Advertisement

Algorithm Analysis and Application Based on Mutation Points Found in Quadratic Wavelet Transformation

  • Li Xiaoping
  • Liang Chunhui
  • Li Yinxiang
  • Chen Si
  • Sun Zhentian
  • Wu Xiaobing
  • Xu Qiong
  • Shi Yan
  • Li Lishan
  • Jing Yuhuan
Part of the Advances in Intelligent and Soft Computing book series (AINSC, volume 146)

Abstract

This paper, directs at data analysis of remote network business, introduces the algorithm of wavelet analysis in the analysis of users and business (namely the time series data analysis of users’ business). In the application of finding mutation points of time series data, put forward the method of determining data mutation points with the algorithm of quadratic wavelet transformation, to resolve that the sequences with noise are difficult to determine mutation points.

Keywords

remote network quadratic wavelet transformation data analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Duan, Y.F.: Association Rule Mining and Its Application. The Journal of China Universities of Posts and Telecommunications 8(4) (2001)Google Scholar
  2. 2.
    Agrawal, R., et al.: Fast algorithms for mining association rules in large databases. In: Proc. of VLDB, Santiago de Chile, Chile, pp. 487–499 (1994)Google Scholar
  3. 3.
    Han(Sam), E.-H.: Scalable Parallel Data Mining for Association Rules. IEEE Transactions on Knowledge and Data Engineering 12(3), 220–226Google Scholar
  4. 4.
    Zheng, Z.-G.: An Application Of Data Mining Technology In Credit Card Analysis. Software 13(5), 12–16Google Scholar
  5. 5.
    Lesh, N.: Feature Mining for Sequential Data. IEEE 34(27), 110–118 (2001)Google Scholar
  6. 6.
    Mallat, S.: A theory of multi resolution signal decomposition: the wavelet representation. IEEE Trans. PAMI 11, 230–238 (1989)CrossRefGoogle Scholar
  7. 7.
    Cheng, H., Huang, W.: Wavelet Network Based Time Series Prediction And Its Application. Journal of Mechanical Strength 21(1), 1–3 (1999)Google Scholar
  8. 8.
    He, G.: A Study On Forecasting For Time Series Based On Wavelet Analysis. A Automatic Sinica 28(6), 1012–1015 (2002)Google Scholar
  9. 9.
    Han, J., Kamber, M.: 数据挖掘概念与技术.机械工业出版社, (2002)Google Scholar
  10. 10.
    Agrawal, R., Imielinski, T., Swami, A.: Mining association rules between sets of itemsinlargedatabases. In: Proceedings of ACM SIGMOD Conference on Management of Data, Assciation for Computer Marchinery, New York (1993)Google Scholar

Copyright information

© Springer-Verlag GmbH Berlin Heidelberg 2012

Authors and Affiliations

  • Li Xiaoping
    • 1
  • Liang Chunhui
    • 1
  • Li Yinxiang
    • 1
  • Chen Si
    • 1
  • Sun Zhentian
    • 1
  • Wu Xiaobing
    • 1
  • Xu Qiong
    • 1
  • Shi Yan
    • 1
  • Li Lishan
    • 1
  • Jing Yuhuan
    • 1
  1. 1.Department of Modern Distance EducationBeijing Institute of TechnologyBeijingChina

Personalised recommendations