Modelling of Fracture in Reinforced Concrete under Monotonic Loading

  • Jacek Tejchman
  • Jerzy Bobiński
Part of the Springer Series in Geomechanics and Geoengineering book series (SSGG)


In this Chapter, the numerical analyses of reinforced concrete bars, beams, columns, corbels and tanks were performed using three enhanced constitutive continuum approaches for concrete: isotropic elasto-plastic model, isotropic damage model and smeared crack model with non-local softening (Chapters 3.1 and 3.3). Attention was paid to strain localization developed in concrete.


Reinforce Concrete Ultimate Load Localize Zone Reinforcement Ratio Softening Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. ABAQUS, Theory Manual. Version 5.8, Hibbit, Karlsson & Sorensen Inc. (1998)Google Scholar
  2. Akkermann, J.: Rotationsverhalten von Stahlbeton-Rahmenecken. PhD Thesis. Univesity of Karlsruhe (2000)Google Scholar
  3. Baglin, P.S., Scott, R.H.: Finite element modelling of reinforced concrete beam-column connections. ACI Structural Journal 97(6), 886–894 (2000)Google Scholar
  4. Bažant, Z.P., Cedolin, L., Tabbara, M.R.: New method of analysis for slender columns. ACI Structural Journal 88(4), 391–401 (1991)Google Scholar
  5. Bažant, Z.P., Kwon, Y.W.: Failure of slender and stocky reinforced concrete columns: tests of size effect. Materials and Structures 27(2), 79–90 (1994)CrossRefGoogle Scholar
  6. Bažant, Z., Planas, J.: Fracture and size effect in concrete and other quasi-brittle materials. CRC Press LLC (1998)Google Scholar
  7. Billinger, M., Symons, M.: Slender reinforced concrete columns produced from high-strength concrete. In: Proceedings of CIA/FIP Conference, Brisbane, pp. 223–232 (1995)Google Scholar
  8. Bobiński, J., Tejchman, J.: Numerical simulations of localization of deformation in quasi-brittle materials within non-local softening plasticity. Computers and Concrete 1(4), 433–455 (2004)Google Scholar
  9. Bobiński, J., Tejchman, J.: Dimensioning of tank wall corner subjected to positive bending moments. Report. Gdańsk University of Technology (2009)Google Scholar
  10. Box, G.E.P., Muller, M.E.: A note of the generation of random normal deviates. Annals of Mathematical Statistics 29(2), 610–611 (1958)zbMATHCrossRefGoogle Scholar
  11. Broms, B., Viest, I.M.: Ultimate strength analysis of long restrained reinforced concrete columns. Journal of the Structural Division (ASCE) 84(ST3), 1635-1–1635-30 (1958)Google Scholar
  12. Campione, G., La Mendola, L., Papia, M.: Flexural behavior of concrete corbels containing steel fibers or wrapped with FRP sheets. Materials and Structures 38(6), 617–625 (2005)CrossRefGoogle Scholar
  13. CEB-FIP, Commité Euro-International du Béton-Fédération International de la Précontrainte. Model Code 1990, bulletin d’information Lusanne, Shwitzerland (1990)Google Scholar
  14. Červenka, V.: Constitutive model for cracked reinforced concrete. ACI Journal 82(6), 877–882 (1985)Google Scholar
  15. Channakeshava, C., Sundara Raja Iyengar, K.T.: Elasto-plastic-cracking analysis of reinforced concrete structures. Journal of the Structural Division (ASCE) 114(11), 2421–2438 (1988)CrossRefGoogle Scholar
  16. de Borst, R.: Non-linear analysis of frictional materials. Phd Thesis. University of Delft (1986)Google Scholar
  17. den Uijl, J.A., Bigaj, A.: A bond model for ribbed bars based on concrete confinement. Heron 41(3), 201–226 (1996)Google Scholar
  18. Dörr, K.: Ein Beitrag zur Berechnung von Stahlbetonscheiben unter besonderer Berücksichtigung des Verbundverhaltens. PhD thesis. Darmstadt University (1980)Google Scholar
  19. El-Metwally, S.E., Chen, W.F.: Nonlinear behaviour of R/C frames. Computers and Structures 32(6), 1203–1209 (1989)CrossRefGoogle Scholar
  20. Eurocode 2 “Design of Concrete Structures, part 1-1” (1991)Google Scholar
  21. Fattuhi, N.I.: Strength of SFRC corbels subjected to vertical load. Journal of Structural Engineering ASCE 116(3), 701–718 (1990)CrossRefGoogle Scholar
  22. Foster, S.J., Powell, R.E., Selim, H.S.: Performance of high strength concrete corbels. ACI Structural Journal 93(5), 555–563 (1996)Google Scholar
  23. Fragomeni, S., Mendis, P.A.: Instability analysis of normal and high-strength reinforced concrete walls. Journal of Structural Engineering ASCE 123(5), 680–684 (1997)CrossRefGoogle Scholar
  24. Gardner, N.J., Ramakrishna, M.G., Tak-Fong, W.: Laterally prestressed eccentrically loaded slender columns. ACI Structural Journal 89(5), 547–554 (1992)Google Scholar
  25. Gitman, I.M., Askes, H., Sluys, L.J.: Coupled-volume multi-scale modelling of quasi-brittle material. European Journal of Mechanics A/Solids 27(3), 302–327 (2008)zbMATHCrossRefGoogle Scholar
  26. Gonzalez-Vidosa, F., Kotsovos, M.D., Pavlovic, M.N.: Symmetrical punching of reinforced concrete slabs: An analytical investigation based on non-linear finite element modeling. ACI Structural Journal 85(3), 241–250 (1988)Google Scholar
  27. Groen, A.E.: Three-dimensional elasto-plastic analysis of soils. PhD Thesis. Delft University (1997)Google Scholar
  28. Gruber, L., Menn, C.: Berechnung und Bemessung schlanker Stahlbetonstützen. Bericht 84. Institut für Baustatik ETH Zürich (1978)Google Scholar
  29. Hagberg, T.: Design of concrete brackets: On the application of the truss analogy. ACI Journal 80(1-2), 3–12 (1983)Google Scholar
  30. Haskett, M., Pehlers, D.J., Mohamed Ali, M.S.: Local and global bond characteristics of steel reinforcing bars. Engineering Structures 30(2), 376–383 (2008)CrossRefGoogle Scholar
  31. Häuβler-Combe, U., Pröchtel, P.: Ein dreiaxiale Stoffgesetz fur Betone mit normalen und hoher Festigkeit. Beton- und Stahlbetonbau 100(1), 52–62 (2005)CrossRefGoogle Scholar
  32. Hordijk, D.A.: Local approach to fatigue of concrete. PhD Thesis. Delft University of Technology (1991)Google Scholar
  33. Hsu, C.T.T.: Analysis and design of square and rectangular columns by equation of failure surface. ACI Structural Journal 85(2), 167–179 (1988)Google Scholar
  34. Hughes, T.J.R., Winget, J.: Finite Rotation Effects in Numerical Integration of Rate Constitutive Equations Arising in Large Deformation Analysis. International Journal for Numerical Methods in Engineering 15(12), 1862–1867 (1980)MathSciNetzbMATHCrossRefGoogle Scholar
  35. Jia, X., Song, W., Yuan, Y.: A smeared crack model for reinforced concrete beam via continuum damage mechanics. In: Meschke, G., de Borst, R., Mang, H., Bicanic, N. (eds.) Computational Modelling of Concrete Structures, EURO-C 2006, pp. 363–369. Taylor and Francis (2006)Google Scholar
  36. Kani, G.N.J.: Basic facts concerning shear failure. ACI-Journal Proceedings 63(6), 675–692 (1996)Google Scholar
  37. Kiedroń, K.: Method for calculations of critical force of columns subject to eccentric compression. PhD Thesis. Technical University of Wrocław (1980) (in Polish)Google Scholar
  38. Kilpatrick, A.E., Rangan, B.V.: Tests on high-strength concrete-filled steel tabular columns. ACI Structural Journal 96(2), 268–274 (1999)Google Scholar
  39. Kim, J., Yang, J.: Buckling behaviour of slender high-strength concrete columns. Engineering Structures 17(1), 39–51 (1995)MathSciNetCrossRefGoogle Scholar
  40. Kim, J.K., Lee, S.S.: The behavior of reinforced concrete columns subjected to axial force and biaxial bending. Engineering Structures 22(11), 1518–1526 (2000)CrossRefGoogle Scholar
  41. Kordina, K., Warner, R.F.: Űber den Einfluβ des Kriechens auf die Ausbiegung schlanker Stahlbetonstützen. In: Deutscher Ausschuβ für Stahlbeton, Berlin, Heft 250 (1975)Google Scholar
  42. Kordina, K.: Bewehrungsführung in Ecken und Rahmenendknoten. In: DAfStb Heft 354, Berlin (1984)Google Scholar
  43. Korzeniowski, P.: Effectiveness of increasing load bearing capacity of RC columns by raising the strength of concrete and amount of reinforcement. Archives of Civil Engineering XLIII(2), 149–164 (1997)Google Scholar
  44. Kriz, L.B., Raths, C.H.: Connections in precast concrete – strength of corbels. Journal Prestressed Concrete Institute 10(1), 16–61 (1965)Google Scholar
  45. Lloyd, N.A., Rangan, B.V.: Studies on high-strength concrete columns under eccentric compression. ACI Structural Journal 93(6), 631–638 (1996)Google Scholar
  46. Lorrain, M., Maurel, O., Seffo, M.: Cracking behaviour of reinforced high-strength concrete tension ties. ACI Structural Journal 95(5), 626–635 (1998)Google Scholar
  47. Majewski, T., Bobinski, J., Tejchman, J.: FE-analysis of failure behaviour of reinforced concrete columns under eccentric compression. Engineering Structures 30(2), 300–317 (2008)CrossRefGoogle Scholar
  48. Majewski, T., Bobinski, J., Tejchman, J.: FE-analysis of failure behaviour of reinforced concrete columns under eccentric compression. Report. Gdańsk University of Technology (2009)Google Scholar
  49. Makovi, J.: Űber den Einfluβ der Hysteresis in the Arbeitslinie des Betons auf das Verformungs- und Tragverhalten exzentrisch belasteter Stahlbetondruckglieder. PhD Thesis. Darmstadt University (1969)Google Scholar
  50. Malecki, T., Marzec, I., Bobiński, J., Tejchman, J.: Effect of a characteristic length on crack spacing in a reinforced concrete bar under tension. Mechanics Research Communications 34(5-6), 460–465 (2007)zbMATHCrossRefGoogle Scholar
  51. Małecki, T., Tejchman, J.: Analysis of strain localization in reinforced concrete elements with explicit second-gradient strain damage approach. In: Proceedings of International Conference Computer Methods in Mechanics, CMM (2009)Google Scholar
  52. Manzoli, O.L., Oliver, J., Diaz, G., Huespe, A.E.: Three-dimensional analysis of reinforced concrete members via embedded discontinuity finite elements. Structures and Materials Journal 1(1), 58–83 (2008)Google Scholar
  53. Martin, I., Olivieri, E.: Tests of slender reinforced concrete columns bent in double curvature. In: Symp. Reinforced Concrete Columns, SP-13, pp. 55–74. ACI, Detroit (1966)Google Scholar
  54. Marzec, I., Bobinski, J., Tejchman, J.: Simulations of crack spacing in reinforced concrete beams using elastic-plasticity and damage with non-local softening. Computers and Concrete 4(5), 377–403 (2007)Google Scholar
  55. Mattock, A.H., Chen, K.C., Soongswang, K.: The behavior of reinforced concrete corbels. Journal Prestressed Concrete Institute 21(2), 52–77 (1976)Google Scholar
  56. Mehmel, A., Becker, G.: Zur Schubbemessung des kurzen Kragamers. Der Bauingenieur 40(6), 224–231 (1965)Google Scholar
  57. Mehmel, A., Freitag, W.: Tragfahigkeitsversuche an Stahlbetonkonsolen. Bauingenieur 42(10), 362–369 (1967)Google Scholar
  58. Mendis, P.A.: Behaviour of slender high-strength concrete columns. ACI Structural Journal 97(6), 895–901 (2000)Google Scholar
  59. Menetrey, P., Willam, K.J.: Triaxial failure criterion for concrete and its generalization. ACI Structural Journal 92(3), 311–318 (1995)Google Scholar
  60. Nagrodzka-Godycka, K.: Reinforced concrete corbels. Experimental research, theory and design. Monograph, vol. 21. Wydawnictwo Politechniki Gdańskiej, Gdańsk (2001) (in Polish)Google Scholar
  61. Nemecek, J., Bittnar, Z.: Behaviour of normal and high strength concrete columns: experiments and simulation. In: Zingoni, A. (ed.) Proc. Int. Conf. Progress in Structural Engineering, Mechanics and Computation, pp. 1551–1555. Taylor and Francis Group, London (2004)Google Scholar
  62. Niedenhoff, H.: Untersuchungen über das Tragverhalten von Konsolen und kurzen Kragarmen, Dissertation, T. H. Karlsruhe, 115 (1961)Google Scholar
  63. Nilsson, H.E.: Reinforced concrete corners and joints subjected to bending moment. In: National Swedish Building Research, Document D7:1973, Stockholm (1973)Google Scholar
  64. Oleszkiewicz, S., Ruppert, J., Najib, S.: Influence of horizontal reinforcement on the bearing capacity of columns. In: Proc. Polish Conference of Civil Engineers. PZITB, Krynica (1973) (in Polish)Google Scholar
  65. Pamin, J., de Borst, R.: Simulation of crack spacing using a reinforced concrete model with an internal length parameter. Archive of Applied Mechanics 68(9), 613–625 (1998)zbMATHCrossRefGoogle Scholar
  66. Pfrang, E.O., Siess, C.P.: Behaviour of restrained reinforced concrete columns. Journal of the Structural Division (ASCE) 90(ST5), 113–135 (1964)Google Scholar
  67. PN-B-03264:2002 standard: Concrete, reinforced concrete and prestressed structures. Static calculations and design (2002) (in Polish)Google Scholar
  68. Renuka Prasad, H.N., Channakeshava, C., Raghu Prasa, B.K., Sundara Raja Iyengar, K.T.: Nonlinear finite element analysis of reinforced concrete corbel. Computers & Structures 46(2), 343–354 (1993)CrossRefGoogle Scholar
  69. Robinson, J.R.: L’Armature des consoles courtes. In: Festschrift Franz. Ernst und Sohn Verlag, Berlin (1969)Google Scholar
  70. Rots, J.G., Nauta, P., Kusters, G.M.A., Blauwaauwendraad, J.: Smeared crack approach and fracture localization in concrete. Heron 30(1), 1–48 (1985)Google Scholar
  71. Saenz, I., Martin, I.: Tests of slender reinforced concrete columns with high slenderness ratios. ACI Journal Proceedings 60(5), 589–615 (1963)Google Scholar
  72. Skarżyński, L., Bobiński, J., Tejchman, J.: FE investigations of a deterministic size effect in reinforced concrete beams under mixed shear-tension failure (2010) (under preparation)Google Scholar
  73. Souza, R.A.: Experimental and numerical analysis of reinforced concrete corbels strengthened with fiber reinforced polymers. In: Bicanic, N., de Borst, R., Mang, H., Meschke, G. (eds.) Computational Modelling of Concrete Structures, pp. 711–718. Taylor and Francis Group, London (2010)CrossRefGoogle Scholar
  74. Strauss, A., Mordini, A., Bergmeister, K.: Nonlinear finite element analysis of reinforced concrete corbels at both deterministic and probabilistic levels. Computers and Concrete 3(2-3), 123–144 (2006)Google Scholar
  75. Stroband, J., Kolpa, J.J.: The behavipour of reinforced concrete column-to beam-joints, part 1, Corners subjected to negative moments, Report 5-83-9. University Delft (1983)Google Scholar
  76. Stroband, J., Kolpa, J.J.: The behaviour of reinforced concrete column-to beam-joints, part 2, Corners subjected to positive moments, Report 5-81-5. University Delft (1981)Google Scholar
  77. Szuchnicki, W.: Bearing capacity of columns with a variable cross-section. In: Proceedings of Polish Conference of Civil Engineers, PZITB, Krynica (1973) (in Polish)Google Scholar
  78. Syroka, E., Bobiński, J., Tejchman, J.: FE analysis of reinforced concrete corbels with enhanced continuum models. Finite Element Methods in Analysis and Design 47(9), 1066–1078 (2011)CrossRefGoogle Scholar
  79. van Mier, J.G.M.: Examples of nonlinear analysis of reinforced concrete structures with DIANA. Heron 32(3), 1–147 (1987)Google Scholar
  80. Walraven, J.C.: The influence of depth on the shear strength of lightweight concrete beams without shear reinforcement. TU-Delft Report 5-78-4. Delft University (1978)Google Scholar
  81. Walvaren, J., Lehwalter, N.: Size effects in short beams loaded in shear. ACI Structural Journal 91(5), 585–593 (1994)Google Scholar
  82. Widuliński, L., Bobiński, J., Tejchman, J.: FE-analysis of spacing of localized zones in reinforced concrete bars under tension using elasto-plasticity with non-local softening. Archives of Civil Engineering 55(2), 257–281 (2009)Google Scholar
  83. Will, G.T., Uzamerii, S.M., Sihna, S.K.: Application of finite element method to the analysis of reinforced concrete beam-column joint. In: Proc. of Conference on Finite Element Method in Civil Engineering, CSCE, EIC, Canada, pp. 745–766 (1972)Google Scholar
  84. Yong, Y.K., Balaguru, P.: Behavior of reinforced high – strength concrete corbels. Journal of Structural Engineering ASCE 120(4), 1182–1201 (1994)CrossRefGoogle Scholar
  85. Xie, J., Elwi, A.E., MacGregor, J.: Performance of high-strength concrete columns – a parametric study. ACI Structural Journal 94(2), 91–102 (1997)Google Scholar

Copyright information

© Springer-Verlag GmbH Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Faculty of Civil and Environmental EngineeringGdansk University of TechnologyGdansk-WrzeszczPoland
  2. 2.Faculty of Civil and Environmental EngineeringGdansk University of TechnologyGdansk-WrzeszczPoland

Personalised recommendations