Advertisement

Seaweed Responses to Environmental Stress: Reactive Oxygen and Antioxidative Strategies

  • Kai Bischof
  • Ralf Rautenberger
Chapter
Part of the Ecological Studies book series (ECOLSTUD, volume 219)

Abstract

Oxygen radicals are inevitably produced in the metabolism. In plants, as seaweeds, a major source for oxygen radical formation is photosynthesis, in particular pseudo-cyclic electron transport, also referred to as Mehler reaction. The related transfer of electrons to molecular oxygen yields the aggressive superoxide radical, which may react further to even more reactive oxygen species (ROS). This process is typically enhanced under environmental conditions resulting in restricted electron flow in photosynthesis, such as under light, temperature, salt stress, malnutrition, etc. In particular, seaweeds populating the intertidal and shallow subtidal are exposed to large amplitudes of variation of environmental conditions and may thus rely on strategies to either suppress the generation of oxygen radicals or scavenge them as fast as possible. One important process to scavenge the superoxide radical is its cleavage by superoxide dismutase (SOD), a central enzyme involved in stress response of photosynthetic and non-photosynthetic organisms. This chapter summarizes some common features of generation and scavenging of photosynthetically formed ROS in seaweeds under environmental constraints with emphasis on the spatial and temporal variability of SOD activity.

Keywords

Reactive Oxygen Species NADPH Oxidase Oxidative Burst Reactive Oxygen Species Formation Reactive Oxygen Species Detoxification 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Aguilera J, Bischof K, Karsten U, Hanelt D, Wiencke C (2002a) Seasonal variation in ecophysiological patterns in macroalgae from an Arctic fjord II. Pigment accumulation and biochemical defence systems against high light stress. Mar Biol 140:1087–1095CrossRefGoogle Scholar
  2. Aguilera J, Dummermuth A, Karsten U, Schriek R, Wiencke C (2002b) Enzymatic defences against photooxidative stress induced by ultraviolet radiation in Arctic marine macroalgae. Polar Biol 25:432–441Google Scholar
  3. Almeida M, Filipe S, Humanes M, Maia MF, Melo R, Severino N, da Silva JAL, da Silva J, Wever R (2001) Vanadium haloperoxidases from brown algae of the Laminariaceae family. Phytochemistry 57:633–642PubMedCrossRefGoogle Scholar
  4. Andersson B, Salter AH, Virgin I, Vass I, Styring S (1992) Photodamage to photosystem II-primary and secondary events. J Photochem Photobiol B Biol 15:15–31CrossRefGoogle Scholar
  5. Andrade S, Contreras L, Moffett J, Correa J (2006) Kinetics of copper accumulation in Lessonia nigrescens (Phaeophyceae) under conditions of environmental oxidative stress. Aquat Toxicol 78:398–401PubMedCrossRefGoogle Scholar
  6. Aro EM, Virgin I, Andersson B (1993) Photoinhibition of photosystem II. Inactivation, protein damage and turnover. Biochim Biophys Acta 1143:113–134PubMedCrossRefGoogle Scholar
  7. Asada K (1999) The water-water cycle in chloroplasts: Scavenging of active oxygens and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol 50:601–639PubMedCrossRefGoogle Scholar
  8. Asada K, Takahashi M (1987) Production and scavenging of active oxygen in photosynthesis. In: Kyle DJ, Osmond CB, Arntzen CJ (eds) Topics in photosynthesis 9. Elsevier Science Publishers, Amsterdam, pp 89–109Google Scholar
  9. Bartsch I, Wiencke C, Bischof K, Buchholz CM, Buck BH, Eggert A, Feuerpfeil P, Hanelt D, Jacobsen S, Karez R, Karsten U, Molis M, Roleda MY, Schumann R, Schubert H, Valentin K, Weinberger F, Wiese J (2008) The genus Laminaria sensu lato: recent insights and developments. Eur J Phycol 43:1–86CrossRefGoogle Scholar
  10. Becker S, Walter B, Bischof K (2009) Freezing tolerance and photosynthetic performance of polar seaweeds at low temperatures. Bot Mar 52:609–619Google Scholar
  11. Becker S, Graeve M, Bischof K (2010) Photosynthesis and lipid composition of the Antarctic endemic rhodophyte Palmaria decipiens: effects of changing light and temperature levels. Polar Biol 33:945–955CrossRefGoogle Scholar
  12. Benet H, Argall E, Asensi A, Kloareg B (1994) Protoplast regeneration from gametophytes and sporophytes of some species in the order Laminariales (Phaeophyceae). Protoplasma 199:39–48CrossRefGoogle Scholar
  13. Bischof K, Hanelt D, Wiencke C (1998) UV-radiation can affect depth-zonation of Antarctic macroalgae. Mar Biol 131:597–605CrossRefGoogle Scholar
  14. Bischof K, Kraebs G, Hanelt D, Wiencke C (2000) Photosynthetic characteristics and mycosporine-like amino acids under UV radiation: a competitive advantage of Mastocarpus stellatus over Chondrus crispus at the Helgoland shoreline? Helgol Mar Res 54:47–52CrossRefGoogle Scholar
  15. Bischof K, Peralta G, Kräbs G, van de Poll WH, Wiencke C, Perez-Llorens JL, Breeman AM (2002) Effects of solar UV-B radiation on canopy formation of natural Ulva communities from Southern Spain. J Exp Bot 53:2411–2421PubMedCrossRefGoogle Scholar
  16. Bischof K, Janknegt PJ, Buma AGJ, Rijstenbil JW, Peralta G, Breeman AM (2003) Oxidative stress and enzymatic scavenging of superoxide radicals induced by solar UV-B radiation in Ulva canopies from southern Spain. Sci Mar 67:353–359CrossRefGoogle Scholar
  17. Bischof K, Rautenberger R, Brey L, Pérez-Lloréns JL (2006) Physiological acclimation to gradients of solar irradiance within mats of the filamentous green macroalga Chaetomorpha linum from southern Spain. Mar Ecol Prog Ser 306:165–175CrossRefGoogle Scholar
  18. Burritt DJ, Larkindale J, Hurd CL (2002) Antioxidant metabolism in the intertidal red seaweed Stictosiphonia arbuscula following desiccation. Planta 215:829–838PubMedCrossRefGoogle Scholar
  19. Cock J, Sterck L, Rouze P, Scornet D, Allen A, Amoutzias G, Anthouard V, Artiguenave F, Aury JM, Badger J, Beszteri B, Billiau K, Bonnet E, Bothwell J, Bowler C, Boyen C, Brownlee C, Carrano C, Charrier B, Cho G, Coelho S, Collen J, Corre E, Da Silva C, Delage L, Delaroque N, Dittami S, Doulbeau S, Elias M, Farnham G, Gachon C, Gschloessl B, Heesch S, Jabbari K, Jubin C, Kawai H, Kimura K, Kloareg B, Küpper F, Lang D, Le Bail A, Leblanc C, Lerouge P, Lohr M, Lopez P, Martens C, Maumus F, Michel G, Miranda-Saavedra D, Morales J, Moreau H, Motomura T, Nagasato C, Napoli C, Nelson D, Nyvall-Collen P, Peters A, Pommier C, Potin P, Poulain J, Quesneville H, Read B, Rensing S, Ritter A, Rousvoal S, Samanta M, Samson G, Schroeder D, Segurens B, Strittmatter M, Tonon T, Tregear J, Valentin K, von Dassow P, Yamagishi T, Van de Peer Y, Wincker P (2010) The Ectocarpus genome and the independent evolution of multicellularity in brown algae. Nature 465:617–621PubMedCrossRefGoogle Scholar
  20. Colin C, Leblanc C, Wagner E, Delage L, Leize-Wagner E, Van Dorsselaer A, Kloareg B, Potin P (2003) The brown algal kelp Laminaria digitata features distinct bromoperoxidase and iodoperoxidase activities. J Biol Chem 278:23545–23552PubMedCrossRefGoogle Scholar
  21. Colin C, Leblanc C, Michel G, Wagner E, Leize-Wagner E, Van Dorsselaer A, Potin P (2005) Vanadium-dependent iodoperoxidases in Laminaria digitata, a novel biochemical function diverging from brown algal bromoperoxidases. J Biol Inorg Chem 10:156–166PubMedCrossRefGoogle Scholar
  22. Collén J, Davison IR (1999a) Reactive oxygen metabolism in intertidal Fucus spp (Phaeophyceae). J Phycol 35:62–69CrossRefGoogle Scholar
  23. Collén J, Davison IR (1999b) Production and damage of reactive oxygen in intertidal Fucus spp (Phaeophyceae). J Phycol 35:54–61CrossRefGoogle Scholar
  24. Collén J, Davison IR (1999c) Stress tolerance and reactive oxygen metabolism in the intertidal red seaweeds Mastocarpus stellatus and Chondrus crispus. Plant Cell Environ 22:1143–1151CrossRefGoogle Scholar
  25. Collén J, Davison IR (2001) Seasonality and thermal acclimation of reactive oxygen metabolism in Fucus vesiculosus (Phaeophyceae). J Phycol 37:474–481CrossRefGoogle Scholar
  26. Collén J, Pedersén M (1994) A stress-induced oxidative burst in Eucheuma platycladum (Rhodophyta). Physiol Planta 92:417–422CrossRefGoogle Scholar
  27. Collén J, Pedersén M (1996) Production, scavenging and toxicity of hydrogen peroxide in the green seaweed Ulva rigida. Eur J Phycol 31:265–271CrossRefGoogle Scholar
  28. Collén J, Jiménez del Río M, García-Reina G, Pedersén M (1995) Photosynthetic production of hydrogen peroxide by Ulva rigida C. Ag. (Chlorophyta). Planta 196:225–230CrossRefGoogle Scholar
  29. Contreras L, Moenne A, Correa J (2005) Antioxidant responses in Scytosiphon lomentaria (Phaeophyceae) inhabiting copper-enriched coastal environments. J Phycol 41:1184–1195CrossRefGoogle Scholar
  30. Contreras L, Mella D, Moenne A, Correa JA (2009) Differential responses to copper-induced oxidative stress in the marine macroalgae Lessonia nigrescens and Scytosiphon lomentaria (Phaeophyceae). Aquat Toxicol 94:94–102PubMedCrossRefGoogle Scholar
  31. Contreras-Porcia L, Dennett G, González A, Vergara E, Medina C, Correa J, Moenne A (2011) Identification of copper-induced genes in the marine alga Ulva compressa (Chlorophyta). Mar Biotechnol 13:544–556PubMedCrossRefGoogle Scholar
  32. Cosse A, Potin P, Leblanc C (2009) Patterns of gene expression induced by oligoguluronates reveal conserved and environment-specific molecular defense responses in the brown alga Laminaria digitata. New Phytol 182(1):239–250PubMedCrossRefGoogle Scholar
  33. Crepineau F, Roscoe T, Kaas R, Kloareg B, Boyen C (2000) Characterisation of complementary DNAs from the expressed sequence tag analysis of life cycle stages of Laminaria digitata (Phaeophyceae). Plant Mol Biol 43:503–513PubMedCrossRefGoogle Scholar
  34. Davison IR, Pearson GA (1996) Stress tolerance in intertidal seaweeds. J Phycol 32:197–211CrossRefGoogle Scholar
  35. de la Coba F, Aguilera J, Figueroa FL, de Gálvez MV, Herrera E (2009) Antioxidant activity of mycosporine-like amino acids isolated from three red macroalgae and one marine lichen. J Appl Phycol 21:161–169CrossRefGoogle Scholar
  36. Dring MJ (2005) Stress resistance and disease resistance in seaweeds: the role of reactive oxygen metabolism. advances in botanical research, vol 43. Academic, New York, pp 175–207Google Scholar
  37. Dummermuth AL, Karsten U, Fisch FM, König GM, Wiencke C (2003) Responses of marine macroalgae to hydrogen-peroxide stress. J Exp Mar Biol Ecol 289:103–121CrossRefGoogle Scholar
  38. Eshdat Y, Holland D, Faltin Z, Ben-Hayyim G (1997) Plant glutathione peroxidases. Physiol Plant 100:234–240CrossRefGoogle Scholar
  39. Franklin LA, Osmond CB, Larkum AWD (2003) Photoinhibition, UV-B and Algal Photosynthesis. In: Larkum AWD, Douglas SE, Raven JA (eds) Photosynthesis in algae. Kluwer Academic, Dordrecht, pp 351–384CrossRefGoogle Scholar
  40. Goodwin KD, North WJ, Lidstrom ME (1997) Production of bromoform and dibromomethane by giant kelp: Factors affecting release and comparison to anthropogenic bromine sources. Limnol Oceanogr 42:1725–1734CrossRefGoogle Scholar
  41. Gross W (1993) Peroxisomes in algae: their distribution, biochemical function and phylogenic importance. In: Round FE, Chapman DJ (eds) Progress in phycological research, vol 9. Biopress Bristol, UK, pp 47–78Google Scholar
  42. Guéraud F, Atalay M, Bresgen N, Cipak A, Eckl P, Huc L, Jouanin I, Siems W, Uchida K (2010) Chemistry and biochemistry of lipid peroxidation products. Free Radic Res 44:1098–1124PubMedCrossRefGoogle Scholar
  43. Gurgel CFD, Fredericq S (2004) Systematics of the Gracilariaceae (Gracilariales, Rhodophyta): a critical assessment based on rbcL sequence analyses. J Phycol 40:138–159CrossRefGoogle Scholar
  44. Hanelt D (1996) Photoinhibition and photosynthesis in marine macroalgae. Sci Mar 60:243–248Google Scholar
  45. Jahns P, Latowski D, Strzalka K (2009) Mechanism and regulation of the violaxanthin cycle: The role of antenna proteins and membrane lipids. Biochim Biophys Acta 1787:3–14PubMedCrossRefGoogle Scholar
  46. Jordan P, Kloareg B, Vilter H (1991) Detection of vanadate-dependent bromoperoxidases in protoplasts from the brown algae Laminaria digitata and L. saccharina. J Plant Physiol 137:520–524CrossRefGoogle Scholar
  47. Karsten U, Sawall T, Hanelt D, Bischof K, Figueroa FL, Flores-Moya A, Wiencke C (1998) An inventory of UV-absorbing mycosporine-like amino acids in macroalgae from polar to warm-temperate regions. Bot Mar 41:443–453CrossRefGoogle Scholar
  48. Küpper F, Schweigert N, Ar Gall E, Legendre J-M, Vilter H, Kloareg B (1998) Iodine uptake in Laminariales involves extracellular, haloperoxidase-mediated oxidation of iodide. Planta 207:163–171CrossRefGoogle Scholar
  49. Küpper F, Kloareg B, Guern J, Potin P (2001) Oligoguluronates elicit an oxidative burst in the brown algal kelp Laminaria digitata. Plant Physiol 125:278–291PubMedCentralPubMedCrossRefGoogle Scholar
  50. Küpper F, Gaquerel E, Boneberg E, Morath S, Salaün J, Potin P (2006) Early events in the perception of lipopolysaccharides in the brown alga Laminaria digitata include an oxidative burst and activation of fatty acid oxidation cascades. J Exp Bot 57:1991–1999PubMedCrossRefGoogle Scholar
  51. Küpper FC, Carpenter LJ, McFiggans GB, Palmer CJ, Waite TJ, Boneberg EM, Woitsch S, Weiller M, Abela R, Grolimund D, Potin P, Butler A, Luther GW, Kroneck PMH, Meyer-Klaucke W, Feiters MC (2008) Iodide accumulation provides kelp with an inorganic antioxidant impacting atmospheric chemistry. Proc Natl Acad Sci USA 105(19):6954–6958PubMedCentralPubMedCrossRefGoogle Scholar
  52. Ledford HK, Niyogi KK (2005) Singlet oxygen and photo-oxidative stress management in plants and algae. Plant Cell Environ 28:1037–1145CrossRefGoogle Scholar
  53. Lohrmann NL, Logan BA, Johnson AS (2004) Seasonal acclimatisation of antioxidants and photosynthesis in Chondrus crispus and Mastocarpus stellatus, two co-occurring red algae with differing stress tolerances. Biol Bull 207:225–232PubMedCrossRefGoogle Scholar
  54. Lu IF, Sung MS, Lee TM (2006) Salinity stress and hydrogen peroxide regulation of antioxidant defense system in Ulva fasciata. Mar Biol 150:1–15CrossRefGoogle Scholar
  55. Mackerness SAH, John CF, Jordan B, Thomas B (2001) Early signalling components in ultraviolet-B responses: distinct role for different reactive oxygen species and nitric oxide. FEBS Lett 489:237–242CrossRefGoogle Scholar
  56. McCord JM, Fridovich I (1969) Superoxide dismutase—an enzymic function for erythrocuperein (hemocuprein). J Biol Chem 244:6049–6055PubMedGoogle Scholar
  57. Mehrtens G, Laturnus F (1997) Halogenating activity in an Arctic population of brown macroalga Laminaria saccharina (L) Lamour. Polar Res 16:19–25CrossRefGoogle Scholar
  58. O’Dowd C, Jimenez J, Bahreini R, Flagan R, Seinfeld J, Hameri K, Pirjola L, Kulmala M, Jennings S, Hoffmann T (2002) Marine aerosol formation from biogenic iodine emissions. Nature 417:632–636PubMedCrossRefGoogle Scholar
  59. Osmond CB (1994) What is photoinhibition? Some insights from comparisons of shade and sun plants. In: Baker NR, Bowyer NR (eds) Photoinhibition of photosynthesis, from the molecular mechanisms to the field. BIOS Scientific Publications, Oxford, pp 1–24Google Scholar
  60. Pacios L, Gálvez O (2010) Active site, catalytic cycle, and iodination reactions of vanadium iodoperoxidase: a computational study. J Chem Theor Comput 6:1738–1752CrossRefGoogle Scholar
  61. Palmer CJ, Anders TL, Carpenter LJ, Küpper FC, McFiggans GB (2005) Iodine and halocarbon response of Laminaria digitata to oxidative stress and links to atmospheric new particle production. Environ Chem 2:282–290CrossRefGoogle Scholar
  62. Pereira P, de Pablo H, Rosa-Santos F, Pacheco M, Vale C (2009) Metal accumulation and oxidative stress in Ulva sp. substantiated by response integration into a general stress index. Aquat Toxicol 91:336–345PubMedCrossRefGoogle Scholar
  63. Pinto E, Sigaud-Kutner T, Leitão MAS, Okamoto OK, Morse D, Colepicolo P (2003) Heavy metal-induced oxidative stress in algae. J Phycol 39:1008–1018CrossRefGoogle Scholar
  64. Polle A (1996) Mehler reaction: friend or foe in photosynthesis. Bot Acta 109:84–89CrossRefGoogle Scholar
  65. Potin P (2008) Oxidative burst and related responses in biotic interactions of algae. In: Amsler CD (ed) Algal chemical ecology. Springer, Berlin, pp 245–272CrossRefGoogle Scholar
  66. Ratkevicius N, Correa J, Moenne A (2003) Copper accumulation, synthesis of ascorbate and activation of ascorbate peroxidase in Enteromorpha compressa (L.) Grev. (Chlorophyta) from heavy metal-enriched environments in northern Chile. Plant Cell Environ 26:1599–1608CrossRefGoogle Scholar
  67. Rautenberger R, Bischof K (2006) Impact of temperature on UV-susceptibility of two Ulva (Chlorophyta) species from Antarctic and Subantarctic regions. Polar Biol 28:988–996CrossRefGoogle Scholar
  68. Rijstenbil JW, Coelho SM, Eijsackers M (2000) A method for the assessment of light-induced oxidative stress in embryos of fucoid algae via confocal laserscan microscopy. Mar Biol 137:763–774CrossRefGoogle Scholar
  69. Roeder V, Collén J, Rousvoal S, Corre E, Leblanc C, Boyen C (2005) Identification of stress gene transkripts in Laminaria digitata (Phaeophyceae) protoplast cultures by expressed sequence tag analysis. J Phycol 41:1227–1235CrossRefGoogle Scholar
  70. Ross C, Van Alstyne KL (2007) Intraspecific variation in stress-induced hydrogen peroxide scavenging by the ulvoid macroalga Ulva lactuca. J Phycol 43:466–474CrossRefGoogle Scholar
  71. Ross C, Küpper FC, Vreeland V, Waite JH, Jacobs RS (2005) Evidence of a latent oxidative burst in relation to wound repair in the giant unicellular chlorophyte Dasycladus vermicularis. J Phycol 41:531–541CrossRefGoogle Scholar
  72. Saenko G, Kravtsova Y, Ivanenko V, Sheludko S (1978) Concentration of iodine and bromine by plants in the seas of Japan and Okhotsk. Mar Biol 47:243–250CrossRefGoogle Scholar
  73. Schoenwaelder MEA (2002) The occurrence and cellular significance of physodes in brown algae. Phycologia 41:125–139CrossRefGoogle Scholar
  74. Sung MS, Hsu YT, Hsu YT, Wu TM, Lee TM (2009) Hypersalinity and hydrogen peroxide upregulation of gene expression of antioxidant enzymes in Ulva fasciata against oxidative stress. Mar Biotechnol 11:199–209PubMedCrossRefGoogle Scholar
  75. Svendsen H, Beszczynska-Møller A, Hagen JO, Lefauconnier B, Tverberg V, Gerland S, Ørbaek JB, Bischof K, Papucci C, Zajaczkowski M, Azzolini R, Bruland O, Wiencke C, Winther JG, Dallmann W (2002) The physical environment of Kongsfjorden–Krossfjorden, an Arctic fjord system in Svalbard. Polar Res 21:133–166CrossRefGoogle Scholar
  76. Thomas F, Cosse A, Goulitquer S, Raimund S, Morin P, Valero M, Leblanc C, Potin P (2011) Waterborne signaling primes the expression of elicitor-induced genes and buffers the oxidative responses in the brown alga Laminaria digitata. PLoS ONE 6(6):e21475. doi: 10.1371/journal.pone.0021475 PubMedCentralPubMedCrossRefGoogle Scholar
  77. Vergara JJ, Sebastian M, Perez-Llorens JL, Hernandez I (1998) Photoacclimation of Ulva rigida and U. rotundata (Chlorophyta) arranged in canopies. Mar Ecol Prog Ser 165:283–292CrossRefGoogle Scholar
  78. Verhaeghe E, Fraysse A, Guerquin-Kern J-L, Wu T-D, Devés G, Mioskowski C, Leblanc C, Ortega R, Ambroise Y, Potin P (2008) Microchemical imaging of iodine distribution in the brown alga Laminaria digitata suggests a new mechanism for its accumulation. J Biol Inorg Chem 13:257–269PubMedCrossRefGoogle Scholar
  79. Weinberger F (2007) Pathogen-induced defense and innate immunity in macroalgae. Biol Bull 213(3):290–302PubMedCrossRefGoogle Scholar
  80. Weinberger F, Potin P (2010) Red Algal Defenses in the Genomics Age. In: Seckbach J, Chapman DJ (eds) Red Algae in the Genomic Age. Cellular origin, life in extreme habitats and astrobiology, vol 13. Springer, New York, pp 457–477Google Scholar
  81. Weinberger F, Friedlander M, Hoppe H-G (1999) Oligoagars elicit a physiological response in Gracilaria conferta(Rhodophyta). J Phycol 35:747–755CrossRefGoogle Scholar
  82. Weinberger F, Leonardi P, Miravalles A, Correa JA, Lion U, Kloareg B, Potin P (2005a) Dissection of two distinct defense-related responses to agar oligosaccharides in Gracilaria chilensis (Rhodophyta) and Gracilaria conferta (Rhodophyta). J Phycol 41:863–873CrossRefGoogle Scholar
  83. Weinberger F, Pohnert G, Berndt ML, Bouarab K, Kloareg B, Potin P (2005b) Apoplastic oxidation of l-asparagine is involved in the control of the green algal endophyte Acrochaete operculata Correa & Nielsen by the red seaweed Chondrus crispus Stackhouse. J Exp Bot 56:1317–1326PubMedCrossRefGoogle Scholar
  84. Weinberger F, Guillemin M-L, Destombe C, Valero M, Faugeron S, Correa JA, Pohnert G, Pehlke C, Kloareg B, Potin P (2010) Defense evolution in the Gracilariaceae(Rhodophyta): substrate-regulated oxidation of agar oligosaccharides is more ancient than the oligoagar-activated oxidative burst. J Phycol 46:958–968CrossRefGoogle Scholar
  85. Wu T-M, Lee T-M (2008) Regulation of activity and gene expression of antioxidant enzymes in Ulva fasciata Delile (Ulvales, Chlorophyta) in response to excess copper. Phycologia 47:346–360CrossRefGoogle Scholar
  86. Wu TM, Hsu YT, Lee TM (2009a) Effects of cadmium on the regulation of antioxidant enzyme activity, gene expression, and antioxidant defenses in the marine macroalga Ulva fasciata. Bot Stud 50:25–34Google Scholar
  87. Wu T-M, Hsu Y-T, Sung M-S, Lee T-M (2009b) Expression of genes involved in redox homeostasis and antioxidant defence in a marine macroalga Ulva fasciata by excess copper. Aquat Toxicol 94:275–285PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of Marine BotanyUniversity of BremenBremenGermany
  2. 2.Department of Marine Botany, Bremen Marine EcologyUniversity of OtagoDunedinNew Zealand

Personalised recommendations