Advertisement

The Research on Model of Group Behavior Based on Mobile Network Mining and High-Speed Data Streams

  • Gu JianPing
Part of the Advances in Intelligent and Soft Computing book series (AINSC, volume 146)

Abstract

High-speed data stream is a data flow velocity exceeds the processing power of integrated classifier; integrated classifier training can not reach all the most recent data to update the classification model. To this end, this chapter introduces the optimal Bayesian classification theory, and its integration on the basis of analysis of the expected classification error of the bias variance decomposition, and finally presents a sampling bias based on an integrated high-speed data stream classification algorithm (Ensemble Classifiers Algorithm for Classify High Speed Data Stream based of Biased Sample, CDSBS), theoretical analysis is the experimental verification show that the algorithm can effectively reduce the integrated classifier training update at the same time, the classification remains a high classification performance.

Keywords

Group Behavior Mobile Network Mining Data Streams 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Jawerth, B., Sweldens, W.: An overview of Waveletbased multiresolution analysis. SIAM Reve. 36(3), 377–412 (1994)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Vitter J S,Wang M, Lyer B.Data cube approximation and Histograms via wavelets. Proceeding of CIKM, 1998 Google Scholar
  3. 3.
    Vitter, J.S., Wang, M.: Approxlinate computation of multidimensional aggregates of sparse data using wavelets. In: Proceeding of the 2002 ACM-SIGMOD international conference Management of Data (1999)Google Scholar
  4. 4.
    Dietterich, T.G.: Ensemble Methods in Machine Learning. In: Kittler, J., Roli, F. (eds.) MCS 2000. LNCS, vol. 1857, pp. 1–15. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  5. 5.
    Schapire, R.E.: The strength of weak learnability. Machine Learning 5(2), 197–227 (1990)Google Scholar
  6. 6.
    Freund, Y.: Boosting a Weak Algorithm by Majority. Information and Computation 121(2), 256–285 (1995)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Freund, Y., Schapire, R.E.: A decision-the oretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences 55(1), 119–139 (1997)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Schapire, R., Freund, Y., Bartlett, P., et al.: Boosting the margin: A new explanation for the effectivness of voting methods. The Annals of Statistics 26, 1651–1686 (1998)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Breiman, L.: Prediction games and arcing algorithms. Neural Computation 11, 1493–1517 (1999)CrossRefGoogle Scholar
  10. 10.
    Wang, L., Sugiyama, M., Yang, C., et al.: On the margin explanation of boosting algorithms. In: 21st Annual Conference on Learning Theory(COLT) (2008)Google Scholar
  11. 11.
    Opitz, D.W.: Feature selection for ensembles. In: Proceedings of the sixteenth international conference on Artificial intelligence and the eleventh Innovative applications of artificial intelligence conference innovative applications of artificial intelligence, pp. 379–384 (1999)Google Scholar
  12. 12.
    Bryll, R., Gutierrez-Osuna, R., Quek, F.: Attribute bagging: improving accuracy of classifier ensembles by using random feature subsets. Pattern Recognition 36, 1291–1302 (2003)MATHCrossRefGoogle Scholar
  13. 13.
    Tsoumakas, G., Vlahavas, I.P.: Random k-Labelsets: An Ensemble Method for Multilabel Classification. In: Kok, J.N., Koronacki, J., Lopez de Mantaras, R., Matwin, S., Mladenič, D., Skowron, A. (eds.) ECML 2007. LNCS (LNAI), vol. 4701, pp. 406–417. Springer, Heidelberg (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Berlin Heidelberg 2012

Authors and Affiliations

  • Gu JianPing
    • 1
  1. 1.Lishui UniversityLishuiChina

Personalised recommendations