materials and Engineering 33, 195 (2004)Google Scholar
  13. 13.
    Costa Filho, R.N., Kosterlitz, J.M., Granato, E.: Physica A 354, 333 (2005)CrossRefGoogle Scholar
  14. 14.
    Lan, W., Chang, Y.C.: J. Cryst. Growth 250, 525 (2003)CrossRefGoogle Scholar
  15. 15.
    Lan, W., Shih, C.J., Lee, M.H.: Acta. Mater. 53, 2285 (2005)CrossRefGoogle Scholar
  16. 16.
    Lan, W., Lee, M.H., Chuang, M.H., Shih, C.J.: J. Cryst. Growth 295, 202 (2006)CrossRefGoogle Scholar
  17. 17.
    Singer, H.M., Singer-Loginova, I., Bilgram, J.H., Amberg, G.: J. Cryst. Growth 296, 58 (2006)CrossRefGoogle Scholar
  18. 18.
    Plapp, M.: J. Cryst. Growth 303, 49 (2007)CrossRefGoogle Scholar
  19. 19.
    Tang, J.: PhD Thesis, Harbin Institute of Technology (2009)Google Scholar
  20. 20.
    Tang, J., Jiang, J., Tang, C., Chen, D., Hou, L.: Advanced Materials Research 295, 468–472 (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringQuzhou College of TechnologyQuzhouChina

Personalised recommendations