Skip to main content

The Research on Model of Group Behavior Based on Mobile Network Mining and High-Speed Data Streams

  • Conference paper
Emerging Computation and Information teChnologies for Education

Part of the book series: Advances in Intelligent and Soft Computing ((AINSC,volume 146))

  • 1007 Accesses

Abstract

High-speed data stream is a data flow velocity exceeds the processing power of integrated classifier; integrated classifier training can not reach all the most recent data to update the classification model. To this end, this chapter introduces the optimal Bayesian classification theory, and its integration on the basis of analysis of the expected classification error of the bias variance decomposition, and finally presents a sampling bias based on an integrated high-speed data stream classification algorithm (Ensemble Classifiers Algorithm for Classify High Speed Data Stream based of Biased Sample, CDSBS), theoretical analysis is the experimental verification show that the algorithm can effectively reduce the integrated classifier training update at the same time, the classification remains a high classification performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jawerth, B., Sweldens, W.: An overview of Waveletbased multiresolution analysis. SIAM Reve. 36(3), 377–412 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  2. Vitter J S,Wang M, Lyer B.Data cube approximation and Histograms via wavelets. Proceeding of CIKM, 1998

    Google Scholar 

  3. Vitter, J.S., Wang, M.: Approxlinate computation of multidimensional aggregates of sparse data using wavelets. In: Proceeding of the 2002 ACM-SIGMOD international conference Management of Data (1999)

    Google Scholar 

  4. Dietterich, T.G.: Ensemble Methods in Machine Learning. In: Kittler, J., Roli, F. (eds.) MCS 2000. LNCS, vol. 1857, pp. 1–15. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  5. Schapire, R.E.: The strength of weak learnability. Machine Learning 5(2), 197–227 (1990)

    Google Scholar 

  6. Freund, Y.: Boosting a Weak Algorithm by Majority. Information and Computation 121(2), 256–285 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  7. Freund, Y., Schapire, R.E.: A decision-the oretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences 55(1), 119–139 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  8. Schapire, R., Freund, Y., Bartlett, P., et al.: Boosting the margin: A new explanation for the effectivness of voting methods. The Annals of Statistics 26, 1651–1686 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  9. Breiman, L.: Prediction games and arcing algorithms. Neural Computation 11, 1493–1517 (1999)

    Article  Google Scholar 

  10. Wang, L., Sugiyama, M., Yang, C., et al.: On the margin explanation of boosting algorithms. In: 21st Annual Conference on Learning Theory(COLT) (2008)

    Google Scholar 

  11. Opitz, D.W.: Feature selection for ensembles. In: Proceedings of the sixteenth international conference on Artificial intelligence and the eleventh Innovative applications of artificial intelligence conference innovative applications of artificial intelligence, pp. 379–384 (1999)

    Google Scholar 

  12. Bryll, R., Gutierrez-Osuna, R., Quek, F.: Attribute bagging: improving accuracy of classifier ensembles by using random feature subsets. Pattern Recognition 36, 1291–1302 (2003)

    Article  MATH  Google Scholar 

  13. Tsoumakas, G., Vlahavas, I.P.: Random k-Labelsets: An Ensemble Method for Multilabel Classification. In: Kok, J.N., Koronacki, J., Lopez de Mantaras, R., Matwin, S., Mladenič, D., Skowron, A. (eds.) ECML 2007. LNCS (LNAI), vol. 4701, pp. 406–417. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag GmbH Berlin Heidelberg

About this paper

Cite this paper

JianPing, G. (2012). The Research on Model of Group Behavior Based on Mobile Network Mining and High-Speed Data Streams. In: Mao, E., Xu, L., Tian, W. (eds) Emerging Computation and Information teChnologies for Education. Advances in Intelligent and Soft Computing, vol 146. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28466-3_64

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28466-3_64

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28465-6

  • Online ISBN: 978-3-642-28466-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics