Advertisement

Discontinuous Approach to Concrete

  • Jacek Tejchman
  • Jerzy Bobiński
Part of the Springer Series in Geomechanics and Geoengineering book series (SSGG)

Abstract

The Chapter discusses discontinuous approaches to simulate cracks in concrete. Two approaches are described: a cohesive crack model using interface elements defined along finite element boundaries and eXtended Finite Element Method (XFEM) wherein cracks can occur arbitrarily in the interior of finite elements.

Keywords

Linear Elastic Fracture Mechanics Cohesive Zone Interface Element Fracture Process Zone Cohesive Zone Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bažant, Z., Jirasek, M.: Nonlocal integral formulations of plasticity and damage: survey of progress. Journal of Engineering Mechanics 128(11), 1119–1149 (2002)CrossRefGoogle Scholar
  2. Belytschko, T., Black, T.: Elastic crack growth in finite elements with minimal remeshing. International Journal for Numerical Methods in Engineering 45(5), 601–620 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  3. Belytschko, T., Moes, N., Usui, S., Parimi, C.: Arbitrary discontinuities in finite elements. International Journal for Numerical Methods in Engineering 50(4), 993–1013 (2001)zbMATHCrossRefGoogle Scholar
  4. Bobiński, J., Brinkgreve, R.: Objective determination of failure mechanisms in geomechanics, STW DCB.6368 Report, TU Delft (2010)Google Scholar
  5. Camacho, G.T., Ortiz, M.: Computational modelling of impact damage in brittle materials. International Journal of Solids and Structures 33(20-22), 2899–2938 (1996)zbMATHCrossRefGoogle Scholar
  6. Cazes, F., Coret, M., Combescure, A., Gravouil, A.: A thermodynamic method for the construction of a cohesive law from a nonlocal damage model. International Journal of Solids and Structures 46(6), 1476–1490 (2009)zbMATHCrossRefGoogle Scholar
  7. Chandra, N., Li, H., Shet, C., Ghonem, H.: Some issues in the application of cohesive zone models for metal-ceramic interfaces. International Journal of Solids and Structures 39(10), 2827–2855 (2002)zbMATHCrossRefGoogle Scholar
  8. Comi, C., Mariani, S.: Extended finite element simulation of quasi-brittle fracture in functionally graded materials. Computer Methods in Applied Mechanics and Engineering 196(41-44), 4013–4026 (2007)zbMATHCrossRefGoogle Scholar
  9. Cox, J.V.: An extended finite element method with analytical enrichment for cohesive crack modelling. International Journal for Numerical Methods in Engineering 78(1), 48–83 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  10. Daux, C., Moes, N., Dolbow, J., Sukumar, N., Belytschko, T.: Arbitrary branched and intersecting cracks with the extended finite element method. International Journal for Numerical Methods in Engineering 48(12), 1741–1760 (2000)zbMATHCrossRefGoogle Scholar
  11. De Borst, T., Remmers, J.J.C.: Computational modelling of delamination. Composites Science and Technology 66(6), 713–722 (2006)CrossRefGoogle Scholar
  12. De Lorenzis, L., Zavarise, G.: Cohesive zone modeling of interfacial stresses in plated beams. International Journal of Solids and Structures 46(24), 4181–4191 (2009)zbMATHCrossRefGoogle Scholar
  13. Dugdale, D.S.: Yielding of steel sheers containing slits. Journal of Mechanics and Physics of Solids 8(2), 100–108 (1960)CrossRefGoogle Scholar
  14. Galvez, J.C., Cervenka, J., Cendon, D.A., Saouma, V.: A discrete crack approach to normal/shear cracking of concrete. Cement and Concrete Research 32(10), 1567–1585 (2002)CrossRefGoogle Scholar
  15. Hansbo, A., Hansbo, P.: A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33-35), 3523–3540 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  16. Hillerborg, A., Modeer, M., Peterson, P.E.: Analysis of crack propagation and crack growth in concrete by means of fracture mechanics and finite elements. Cement and Concrete Research 6(6), 773–782 (1976)CrossRefGoogle Scholar
  17. Mariani, S., Perego, U.: Extended finite element method for quasi-brittle fracture. International Journal for Numerical Methods in Engineering 58(1), 103–126 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  18. Melenk, J.M., Babuška, I.: The partition of unity finite element method: basic theory and applications. Computer Methods in Applied Mechanics and Engineering 139(1-4), 289–314 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  19. Mergheim, J., Kuhl, E., Steinman, P.: A finite element method for the computational modelling of cohesive cracks. International Journal for Numerical Methods in Engineering 63(2), 276–289 (2005)zbMATHCrossRefGoogle Scholar
  20. Moës, N., Belytschko, T.: A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1), 131–150 (1999)zbMATHCrossRefGoogle Scholar
  21. Moës, N., Belytschko, T.: Extended finite element method for cohesive crack growth. Engineering Fracture Mechanics 69(7), 813–833 (2002)CrossRefGoogle Scholar
  22. Needleman, A.: A continuum model for void nucleation by inclusion debonding. Journal of Applied Mechanics 54(3), 525–531 (1987)zbMATHCrossRefGoogle Scholar
  23. Oliver, J., Huespe, A.E., Samaniego, E., Chaves, E.W.: Continuum approach to the numerical simulation of material failure in concrete. International Journal for Numerical and Analytical Methods in Geomechanics 28(7-8), 609–632 (2004)zbMATHCrossRefGoogle Scholar
  24. Omiya, M., Kishimoto, K.: Damage-based cohesive zone model for rate-dependent interfacial fracture. International Journal of Damage Mechanics 19(4), 397–420 (2010)CrossRefGoogle Scholar
  25. Ortiz, M., Pandolfi, A.: Finite-deformation irreversible cohesive elements for three-dimensional crack-propagation analysis. International Journal for Numerical Methods in Engineering 44(9), 1267–1282 (1999)zbMATHCrossRefGoogle Scholar
  26. Rabczuk, T., Zi, G., Gerstenberger, A., Wall, W.A.: A new crack tip element for the phantom-node method with arbitrary cohesive cracks. International Journal for Numerical Methods in Engineering 75(5), 577–599 (2008)zbMATHCrossRefGoogle Scholar
  27. Remmers, J.J.C., de Borst, R., Needleman, A.: A cohesive segments method for the simulation of crack growth. Computational Mechanics 31(1-2), 69–77 (2003)zbMATHCrossRefGoogle Scholar
  28. Samaniego, E., Belytschko, T.: Continuum-discontinuum modelling of shear bands. International Journal for Numerical Methods in Engineering 63(13), 1857–1872 (2005)MathSciNetCrossRefGoogle Scholar
  29. Samimi, M., van Dommelen, J.A.W., Geers, M.G.D.: An enriched cohesive zone model for delamination in brittle interfaces. International Journal for Numerical Methods in Engineering 80(5), 609–630 (2009)zbMATHCrossRefGoogle Scholar
  30. Scheider, I., Brocks, W.: Simulation of cup-cone fracture using the cohesive mode. Engineering Fracture Mechanics 70(14), 1943–1961 (2003)CrossRefGoogle Scholar
  31. Song, J.-H., Areias, P.M.A., Belytschko, T.: A method for dynamic crack and shear zone propagation with phantom nodes. International Journal for Numerical Methods in Engineering 67(6), 868–893 (2006)zbMATHCrossRefGoogle Scholar
  32. Sukumar, N., Moës, N., Belytschko, T., Moran, B.: Extended finite element method for three-dimensional crack modelling. International Journal for Numerical Methods in Engineering 48(11), 1549–1570 (2000)zbMATHCrossRefGoogle Scholar
  33. Wells, G.: Discontinuous modelling of strain localisation and failure. PhD Thesis, TU Delft (2001)Google Scholar
  34. Wells, G.N., Sluys, L.J.: A new method for modelling cohesive cracks using finite elements. International Journal for Numerical Methods in Engineering 50(12), 2667–2682 (2001)zbMATHCrossRefGoogle Scholar
  35. Yang, Z., Xu, X.F.: A heterogeneous cohesive model for quasi-brittle materials considering spatially varying random fracture properties. Computer Methods in Applied Mechanics and Engineering 197(45-48), 4027–4039 (2008)zbMATHCrossRefGoogle Scholar
  36. Zhou, F., Molinari, J.F.: Dynamic crack propagation with cohesive elements: a methodology to address mesh dependency. International Journal for Numerical Methods in Engineering 59(1), 1–24 (2004)zbMATHCrossRefGoogle Scholar
  37. Zi, G., Belytschko, T.: New crack-tip elements for XFEM and applications to cohesive cracks. International Journal for Numerical Methods in Engineering 57(15), 2221–2240 (2003)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Faculty of Civil and Environmental EngineeringGdansk University of TechnologyGdansk-WrzeszczPoland
  2. 2.Faculty of Civil and Environmental EngineeringGdansk University of TechnologyGdansk-WrzeszczPoland

Personalised recommendations