Skip to main content

Macroalgae in Tropical Marine Coastal Systems

  • Chapter
  • First Online:
Seaweed Biology

Part of the book series: Ecological Studies ((ECOLSTUD,volume 219))

Abstract

Tropical coastal marine systems inhabited by macroalgae can typically be categorized as coral reefs, seagrass meadows, or mangrove forests. The role of macroalgae in these systems is fundamentally different from temperate systems, as other primary producers generally act as the dominant habitat providers. However, macroalgae do provide essential ecosystem services such as the reduction of nutrients, provision of food, and spatial refuge for predator and prey alike. In seagrass beds, they can be highly productive and may help to stabilize pH levels. Their role within mangrove systems is highly variable across regions and their contribution to trophic food webs and nutrient cycling is likely significant. Through competition and grazing, the biomass of macroalgae is reduced in most healthy tropical ecosystems. Macroalgae are a critical component of healthy tropical marine habitats; however, their unchecked growth can lead to complete regime shifts, thereby threatening the stability and welfare of the entire coastal system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adey WH, Steneck R (1985) Highly productive Eastern Caribbean reefs: synergistic effects of biological, chemical, physical, and geological factors. In: Reaka M (ed) The ecology of coral reefs, vol 3. NOAA Symposia Series for Undersea Research, Rockville, pp 163–187

    Google Scholar 

  • Adey WH, Vassar JM (1975) Colonization, succession and growth rates of tropical crustose coralline algae (Rhodophyta, Cryptonemiales). Phycologia 14:55–69

    Google Scholar 

  • Adjeroud M, Michonneau F, Edmunds PJ, Chancerelle Y, Lison de Loma T, Penin L, Thibaut L, Vidal-Dupiol J, Salvat B, Galzin R (2009) Recurrent disturbances, recovery trajectories, and resilience of coral assemblages on a South Central Pacific reef. Coral Reefs 28:775–780

    Google Scholar 

  • Albins MA, Hixon MA (2008) Invasive Indo-Pacific lionfish Pterois volitans reduce recruitment of Atlantic coral-reef fishes. Mar Ecol Prog Ser 367:233–238

    Google Scholar 

  • Alfaro AC (2008) Diet of Littoraria scabra, while vertically migrating on mangrove trees: gut content, fatty acid, and stable isotope analyses. Estuar Coast Shelf Sci 79:718–726

    Google Scholar 

  • Alongi DM (1998) Coastal ecosystem processes. CRC, New York, p 419

    Google Scholar 

  • Amsler CD (2008) Algal chemical ecology. Springer, Berlin, p 313

    Google Scholar 

  • Armitage AR, Frankovich TA, Heck KL Jr, Fourqurean JW (2005) Experimental nutrient enrichment causes complex changes in seagrass, microalgae, and macroalgae community structure in Florida Bay. Estuaries 28:422–434

    Google Scholar 

  • Aterweberhan M, Bruggemann JH, Breeman AM (2006) Effects of extreme seasonality on community structure and functional group dynamics of coral reef algae in the southern Red Sea (Eritrea). Coral Reefs 25:391–406

    Google Scholar 

  • Baggett LP, Heck KL Jr, Frankovich TA, Armitage AR, Fourqurean JW (2010) Nutrient enrichment, grazer identity, and their effects on epiphytic algal assemblages: field experiments in subtropical turtlegrass Thalassia testudinum meadows. Mar Ecol Prog Ser 406:33–45

    CAS  Google Scholar 

  • Barbour AB, Montgomery ML, Adamson AA, Díaz-Ferguson E, Silliman BR (2010) Mangrove use by the invasive lionfish Pterois volitans. Mar Ecol Prog Ser 401:291–294

    Google Scholar 

  • Beer S, Mtolera M, Lyimo T, Bjork M (2006) The photosynthetic performance of the tropical seagrassHalophila ovalis in the upper intertidal. Aquat Bot 84:367–371

    CAS  Google Scholar 

  • Bell PRF (1992) Eutrophication and coral reefs: some examples in the Great Barrier Reef lagoon. Water Res 26:553–568

    CAS  Google Scholar 

  • Bell PRF, Lapointe BE, Elmetri I (2007) Reevaluation of ENCORE: Support for the eutrophication threshold model for coral reefs. Ambio 36:416–424

    PubMed  CAS  Google Scholar 

  • Berner T (1990) Coral reef algae. In: Dubinsky Z (ed) Ecosystems of the world, vol 25. Elsevier, Amsterdam, pp 253–264

    Google Scholar 

  • Biber PD (2007) Transport and persistence of drifting macroalgae (Rhodophyta) are strongly influenced by flow velocity and substratum complexity in tropical seagrass habitats. Mar Ecol Prog Ser 343:115–122

    Google Scholar 

  • Birrell CL, McCook LJ, Willis BL (2005) Effects of algal turfs and sediment on coral settlement. Mar Pollut Bull 51:408–414

    PubMed  CAS  Google Scholar 

  • Bischof K, Gómez I, Molis M, Hanelt D, Karsten U, Lüder U, Roleda MY, Zacher K, Wiencke C (2006) Ultraviolet radiation shapes seaweed communities. Rev Environ Sci Biotechnol 5:141–166

    CAS  Google Scholar 

  • Bishop MJ, Morgan T, Coleman MA, Kelaher BP, Hardstaff LK, Evenden RW (2009) Facilitation of molluscan assemblages in mangroves by the fucalean alga Hormosira banksii. Mar Ecol Prog Ser 392:111–122

    Google Scholar 

  • Bittick SJ, Bilotti ND, Peterson HA, Stewart HL (2010) Turbinaria ornata as an herbivory refuge for associate algae. Mar Biol 157:317–323

    Google Scholar 

  • Blunt JW, Copp BR, Hu W-P, Munro MHG, Northcote PT, Prinsep MR (2007) Marine natural products. Nat Prod Rep 24:31–86

    PubMed  CAS  Google Scholar 

  • Bouillon S, Raman AV, Dauby P, Dehairs F (2002) Carbon and Nitrogen stable isotope ratios of subtidal benthic invertebrates in an estuarine mangrove ecosystem (Andhra Pradesh, India). Estuar Coast Shelf Sci 54:901–913

    CAS  Google Scholar 

  • Bouillon S, Connolly RM, Lee SY (2008) Organic matter exchange and cycling in mangrove ecosystems: Recent insights from stable isotope studies. J Sea Res 59:44–58

    CAS  Google Scholar 

  • Box SJ, Mumby PJ (2007) Effects of macroalgal competition on growth and survival of juvenile Caribbean corals. Mar Ecol Prog Ser 342:139–149

    Google Scholar 

  • Boyer KE, Fong P, Armitage AR, Cohen RA (2004) Elevated nutrient content of tropical macroalgae increases rates of herbivory in coral, seagrass, and mangrove habitats. Coral Reefs 23:530–538

    Google Scholar 

  • Breeman AM (1988) Relative importance of temperature and other factors in determining geographic boundaries of seaweeds: experimental and phenological evidence. Helgol Mar Res 42:199–241

    Google Scholar 

  • Bruggemann JH, van Oppen MJH, Breeman AM (1994) Foraging by the stoplight parrotfish Sparisoma viride I. Food selection in different socially determined habitats. Mar Ecol Prog Ser 106:41–55

    Google Scholar 

  • Burkepile DE, Hay ME (2010) Impact of herbivore Identity on algal succession and coral growth on a Caribbean Reef. PLoS One 5:e8963. doi:10.1371/journal.pone.0008963

    PubMed Central  PubMed  Google Scholar 

  • Cardosoa PG, Pardal MA, Lillebø AI, Ferreira SM, Raffaelli D, Marques JC (2004) Dynamic changes in seagrass assemblages under eutrophication and implications for recovery. J Exp Mar Biol Ecol 302:233–248

    Google Scholar 

  • Carpenter RC (1986) Partitioning herbivory and its effects on coral reef algae communities. Ecol Monogr 56:345–363

    Google Scholar 

  • Carpenter RC, Hackney JM, Adey WH (1985) Measurements of primary productivity and nitrogenase activity of coral reef algae in a chamber incorporating oscillatory flow. Limnol Oceanogr 36:40–49

    Google Scholar 

  • Coles SL, Fadlalah YH (1991) Reef coral survival and mortality at low temperatures in the Arabian Gulf: new species-specific lower temperature limits. Coral Reefs 9:231–237

    Google Scholar 

  • Collado-Vides L, Caccia VG, Boyer JN, Fourqurean JW (2007) Tropical seagrass-associated macroalgae distributions and trends relative to water quality. Estuar Coast Shelf Sci 73:680–694

    Google Scholar 

  • Connell JH (1978) Diversity in tropical rain forests and coral reefs. Science 199:1302–1310

    PubMed  CAS  Google Scholar 

  • Cvitanovic C, Bellwood DR (2009) Local variation in herbivore feeding activity on an inshore reef of the Great Barrier Reef. Coral Reefs 28:127–133

    Google Scholar 

  • de la Torre-Castro M, Eklöf JS, Rönnbäck P, Björk M (2008) Seagrass importance in food provisioning services: fish stomach content as a link between seagrass meadows and local fisheries. West Indian Ocean J Mar Sci 7:95–110

    Google Scholar 

  • Delgado O, Lapointe BE (1994) Nutrient-limited production of calcareous versus fleshy macroalgae in a eutrophic, carbonate- rich tropical marine environment. Coral Reefs 13:151–159

    Google Scholar 

  • Diaz MC, Rützler K (2009) Biodiversity and abundance of sponges in Caribbean Mangrove: indicators of environmental quality. Smithsonian Contrib Zool 38:151–172

    Google Scholar 

  • Diaz-Pulido G, McCook LJ, Larkum AWD, Lotze HK, Raven JA, Schaffelke B, Smith JE, Steneck RS (2007) Vulnerability of macroalgae of the great barrier reef to climate change. In: Marshall PA, Johnson J (eds) Climate change and the great barrier reef. Great Barrier Reef Marine Park Authority, Townsville, pp 153–192

    Google Scholar 

  • Dixon LK (2000) Establishing light requirements for the seagrassThalassia testudinum: an example from Tampa Bay, Florida. In: Bortone SA (ed) Seagrasses: monitoring, ecology, physiology and management. CRC, Boca Raton, pp 9–31

    Google Scholar 

  • Dorenbosch M, Grol MGG, Christianen MJA, Nagelkerken I, van der Velde G (2005) Indo-Pacific seagrass beds and mangroves contribute to fish density and diversity on adjacent coral reefs. Mar Ecol Prog Ser 302:63–76

    Google Scholar 

  • Duffy JE, Hay ME (1990) Seaweed adaptations to herbivory. Bioscience 40:368–375

    Google Scholar 

  • Fabricius K, Dea’th G (2001) Environmental factors associated with the spatial distribution of crustose coralline algae on the Great Barrier Reef. Coral Reefs 19:303–309

    Google Scholar 

  • Ferdie M, Fourqurean JW (2004) Responses of seagrass communities to fertilization along a gradient of relative availability of nitrogen and phosphorus in a carbonate environment. Limnol Oceanogr 49:2082–2094

    Google Scholar 

  • Figueroa FL, Salles S, Aguilera J, Jiménez C, Mercado J, Viñegla B, Flores-Moya A, Altamirano M (1997) Effects of solar radiation on photoinhibition and pigmentation in the red alga Porphyra leucosticta. Mar Ecol Prog Ser 151:81–90

    CAS  Google Scholar 

  • Figueroa FL, Martínez B, Israel A, Neori A, Malta E, Ang P Jr, Inken S, Marquardt R, Rachamim T, Arazi U, Frenk S, Korbee N (2009) Acclimation of Red Sea macroalgae to solar radiation: photosynthesis and thallus absorptance. Aquat Biol 7:159–172

    Google Scholar 

  • Fong P, Paul VJ (2011) Coral reef algae. In: Dubinsky Z, Stambler N (eds) Coral reefs: an ecosystem in transition. Springer, New York, pp 241–272

    Google Scholar 

  • Fong P, Kamer K, Boyer KE, Boyle KA (2001) Nutrient content of macroalgae with differing morphologies may indicate sources of nutrients to tropical marine systems. Mar Ecol Prog Ser 220:137–152

    CAS  Google Scholar 

  • Fong P, Boyer KE, Kamer K, Boyle KA (2003) Influence of initial tissue nutrient status of tropical marine algae on response to nitrogen and phosphorus additions. Mar Ecol Prog Ser 262:111–123

    Google Scholar 

  • Fong P, Smith TB, Wartian MJ (2006) Epiphytic cyanobacteria maintain shifts to macroalgal dominance on coral reefs following enso disturbance. Ecology 87:1162–1168

    PubMed  Google Scholar 

  • Foster NL, Box SJ, Mumby PJ (2008) Competitive effects of macroalgae on the fecundity of the reef-building coral Montastraea annularis. Mar Ecol Prog Ser 367:143–152

    Google Scholar 

  • Fourqurean JW, Rutten LM (2004) The impact of Hurricane Georges on soft-bottom, back reef communities: site and species-specific effects in South Florida seagrass beds. Bull Mar Sci 75(2):239–257

    Google Scholar 

  • Fricke A, Teichberg M, Beilfuss S, Bischof K (2011) Succession patterns of turf algal communities in a Caribbean coral reef. Bot Mar 54:111–126

    Google Scholar 

  • Gross EM, Erhard D, Ivanyi E (2003) Allelopathic activity of Ceratophyllum demersum L. and Najas marina sspp. Intermedia (Wolgang) Casper. Hydrobiologia 506–509:583–589

    Google Scholar 

  • Hanelt D, Roleda MY (2009) UVB radiation may ameliorate photoinhibition in specific shallow-water tropical marine macrophytes. Aquat Bot 91:6–12

    CAS  Google Scholar 

  • Hatcher BG (1988) Coral reef primary productivity: a beggar’s banquet. Trends Ecol Evol 3:106–111

    PubMed  CAS  Google Scholar 

  • Hauxwell J, Cebrián J, Valiela I (2003) Eelgrass Zostera marina loss in temperate estuaries: relationship to land-derived nitrogen loads and effect of light limitation imposed by algae. Mar Ecol Prog Ser 247:59–73

    CAS  Google Scholar 

  • Hay ME (1981) The functional morphology of turf-forming seaweeds: persistence in stressful marine habitats. Ecology 62(3):739–750

    Google Scholar 

  • Hay ME (1997) The ecology and evolution of seaweed-herbivore interactions on coral reefs. Coral Reefs 16:67–76

    Google Scholar 

  • Hixon MA, Brostoff WN (1996) Succession and herbivory: effects of differential fish grazing on Hawaiian coral-reef algae. Ecol Monogr 66:67–90

    Google Scholar 

  • Hoey AS, Bellwood DR (2010) Cross-shelf variation in browsing intensity on the Great Barrier Reef. Coral Reefs 29:499–508

    Google Scholar 

  • Holmer M, Nielsen RM (2007) Effects of filamentous algal mats on sulfide invasion in eelgrass (Zostera marina). J Exp Mar Biol Ecol 353:245–252

    CAS  Google Scholar 

  • Houk P, Camacho R (2010) Dynamics of seagrass and macroalgal assemblages in Saipan Lagoon, Western Pacific Ocean: disturbances, pollution, and seasonal cycles. Bot Mar 53:205–212

    Google Scholar 

  • Houk P, van Woesik R (2008) Dynamics of shallow-water assemblages in the Saipan Lagoon. Mar Ecol Prog Ser 356:39–50

    Google Scholar 

  • Hughes TP (1994) Catastrophes, phase shifts, and large-scale degradation of a Caribbean coral reef. Science 265:1547–1551

    PubMed  CAS  Google Scholar 

  • Hughes TP, Rodrigues MJ, Bellwood DR, Ceccarelli D, Hoegh-Guldberg O, McCook LJ, Moltschaniwskyj N, Pratchett MS, Steneck RS, Willis B (2007) Phase shifts, herbivory, and the resilience of coral reefs to climate change. Curr Biol 17:360–365

    PubMed  CAS  Google Scholar 

  • Invers O, Kraemer GP, Pérez M, Romero J (2004) Effects of nitrogen addition on nitrogen metabolism and carbon reserves in the temperate seagrassPosidonia oceanica. J Exp Mar Biol Ecol 303:97–114

    CAS  Google Scholar 

  • Jompa J, McCook LJ (2002) Effects of competition and herbivory on interactions between a hard coral and a brown alga. J Exp Mar Biol Ecol 271:25–39

    Google Scholar 

  • Jompa J, McCook LJ (2003) Coral-algal competition: macroalgae with different properties have different effects on corals. Mar Ecol Prog Ser 258:87–95

    Google Scholar 

  • Kennison RL (2008) Evaluating ecosystem function of nutrient retention and recycling in excessively eutrophic estuaries. PhD Dissertation. University of California, Los Angeles

    Google Scholar 

  • Kerswell AP (2006) Global biodiversity patterns of benthic marine algae. Ecology 87:2479–2488

    PubMed  Google Scholar 

  • Kieckbusch DK, Koch MS, Serafy JE, Anderson WT (2004) Trophic linkages among primary producers and consumers in fringing mangroves of subtropical lagoons. Bull Mar Sci 74:271–285

    Google Scholar 

  • Koch MS, Madden CJ (2001) Patterns of primary production and nutrient availability in a Bahamas lagoon with fringing mangroves. Mar Ecol Prog Ser 219:109–119

    CAS  Google Scholar 

  • Konar B, Iken K, Cruz-Motta JJ et al (2010) Current patterns of macroalgal diversity and biomass in northern hemisphere rocky shores. PLoS One 5:e13195. doi:10.1371/journal.pone.0013195

    PubMed Central  PubMed  CAS  Google Scholar 

  • Kopecky AL, Dunton KH (2006) Variability in drift macroalgal abundance in relation to biotic and abiotic factors in two seagrass dominated estuaries in the Western Gulf of Mexico. Estuar Coasts 29(4):617–629

    Google Scholar 

  • Kopp D, Bouchon-Navarro Y, Cordonnier S, Haouisee ML, Bouchon C (2010) Evaluation of algal regulation by herbivorous fishes on Caribbean coral reefs. Helgol Mar Res 64:181–190

    Google Scholar 

  • Kristensen E (2008) Mangrove crabs as ecosystem engineers; with emphasis on sediment processes. J Sea Res 59:30–43

    Google Scholar 

  • Kuffner IB, Walters LJ, Becerro MA, Paul VJ, Ritson-Williams R, Beach K (2006) Inhibition of coral recruitment by macroalgae and cyanobacteria. Mar Ecol Prog Ser 323:107–117

    Google Scholar 

  • Lapointe BE (1997) Nutrient thresholds for bottom-up control of macroalgal blooms on coral reefs in Jamaica and southeast Florida. Limnol Oceanogr 42:1119–1131

    CAS  Google Scholar 

  • LaPointe BE, Littler MM, Littler DS (1987) A comparison of nutrient-limited productivity in macroalgae from a Caribbean barrier reef and from a mangrove ecosystem. Aquat Bot 28:243–255

    Google Scholar 

  • Lapointe BE, Littler MM, Littler DS (1992) Nutrient availability to marine macroalgae in siliciclastic versus carbonate-rich coastal waters. Estuaries 15:75–82

    CAS  Google Scholar 

  • Lapointe BE, Barile PJ, Matzie WR (2004) Anthropogenic nutrient enrichment of seagrass and coral reef communities in the Lower Florida Keys: discrimination of local versus regional nitrogen sources. J Exp Mar Biol Ecol 308:23–58

    Google Scholar 

  • Lirman D (2001) Competition between macroalgae and corals: effects of herbivore exclusion and increased algal biomass on coral survivorship and growth. Coral Reefs 19:392–399

    Google Scholar 

  • Littler MM, Littler DS (1984) A relative-dominance model for biotic reefs. In: Proceedings of the joint meeting of the Atlantic reef committee society of reef studies, Miami, 1984

    Google Scholar 

  • Littler MM, Littler DS (1988) Structure and role of algae in tropical reef communities. In: Lembi CA, Waaland JR (eds) Algae and human affairs. Cambridge University Press, Cambridge, pp 29–56

    Google Scholar 

  • Littler MM, Littler DS (2006) Review: assessment of coral reefs using herbivory/nutrient assays and indicator groups of benthic primary producers: a critical synthesis, proposed protocols, and critique of management strategies. Aquat Conserv Mar Freshwater Ecosystem 17:195–215. doi:10.1002/aqc.790

    Google Scholar 

  • Littler MM, Littler DS, Blair SM, Norris JN (1985) Deepest known plant life discovered on an uncharted seamount. Science 227:57–59

    PubMed  CAS  Google Scholar 

  • Littler MM, Littler DS, Blair SM, Norris JN (1986) Deep-water plant communities from an uncharted seamount off San Salvador Island, Bahamas: distribution, abundance, and primary productivity. Deep Sea Res 33:881–892

    CAS  Google Scholar 

  • Littler MM, Littler DS, Titlyanov EA (1991) Comparisons of N- and P-limited productivity between high Granitic Islands vs low carbonate atolls in the seychelles archipelago: a test of the relative-dominance paradigm. Coral Reefs 10:199–209

    Google Scholar 

  • Littler MM, Littler DS, Brooks BL (2010a) Marine macroalgal diversity assessment of saba bank Netherlands antilles. PLoS One 5:e10677. doi:10.1371/journal.pone.0010677

    PubMed Central  PubMed  Google Scholar 

  • Littler MM, Littler DS, Brooks BL (2010b) The effects of nitrogen and phosphorus enrichment on algal community development: artificial mini reefs on the Belize Barrier Reef sedimentary lagoon. Harmful Algae 9:255–263

    CAS  Google Scholar 

  • Mantyka CS, Bellwood DR (2007a) Direct evaluation of macroalgal removal by herbivorous coral reef fishes. Coral Reefs 26:435–442

    Google Scholar 

  • Mantyka CS, Bellwood DR (2007b) Macroalgal grazing selectivity among herbivorous coral reef fishes. Mar Ecol Prog Ser 352:177–185

    Google Scholar 

  • McCook LJ (1996) Effects of herbivores and water quality on the distribution of Sargassum on the central Great Barrier Reef: cross-shelf transplants. Mar Ecol Prog Ser 139:179–192

    Google Scholar 

  • McCook LJ (1997) Effects of herbivory on zonation of Sargassum spp. within fringing reefs of the central Great Barrier Reef. Mar Biol 129:713–722

    Google Scholar 

  • McCook LJ (1999) Macroalgae, nutrients and phase shifts on coral reefs: scientific issues and management consequences for the Great Barrier Reef. Coral Reefs 18:357–367

    Google Scholar 

  • McCook L, Jompa J, Diaz-Palido G (2001) Competition between corals and algae on coral reefs: a review of evidence and mechanisms. Coral Reefs 19:400–417

    Google Scholar 

  • McGlathery KJ (2001) Macroalgal blooms contribute to the decline of seagrass in nutrient-enriched coastal waters. J Phycol 37:453–456

    Google Scholar 

  • McGlathery KJ, Howarth RW, Marino R (1992) Nutrient limitation of the macroalga, Penicillus capitatus, associated with subtropical seagrass meadows in Bermuda. Estuaries 15:18–25

    CAS  Google Scholar 

  • McManus JW, Polsenberg JF (2006) Coral-algal phase shifts on coral reefs: ecological and environmental aspects. Prog Oceanogr 60:263–279

    Google Scholar 

  • Melville F, Pulkownik A (2007) Seasonal and spatial variation in the distribution of mangrove macroalgae in the Clyde River, Australia. Estuar Coast Shelf Sci 71:683–690

    Google Scholar 

  • Moksnes PO, Gullström M, Tryman K, Baden S (2008) Trophic cascades in a temperate seagrass community. Oikos 117:763–777

    Google Scholar 

  • Mork E, Sjoo GL, Kautsky N, McClanahan TR (2009) Top-down and bottom-up regulation of macroalgal community structure on a Kenyan reef. Estuar Coast Shelf Sci 84:331–336

    Google Scholar 

  • Mumby PJ (2009) Phase shifts and the stability of macroalgal communities on Caribbean coral reefs. Coral Reefs 28:761–773

    Google Scholar 

  • Mumby PJ, Harborne AR (2010) Marine reserves enhance the recovery of corals on Caribbean reefs. PLoS One 5:e8657

    PubMed Central  PubMed  Google Scholar 

  • Mumby PJ, Edwards AJ, Arias-González JE, Lindeman KC, Blackwell PG, Gall A, Gorczynska MI, Harborne AR, Pescod CL, Renken H, Wabnitz CCC, Llewellyn G (2004) Mangroves enhance the biomass of coral reef fish communities in the Caribbean. Nature 427:533–536

    PubMed  CAS  Google Scholar 

  • Mumby PJ, Dahlgren CP, Harborne AR, Kappel CV et al (2006) Fishing, trophic cascades, and the process of grazing on coral reefs. Science 311:98

    PubMed  CAS  Google Scholar 

  • Muzuka ANN, Shaghude YW, Wannas KO, Nyandwi N (2005) Sediment sources and their distribution in Chwaka Bay, Zanzibar Island. West Indian Ocean J Mar Sci 4:185–197

    Google Scholar 

  • Nagelkerken I, van der Velde G (2004) Are Caribbean mangroves important feeding grounds for juvenile reef fish from adjacent seagrass beds? Mar Ecol Prog Ser 274:143–151

    Google Scholar 

  • Nugues M, Bak RP (2006) Differential competitive abilities between Caribbean coral species and a brown alga: a year of experiments and a long-term perspective. Mar Ecol Prog Ser 315:75–86

    Google Scholar 

  • Pakker H, Breeman AM, Prud’homme van Reine WF, Van den Hoek C (1995) A comparative study of temperature responses of Caribbean seaweeds from different biogeographic groups. J Phycol 31:499–507

    Google Scholar 

  • Paul VJ, Puglisi MP (2004) Chemical mediation of interactions among marine organisms. Nat Prod Rep 21:189–209

    PubMed  CAS  Google Scholar 

  • Paul VJ, Nelson SG, Sanger HR (1990) Feeding preferences of adult juvenile rabbitfish Siganus argenteus in relation to chemical defenses of tropical seaweeds. Mar Ecol Prog Ser 60:23–24

    CAS  Google Scholar 

  • Paul VJ, Cruz-Rivera E, Thacker RW (2001) Chemical mediation of macroalgal-herbivore interactions: ecological and evolutionary perspectives. In: McClintock J, Baker B (eds) Marine chemical ecology. CRC Press, LLC, Boca Raton, pp 227–265

    Google Scholar 

  • Pereira RC, Da Gama BAP (2008) Macroalgal chemical defenses and their roles in structuring tropical marine communities. In: Amsler DC (ed) Algal chemical ecology. Springer, Germany, pp 25–49

    Google Scholar 

  • Pielou EC (1977) The latitudinal spans of seaweed species and their patterns of overlap. J Biogeogr 4:299–311

    Google Scholar 

  • Rasher DB, Hay ME (2010) Chemically rich seaweeds poison corals when not controlled by herbivores. Proc Natl Acad Sci 107:9683–9688

    PubMed Central  PubMed  CAS  Google Scholar 

  • Ritson-Williams R, Paul VJ, Arnold SN, Steneck R (2010) Larval settlementpreferences and post-settlement survival of the threatened Caribbean corals Acropora palmata and A. cervicornis. Coral Reefs 29:71–81

    Google Scholar 

  • Saifullah SM, Ahmed W (2007) Epiphytic algal biomass on pneumatophores of mangroves of Karachi, Indus Delta. Pakistan J Bot 39:2097–2102

    Google Scholar 

  • Santelices B, Marquet PA (1998) Seaweeds, latitudinal diversity patterns and Rapoport’s rule. Div Dist 4:71–75

    Google Scholar 

  • Schaffelke B (2001) Surface alkaline phosphatase activities of macroalgae on coral reefs of the central Great Barrier Reef, Australia. Coral Reefs 19:310–317

    Google Scholar 

  • Schaffelke B, Klumpp DW (1997) Growth of germlings of the macroalga Sargassum baccularia (Phaeophyta) is stimulated by enhanced nutrients. Proc 8th Int Coral Reef Symp 2:1839–1842

    Google Scholar 

  • Schupp PJ, Paul VJ (1994) Calcification and secondary metabolites in tropical seaweeds: variable effects on herbivorous fishes. Ecology 75:1172–1185

    Google Scholar 

  • Semesi IS, Beer S, Björk M (2009) Seagrass photosynthesis controls rates of calcification and photosynthesis of calcareous macroalgae in a tropical seagrass meadow. Mar Ecol Prog Ser 382:41–47

    CAS  Google Scholar 

  • Smith JE, Hunter CL, Smith CM (2010a) The effects of top-down versus bottom-up control on benthic coral reef community structure. Oecologia 163:497–507

    PubMed  Google Scholar 

  • Smith TB, Fong P, Kennison R, Smith J (2010b) Spatial refuges and associational defenses promote harmful blooms of the alga Caulerpa sertularioides onto coral reefs. Oecologia 164:1039–1048

    PubMed  Google Scholar 

  • Sotka EE, Hay ME (2009) Effects of herbivores, nutrient enrichment, and their interactions on macroalgal proliferation and coral growth. Coral Reefs 28:555–568

    Google Scholar 

  • Spivak AC, Canuel EA, Duffy JE, Richardson JP (2009) Nutrient enrichment and food web composition affect ecosystem metabolism in an experimental seagrass habitat. PLoS One 4:e7473. doi:10.1371/journal.pone.0007473

    PubMed Central  PubMed  Google Scholar 

  • Steneck RS, Dethier MN (1994) A functional group approach to the structure of algal-dominated communities. Oikos 69:476–498

    Google Scholar 

  • Uku J (2005) Seagrasses and their epiphytes: characterization of abundance and productivity in tropical seagrass beds. Doctoral dissertation. Stockholm University. Stockholm, Sweden

    Google Scholar 

  • Uku J, Björk M (2001) The distribution of epiphytic algae on three Kenyan seagrass species. S Afr J Bot 67:475–482

    Google Scholar 

  • Uku J, Björk M (2005) Productivity aspects of three tropical seagrass species in areas of different nutrient levels in Kenya. Estuar Coast Shelf Sci 63:407–420

    CAS  Google Scholar 

  • van den Hoek C, Breeman AM, Bak RPM, Van Buurt G (1978) The distribution of algae, corals and gorgonians in relation to depth, light attenuation, water movement and grazing pressure in the fringing coral reef of Curaçao, Netherlands Antilles. Aquat Bot 5:1–46

    Google Scholar 

  • Vermeij MJA (2006) Early life-history dynamics of Caribbean coral species on artificial substratum: the importance of competition, growth, and variation in life-history strategy. Coral Reefs 25:59–71

    Google Scholar 

  • Vermeij MJA, Smith JE, Smith CM, Thurber RV, Sandin SA (2009) Survival and settlement success of coral planulae: independent and synergistic effects of macroalgae and microbes. Oecologia 159:325–336

    PubMed  CAS  Google Scholar 

  • Vermeij MJA, van Moorselaar I, Engelhard S, Hörnlein C, Vonk SM, Visser PM (2010) The effects of nutrient enrichment and herbivore abundance on the ability of turf algae to overgrow coral in the Caribbean. PLoS One 5:e14312. doi:10.1371/journal.pone.0014312

    PubMed Central  PubMed  CAS  Google Scholar 

  • Vermeij MJA, Dailer ML, Smith CM (2011) Crustose coralline algae can suppress macroalgal growth and recruitment on Hawaiian coral reefs. Mar Ecol Prog Ser 422:1–7

    Google Scholar 

  • Vuki VC, Price IR (1994) Seasonal changes in the Sargassum populations on a fringing coral reef, magnetic Island, Great barrier reef region, Australia. Aquat Bot 48:153–166

    Google Scholar 

  • Webster PJ, Holland GJ, Curry JA, Chang HR (2005) Changes in tropical cyclone number, duration, and intensity in a warming environment. Science 309:1844–1846

    PubMed  CAS  Google Scholar 

  • Williams ID, Polunin VC, Hendrick VJ (2001) Limits to grazing by herbivorous fishes and the impact of low coral cover on macroalgal abundance on a coral reef in Belize. Mar Ecol Prog Ser 222:187–196

    Google Scholar 

  • Wismer S, Hoey A, Bellwood D (2009) Cross-shelf benthic community structure on the Great barrier reef: relationships between macroalgal cover and herbivore biomass. Mar Ecol Prog Ser 376:45–54

    Google Scholar 

  • Womersley HBS, Bailey A (1969) The marine algae of the Solomon Islands and their place in biotic reefs. Philos Trans R Soc B 255:432–433

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Astrid Y. Mejia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mejia, A.Y., Puncher, G.N., Engelen, A.H. (2012). Macroalgae in Tropical Marine Coastal Systems. In: Wiencke, C., Bischof, K. (eds) Seaweed Biology. Ecological Studies, vol 219. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28451-9_16

Download citation

Publish with us

Policies and ethics