New Color Features for Pattern Recognition

  • Chengjun Liu
Part of the Intelligent Systems Reference Library book series (ISRL, volume 37)


This chapter presents a pattern recognition framework that applies new color features, which are derived from both the primary color (the red component) and the subtraction of the primary colors (the red minus green component, the blue minus green component). In particular, feature extraction from the three color components consists of the following processes: Discrete Cosine Transform (DCT) for dimensionality reduction for each of the three color components, concatenation of the DCT features to form an augmented feature vector, and discriminant analysis of the augmented feature vector with enhanced generalization performance. A new similarity measure is presented to further improve pattern recognition performance of the pattern recognition framework. Experiments using a large scale, grand challenge pattern recognition problem, the Face Recognition Grand Challenge (FRGC), show the feasibility of the proposed framework. Specifically, the experimental results on the most challenging FRGC version 2 Experiment 4 with 36,818 color images reveal that the proposed framework helps improve face recognition performance, and the proposed new similarity measure consistently performs better than other popular similarity measures.


Receiver Operating Characteristic Face Recognition Discrete Cosine Transform Color Feature Grayscale Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Comon, P.: Independent component analysis, a new concept? Signal Processing 36, 287–314 (1994)zbMATHCrossRefGoogle Scholar
  2. 2.
    Finlayson, G.D., Chatterjee, S.S., Funt, B.V.: Color Angular Indexing. In: Buxton, B.F., Cipolla, R. (eds.) ECCV 1996. LNCS, vol. 1065, pp. 16–27. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  3. 3.
    Finlayson, G.D., Hordley, S.D., Hubel, P.M.: Color by correlation: A simple, unifying framework for color constancy. IEEE Transactions on Pattern Analysis and Machine Intelligence 23(11), 1209–1221 (2001)CrossRefGoogle Scholar
  4. 4.
    Fukunaga, K.: Introduction to Statistical Pattern Recognition, 2nd edn. Academic Press (1990)Google Scholar
  5. 5.
    Garcia, C., Tziritas, G.: Face detection using quantized skin color regions merging and wavelet packet analysis. IEEE Transactions on Multimedia 1(3), 264–277 (1999)CrossRefGoogle Scholar
  6. 6.
    Geusebroek, J.M., van den Boomgaard, R., Smeulders, A.W.M., Geerts, H.: Color invariance. IEEE Transactions on Pattern Analysis and Machine Intelligence 23(12), 1338–1350 (2001)CrossRefGoogle Scholar
  7. 7.
    Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 3rd edn. Pearson Prentice Hall (2008)Google Scholar
  8. 8.
    Healey, G., Slater, D.A.: Global color constancy: Recognition of objects by use of illumination invariant properties of color distributions. Journal of the Optical Society of America A 11(11), 3003–3010 (1994)CrossRefGoogle Scholar
  9. 9.
    Hjelmas, E., Low, B.K.: Face detection: A survey. Computer Vision and Image Understanding 83, 236–274 (2001)zbMATHCrossRefGoogle Scholar
  10. 10.
    Hsu, R.L., Abdel-Mottaleb, M., Jain, A.K.: Face detection in color images. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(5), 696–706 (2002)CrossRefGoogle Scholar
  11. 11.
    Jones, C., Abbott, A.L.: Optimization of color conversion for face recognition. EURASIP Journal on Applied Signal Processing 2004(4), 522–529 (2004)CrossRefGoogle Scholar
  12. 12.
    Kakumanu, P., Makrogiannis, S., Bourbakis, N.: A survey of skin-color modeling and detection methods. Pattern Recognition 40(3), 1106–1122 (2007)zbMATHCrossRefGoogle Scholar
  13. 13.
    Karhunen, J., Oja, E., Wang, L., Vigario, R., Joutsensalo, J.: A class of neural networks for independent component analysis. IEEE Transactions on Neural Networks 8(3), 486–504 (1997)CrossRefGoogle Scholar
  14. 14.
    Kittler, J., Li, Y.P., Matas, J.: On matching scores for LDA-based face verification. In: The British Machine Vision Conference, September 11-14, pp. 42–51. University of Bristol, Bristol (2000)Google Scholar
  15. 15.
    Liu, C.: Enhanced independent component analysis and its application to content based face image retrieval. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 34(2), 1117–1127 (2004)CrossRefGoogle Scholar
  16. 16.
    Liu, C.: Capitalize on dimensionality increasing techniques for improving face recognition grand challenge performance. IEEE Transactions on Pattern Analysis and Machine Intelligence 28(5), 725–737 (2006)CrossRefGoogle Scholar
  17. 17.
    Liu, C.: The Bayes decision rule induced similarity measures. IEEE Transactions on Pattern Analysis and Machine Intelligence 29(6), 1086–1090 (2007)CrossRefGoogle Scholar
  18. 18.
    Liu, C.: Learning the uncorrelated, independent, and discriminating color spaces for face recognition. IEEE Transactions on Information Forensics and Security 3(2), 213–222 (2008)CrossRefGoogle Scholar
  19. 19.
    Liu, C., Yang, J.: ICA color space for pattern recognition. IEEE Transactions on Neural Networks 20(2), 248–257 (2009)CrossRefGoogle Scholar
  20. 20.
    Liu, Z., Liu, C.: Fusion of the complementary discrete cosine features in the yiq color space for face recognition. Computer Vision and Image Understanding 111(3), 249–262 (2008)CrossRefGoogle Scholar
  21. 21.
    Liu, Z., Liu, C.: A hybrid color and frequency features method for face recognition. IEEE Transactions on Image Processing 17(10), 1975–1980 (2008)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Liu, Z., Liu, C.: Fusion of color, local spatial and global frequency information for face recognition. Pattern Recognition 43(8), 2882–2890 (2010)zbMATHCrossRefGoogle Scholar
  23. 23.
    Neagoe, V.E.: An optimum 2D color space for pattern recognition. In: Proceedings of the 2006 International Conference on Image Processing, Computer Vision, & Pattern Recognition, Las Vegas, Nevada, USA, June 26-29, pp. 526–532 (2006)Google Scholar
  24. 24.
    Phillips, P.J., Flynn, P.J., Scruggs, T., Bowyer, K.W., Chang, J., Hoffman, K., Marques, J., Min, J., Worek, W.: Overview of the face recognition grand challenge. In: Proc. IEEE Conference on Computer Vision and Pattern Recognition (2005)Google Scholar
  25. 25.
    Samal, A., Iyengar, P.A.: Automatic recognition and analysis of human faces and facial expression: A survey. Pattern Recognition 25(1), 65–77 (1992)CrossRefGoogle Scholar
  26. 26.
    Shih, P., Liu, C.: Comparative assessment of content-based face image retrieval in different color spaces. International Journal of Pattern Recognition and Artificial Intelligence 19(7), 873–893 (2005)CrossRefGoogle Scholar
  27. 27.
    Smeulders, A.W.M., Worring, M., Santini, S., Gupta, A., Jain, R.: Content-based image retrieval at the end of the early years. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(12), 1349–1380 (2000)CrossRefGoogle Scholar
  28. 28.
    Sobottka, K., Pitas, I.: Segmentation and tracking of faces in color images. In: Proc. The Second International Conference on Automatic Face and Gesture Recognition, Killington, Vermont, October 13-16 (1996)Google Scholar
  29. 29.
    Struc, V., Pavesic, N.: The corrected normalized correlation coefficient: a novel way of matching score calculation for LDA-based face verification. In: The Fifth International Conference on Fuzzy Systems and Knowledge Discovery, Jinan, Shandong, China, October 18-20, pp. 110–115 (2008)Google Scholar
  30. 30.
    Sun, H.M.: Skin detection for single images using dynamic skin color modeling. Pattern Recognition 43(4), 1413–1420 (2010)CrossRefGoogle Scholar
  31. 31.
    Swain, M.J., Ballard, D.H.: Color indexing. International Journal of Computer Vision 7(1), 11–32 (1991)CrossRefGoogle Scholar
  32. 32.
    Tan, T.T., Ikeuchi, K.: Separating reflection components of textured surfaces using a single image. IEEE Transactions on Pattern Analysis and Machine Intelligence 27(2), 178–193 (2001)CrossRefGoogle Scholar
  33. 33.
    Terrillon, J.C., Shirazi, M.N., Fukamachi, H., Akamatsu, S.: Comparative performance of different skin chrominance models and chrominance space for the automatic detection of human faces in color images. In: Proc. The Fourth International Conference on Face and Gesture Recognition, Grenoble, France, March 28-30 (2000)Google Scholar
  34. 34.
    Torres, L., Reutter, J.Y., Lorente, L.: The importance of color information in face recognition. In: Proc. IEEE International Conference on Image Processing, Kobe, Japan, October 24-28 (1999)Google Scholar
  35. 35.
    Yang, J., Liu, C.: Horizontal and vertical 2DPCA-based discriminant analysis for face verification on a large-scale database. IEEE Transactions on Information Forensics and Security 2(4), 781–792 (2007)CrossRefGoogle Scholar
  36. 36.
    Yang, J., Liu, C.: Color image discriminant models and algorithms for face recognition. IEEE Transactions on Neural Networks 19(12), 2088–2098 (2008)CrossRefGoogle Scholar
  37. 37.
    Yang, J., Liu, C., Zhang, L.: Color space normalization: Enhancing the discriminating power of color spaces for face recognition. Pattern Recognition 43(4), 1454–1466 (2010)zbMATHCrossRefGoogle Scholar
  38. 38.
    Zhang, X., Gao, Y.: Face recognition across pose: A review. Pattern Recognition 42(11), 2876–2896 (2009)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.New Jersey Institute of TechnologyNewarkUSA

Personalised recommendations