Advertisement

Building Implicit Dictionaries Based on Extreme Random Clustering for Modality Recognition

  • Olivier Pauly
  • Diana Mateus
  • Nassir Navab
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7075)

Abstract

Introduced as a new subtask of the ImageCLEF 2010 challenge, we aim at recognizing the modality of a medical image based on its content only. Therefore, we propose to rely on a representation of images in terms of words from a visual dictionary. To this end, we introduce a very fast approach that allows the learning of implicit dictionaries which permits the construction of compact and discriminative bag of visual words. Instead of a unique computationally expensive clustering to create the dictionary, we propose a multiple random partitioning method based on Extreme Random Subspace Projection Ferns. By concatenating these multiple partitions, we can very efficiently create an implicit global quantization of the feature space and build a dictionary of visual words. Taking advantages of extreme randomization, our approach achieves very good speed performance on a real medical database, and this for a better accuracy than K-means clustering.

Keywords

Feature Space Random Forest Visual Word Dictionary Learning Modality Recognition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arthur, D., Vassilvitskii, S.: K-means++: The advantages of careful seeding. In: SODA (2007)Google Scholar
  2. 2.
    Cortes, C., Vapnik, V.: Support vector networks. Mach. Learn. 20, 273–297 (1995)zbMATHGoogle Scholar
  3. 3.
    Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: CVPR (2005)Google Scholar
  4. 4.
    Freund, Y., Dasgupta, S., Kabra, M., Verma, N.: Learning the structure of manifolds using random projections. In: NIPS (2007)Google Scholar
  5. 5.
    Geurts, P., Ernst, D., Wehenkel, L.: Extremely randomized trees. Mach. Learn. (2006)Google Scholar
  6. 6.
    Jurie, F., Triggs, B.: Creating efficient codebooks for visual recognition. In: ICCV (2005)Google Scholar
  7. 7.
    Kalpathy-Cramer, J., Hersh, W.: Multimodal medical image retrieval: image categorization to improve search precision. In: Int. Conf. on Multimedia Information Retrieval (2010)Google Scholar
  8. 8.
    Mairal, J., Bach, F., Ponce, J., Sapiro, G., Zisserman, A.: Supervised dictionary learning. In: NIPS (2008)Google Scholar
  9. 9.
    Moosmann, F., Triggs, B., Jurie, F.: Fast discriminative visual codebooks using randomized clustering forests. In: NIPS (2006)Google Scholar
  10. 10.
    Müller, H., Kalpathy-Cramer, J., Eggel, I., Bedrick, S., Kahn Jr., C.E., Hersh, W.: Overview of the clef 2010 medical image retrieval track. In: Image CLEF (2010)Google Scholar
  11. 11.
    Nistér, D., Stewénius, H.: Scalable recognition with a vocabulary tree. In: CVPR (2006)Google Scholar
  12. 12.
    Ojala, T., Pietikinen, M., Harwood, D.: A comparative study of texture measures with classification based on feature distributions. In: Pattern Recognition (1996)Google Scholar
  13. 13.
    Özuysal, M., Calonder, M., Lepetit, V., Fua, P.: Fast keypoint recognition using random ferns. In: PAMI (2010)Google Scholar
  14. 14.
    Perbet, F., Stenger, B., Maki, A.: Random forest clustering and application to video segmentation. In: BMVC (2009)Google Scholar
  15. 15.
    Perronnin, F., Dance, C.R., Csurka, G., Bressan, M.: Adapted Vocabularies for Generic Visual Categorization. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3954, pp. 464–475. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  16. 16.
    Shotton, J., Johnson, M., Cipolla, R.: Semantic texton forests for image categorization and segmentation. In: CVPR (2008)Google Scholar
  17. 17.
    Sivic, J., Zisserman, A.: Video google: A text retrieval approach to object matching in videos. In: ICCV (2003)Google Scholar
  18. 18.
    Winn, J., Criminisi, A., Minka, T.: Object categorization by learned universal visual dictionary. In: ICCV (2005)Google Scholar
  19. 19.
    Yang, L., Jin, R., Sukthankar, R., Jurie, F.: Unifying discriminative visual codebook generation with classifier training for object category recognition. In: CVPR (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Olivier Pauly
    • 1
  • Diana Mateus
    • 1
  • Nassir Navab
    • 1
  1. 1.Computer Aided Medical ProceduresTechnische Universität MünchenGermany

Personalised recommendations