Overview of the Second Workshop on Medical Content–Based Retrieval for Clinical Decision Support

  • Adrien Depeursinge
  • Hayit Greenspan
  • Tanveer Syeda
  • Henning Müller
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7075)

Abstract

The second workshop on Medical Content–Based Retrieval for Clinical Decision Support took place at the MICCAI conference in Toronto, Canada on September 22, 2011. The workshop brought together more than 40 registered researchers interested in the field of medical content–based retrieval. Eleven papers were accepted and presented at the workshop. Two invited speakers gave overviews on state–of–the–art academic research and industrial perspectives. The program was completed with a panel discussion on the role of content–based retrieval in clinical decision support. This overview introduces the main highlights and discussions in the workshop, summarizes the novelties and introduces the presented papers, which are provided in these proceedings.

Keywords

Image Retrieval Visual Word Local Binary Pattern Interest Point Clinical Decision Support 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Müller, H., Michoux, N., Bandon, D., Geissbuhler, A.: A review of content–based image retrieval systems in medicine–clinical benefits and future directions. International Journal of Medical Informatics 73(1), 1–23 (2004)CrossRefGoogle Scholar
  2. 2.
    Tagare, H.D., Jaffe, C., Duncan, J.: Medical image databases: A content–based retrieval approach. Journal of the American Medical Informatics Association 4(3), 184–198 (1997)CrossRefGoogle Scholar
  3. 3.
    Hersh, W., Müller, H., Kalpathy-Cramer, J., Kim, E., Zhou, X.: The consolidated ImageCLEFmed medical image retrieval task test collection. Journal of Digital Imaging 22(6), 648–655 (2009)CrossRefGoogle Scholar
  4. 4.
    Aisen, A.M., Broderick, L.S., Winer-Muram, H., Brodley, C.E., Kak, A.C., Pavlopoulou, C., Dy, J., Shyu, C.R., Marchiori, A.: Automated storage and retrieval of thin–section CT images to assist diagnosis: System description and preliminary assessment. Radiology 228(1), 265–270 (2003)CrossRefGoogle Scholar
  5. 5.
    Müller, H., Kalpathy–Cramer, J., Caputo, B., Syeda-Mahmood, T., Wang, F.: Overview of the First Workshop on Medical Content–Based Retrieval for Clinical Decision Support at MICCAI 2009. In: Caputo, B., Müller, H., Syeda-Mahmood, T., Duncan, J.S., Wang, F., Kalpathy-Cramer, J. (eds.) MCBR-CDS 2009. LNCS, vol. 5853, pp. 1–17. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  6. 6.
    Müller, H., Clough, P., Deselaers, T., Caputo, B. (eds.): ImageCLEF – Experi-mental Evaluation in Visual Information Retrieval. The Springer International Series On Information Retrieval, vol. 32. Springer, Heidelberg (2010)MATHGoogle Scholar
  7. 7.
    Müller, H., Deselaers, T., Kim, E., Kalpathy-Cramer, J., Deserno, T.M., Clough, P., Hersh, W.: Overview of the ImageCLEFmed 2007 medical retrieval and annotation tasks. In: Working Notes of the 2007 CLEF Workshop, Budapest, Hungary (September 2007)Google Scholar
  8. 8.
    Kalpathy-Cramer, J., Müller, H., Bedrick, S., Eggel, I., de Herrera, A.S., Tsikrika, T.: The CLEF 2011 medical image retrieval and classification tasks. In: Working Notes of CLEF 2011 (Cross Language Evaluation Forum) (September 2011)Google Scholar
  9. 9.
    André, B., Vercauteren, T., Ayache, N.: Content-Based Retrieval in Endomicroscopy: Toward an Efficient Smart Atlas for Clinical Diagnosis. In: Müller, H., Greenspan, H., Syeda-Mahmood, T. (eds.) MCBR-CDS 2011. LNCS, vol. 7075, pp. 12–23. Springer, Heidelberg (2011)Google Scholar
  10. 10.
    Burner, A., Donner, R., Mayerhoefer, M., Holzer, M., Kainberger, F., Langs, G.: Texture Bags: Anomaly Retrieval in Medical Images Based on Local 3D-Texture Similarity. In: Müller, H., Greenspan, H., Syeda-Mahmood, T. (eds.) MCBR-CDS 2011. LNCS, vol. 7075, pp. 116–127. Springer, Heidelberg (2011)Google Scholar
  11. 11.
    Foncubierta-Rodríguez, A., Depeursinge, A., Müller, H.: Using Multiscale Visual Words for Lung Texture Classification and Retrieval. In: Greenspan, H., Müller, H., Syeda Mahmood, T. (eds.) MCBR-CDS 2011. LNCS, vol. 7075, pp. 69–79. Springer, Heidelberg (2011)Google Scholar
  12. 12.
    Vanegas, J.A., Caicedo, J.C., González, F.A., Romero, E.: Histology Image Indexing using a Non–Negative Semantic Embedding. In: Greenspan, H., Müller, H., Syeda-Mahmood, T. (eds.) MCBR-CDS 2011. LNCS, vol. 7075, pp. 80–91. Springer, Heidelberg (2011)Google Scholar
  13. 13.
    Haas, S., Donner, R., Burner, A., Holzer, M., Langs, G.: Superpixel-Based Interest Points for Effective Bags of Visual Words Medical Image Retrieval. In: Greenspan, H., Müller, H., Syeda-Mahmood, T. (eds.) MCBR-CDS 2011. LNCS, vol. 7075, pp. 58–68. Springer, Heidelberg (2011)Google Scholar
  14. 14.
    Pauly, O., Mateus, D., Navab, N.: Building Implicit Dictionaries Based on Extreme Random Clustering for Modality Recognition. In: Greenspan, H., Müller, H., Syeda-Mahmood, T. (eds.) MCBR-CDS 2011. LNCS, vol. 7075, pp. 47–57. Springer, Heidelberg (2011)Google Scholar
  15. 15.
    Costa, M.J., Tsymbal, A., Hammon, M., Cavallaro, A., Sühling, M., Seifert, S., Comaniciu, D.: A Discriminative Distance Learning–Based CBIR Framework for Characterization of Indeterminate Liver Lesions. In: Greenspan, H., Müller, H., Syeda-Mahmood, T. (eds.) MCBR-CDS 2011. LNCS, vol. 7075, pp. 92–104. Springer, Heidelberg (2011)Google Scholar
  16. 16.
    Venkatraghavan, V., Ranjan, S.: Semantic Analysis of 3D Anatomical Medical Images for Sub–Image Retrieval. In: Greenspan, H., Müller, H., Syeda-Mahmood, T. (eds.) MCBR-CDS 2011. LNCS, vol. 7075, pp. 139–151. Springer, Heidelberg (2011)Google Scholar
  17. 17.
    Donner, R., Haas, S., Burner, A., Holzer, M., Bischof, H., Langs, G.: Evaluation of fast 2D and 3D Medical Image Retrieval Approaches Based on Image Miniatures. In: Greenspan, H., Müller, H., Syeda-Mahmood, T. (eds.) MCBR-CDS 2011. LNCS, vol. 7075, pp. 128–138. Springer, Heidelberg (2011)Google Scholar
  18. 18.
    Avni, U., Greenspan, H., Konen, E., Sharon, M., Goldberger, J.: X–ray categorization and retrieval on the organ and pathology level, using patch–based visual words. IEEE Transactions on Medical Imaging 30(3), 733–746 (2011)CrossRefGoogle Scholar
  19. 19.
    Rahman, M.M., Antani, S.K., Fushman, D.D., Thoma, G.R.: Biomedical Image Retrieval using Multimodal Context and Concept Feature Spaces. In: Greenspan, H., Müller, H., Syeda-Mahmood, T. (eds.) MCBR-CDS 2011. LNCS, vol. 7075, pp. 24–35. Springer, Heidelberg (2011)Google Scholar
  20. 20.
    Vercauteren, T., Perchant, A., Malandain, G., Pennec, X., Ayache, N.: Robust mosaicing with correction of motion distortions and tissue deformations for in vivo fibered microscopy. Medical Image Analysis 10(5), 673–692 (2006)CrossRefGoogle Scholar
  21. 21.
    Sivic, J., Zisserman, A.: Video Google: Efficient Visual Search of Videos. In: Ponce, J., Hebert, M., Schmid, C., Zisserman, A. (eds.) Toward Category-Level Object Recognition. LNCS, vol. 4170, pp. 127–144. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  22. 22.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 60(2), 91–110 (2004)CrossRefGoogle Scholar
  23. 23.
    Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray–scale and rotation invariant texture classification with local binary patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(7), 971–987 (2002)CrossRefMATHGoogle Scholar
  24. 24.
    Wildenauer, H., Mičušík, B., Vincze, M.: Efficient Texture Representation Using Multi-Scale Regions. In: Yagi, Y., Kang, S.B., Kweon, I.S., Zha, H. (eds.) ACCV 2007, Part I. LNCS, vol. 4843, pp. 65–74. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  25. 25.
    Ling, H., Okada, K.: Diffusion distance for histogram comparison. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 246–253 (June 2006)Google Scholar
  26. 26.
    Breiman, L.: Random forests. Machine Learning 45(1), 5–32 (2001)CrossRefMATHGoogle Scholar
  27. 27.
    Safi, A., Baust, M., Pauly, O., Castaneda, V., Lasser, T., Mateus, D., Navab, N., Hein, R., Ziai, M.: Computer–Aided Diagnosis of Pigmented Skin Dermoscopic Images. In: Greenspan, H., Müller, H., Syeda-Mahmood, T. (eds.) MCBR-CDS 2011. LNCS, vol. 7075, pp. 105–115. Springer, Heidelberg (2011)Google Scholar
  28. 28.
    Li, F., Shen, C., Li, C.: Multiphase soft segmentation with total variation and H1 regularization. Journal of Mathematical Imaging and Vision 37(2), 98–111 (2010)CrossRefGoogle Scholar
  29. 29.
    Cichocki, A., Zdunek, R., Amari, S.: New algorithms for non–negative matrix factorization in applications to blind source separation. In: 2006 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2006 Proceedings, vol. 5, pp. 621–624 (May 2006)Google Scholar
  30. 30.
    Müller, H., Kalpathy-Cramer, J., Eggel, I., Bedrick, S., Said, R., Bakke, B., Kahn Jr, C.E., Hersh, W.: Overview of the CLEF 2010 medical image retrieval track. In: Working Notes of CLEF 2010 (Cross Language Evaluation Forum) (September 2010) Google Scholar
  31. 31.
    Baeza Yates, R.A., Neto, B.R.: Modern Information Retrieval. Addison-Wesley Longman Publishing Co., Inc., Boston (1999)Google Scholar
  32. 32.
    Tommasi, T., Caputo, B., Welter, P., Güld, M.O., Deserno, T.M.: Overview of the CLEF 2009 Medical Image Annotation Track. In: Peters, C., Caputo, B., Gonzalo, J., Jones, G.J.F., Kalpathy-Cramer, J., Müller, H., Tsikrika, T. (eds.) CLEF 2009. LNCS, vol. 6242, pp. 85–93. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  33. 33.
    Bay, H., Ess, A., Tuytelaars, T., Gool, L.V.: Speeded–up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008)CrossRefGoogle Scholar
  34. 34.
    Sevilla, L., Learned-Miller, E.: Distribution fields. Technical Report UM–CS–2011–027, Dept. of Computer Science, University of Massachusetts Amherst (2011)Google Scholar
  35. 35.
    Özuysal, M., Calonder, M., Lepetit, V., Fua, P.: Fast keypoint recognition using random ferns. IEEE Transactions on Pattern Analysis and Machine Intelligence 32, 448–461 (2010)CrossRefGoogle Scholar
  36. 36.
    Mata, J., Crespo, M., Maña, M.J.: Using MeSH to Expand Queries in Medical Image Retrieval. In: Greenspan, H., Müller, H., Syeda-Mahmood, T. (eds.) MCBR-CDS 2011. LNCS, vol. 7075, pp. 36–46. Springer, Heidelberg (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Adrien Depeursinge
    • 1
  • Hayit Greenspan
    • 2
  • Tanveer Syeda
    • 3
  • Henning Müller
    • 1
  1. 1.University of Applied Sciences Western SwitzerlandSierreSwitzerland
  2. 2.Tel Aviv UniversityIsrael
  3. 3.IBM Almaden Research LabUSA

Personalised recommendations