Advertisement

Rotary Face Recognition Based on Pseudo-Zernike Moment

  • Zhan Shi
  • Guixiong Liu
  • Minghui Du
Part of the Advances in Intelligent and Soft Computing book series (AINSC, volume 146)

Abstract

With regard to the catastrophe problem of the face image misalignment from random angle for rotating, this paper proposes a feature extraction method of the images based on pseudo-Zernike moment. First transform the image into polar coordinates, and then calculate the multi-stage pseudo-Zernike moment of the image. Next come normalization to remove the gray effect and selection of appropriate order of the moment. Finally the invariant image rotation feature vector can be obtained and the dimensionality, by LDA, can be reduced. Experiments prove that, on the ORL image database with rotation change from a random angle, the recognition rate of alignment is 89%, which, at the same time, has a strong robustness on the white noise.

Keywords

pseudo-Zernike moment rotation invariant feature extraction face recognition 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yan, S., Wang, H., et al.: Misalignment-Robust Face Recognition. IEEE Transactions on Image Proceeing 19(4), 1087–1096 (2010)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Shan, S.-G., Gao, W., et al.: Curse of Mis-Alignment Problem in Face Recognition. Chinese Journal of Computers 05, 782–791 (2005)Google Scholar
  3. 3.
    Wu, T.-H., Zhou, C.-L.: Study on Face Detection Under Rotation in Image Plane and Facial Features Localization. Acta Electronica Sinica (09), 1714–1718 (2007)Google Scholar
  4. 4.
    Sun, X.-M., Su, F., et al.: An eye location method of big angle rotation face at normal illumination. Journal of Optoelectronics. Laser (1), 94–98 (2009)Google Scholar
  5. 5.
    Hamouz, M., Kittler, J., et al.: Feature-Based Affine-Invariant Localization of Faces. IEEE Transactions on Pattern and Machine Intelligence 27(5), 1490–1495 (2005)CrossRefGoogle Scholar
  6. 6.
    Hu, M.K.: Visual pattern recognition by moment invariants. IEEE Transactions on Information Theory 8(1), 179–187 (1962)MATHGoogle Scholar
  7. 7.
    Kim, W.Y., Kim, Y.S.: A region-based shape descriptor using Zernike moments. Signal Process Image Communicaiton 16, 95–102 (2000)CrossRefGoogle Scholar
  8. 8.
    Teh, C.H., Chin, R.T.: On image analysis by the methods of moments. IEEE Transactions on Pattern and Machine Intelligence 10(4), 496–513 (1988)MATHCrossRefGoogle Scholar
  9. 9.
    Mukundan, R., Ramakrishnan, K.R.: Moment functions in image analysis: theory and applications, pp. 57–62. World Scientific Publishing Company, Singapore (1998)MATHCrossRefGoogle Scholar
  10. 10.
    Pang, Y.H., Teoh, A.B.J., Ngo, D.C.L.: A discriminant pseudo-Zernike moments in face recognition. Journal of Research and Practice in Information Technology 38(2), 197–211 (2006)Google Scholar
  11. 11.
    Mukundan, R., Ramakrishnan, K.R.: Fast computation of Legendre and Zernike moments. Pattern Recognition 28(9), 1433–1442 (1995)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Berlin Heidelberg 2012

Authors and Affiliations

  • Zhan Shi
    • 1
  • Guixiong Liu
    • 1
  • Minghui Du
    • 1
  1. 1.School of Electronic and Information EngineeringSouth China University of TechnologyGuangzhouChina

Personalised recommendations