Skip to main content

Invasive Marine Seaweeds: Pest or Prize?

  • Chapter
  • First Online:
Seaweed Biology

Part of the book series: Ecological Studies ((ECOLSTUD,volume 219))

Abstract

Seaweeds were among the first harvested human food supplies in several parts of the world and are today valuable natural resources. They are, however, part of one of the most pressing conservation issues of our time: biological invasions. Global patterns of biodiversity are changing by relocations of organisms at the species and subspecies levels, with the latter often remaining cryptic. The increasing occurrence of marine invasions is mainly due to intensifying maritime traffic and global environmental changes. Following introduction, if suitable conditions for survival occur in the “recipient” environment, seaweeds will establish and spread. Many high-profile invasive seaweeds are commercially used in their native range and have biological traits similar to high-yield terrestrial crops, e.g., high growth rates. The incentives to introduce potentially invasive taxa for commercial use are significant. However, the associated environmental risks are high and robust strategies to prevent and control intentional and accidental seaweed introductions remain essential. For industrial and commercial use, preference should be given to the harvesting and culture of native seaweeds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson LWJ (2007) Control of invasive seaweeds. Bot Mar 50:418–437

    Google Scholar 

  • Andreakis N, Procaccini G, Kooistra WHCF (2004) Asparagopsis taxiformis and Asparagopsis armata (Bonnemaisoniales, Rhodophyta): genetic and morphological identification of Mediterranean populations. Eur J Phycol 39:273–283

    CAS  Google Scholar 

  • Andreakis N, Procaccini G, Maggs CA, Kooistra WHCF (2007a) Phylogeography of the invasive seaweed Asparagopsis (Bonnemaisoniales, Rhodophyta) reveals cryptic diversity. Mol Ecol 16:2285–2299

    PubMed  CAS  Google Scholar 

  • Andreakis N, Kooistra WHCF, Procaccini G (2007b) Microsatellite markers in an invasive strain of Asparagopsis taxiformis (Bonnemaisoniales, Rhodophyta): insights in ploidy levels and sexual reproduction. Gene 406:144–151

    PubMed  CAS  Google Scholar 

  • Andreakis N, Kooistra WHCF, Procaccini G (2009) High genetic diversity and connectivity in the polyploid invasive seaweed Asparagopsis taxiformis (Bonnemaisoniales) in the Mediterranean, explored with microsatellite alleles and multilocus genotypes. Mol Ecol 18:212–226

    PubMed  Google Scholar 

  • Arrontes J (2005) A model for range expansion of coastal algal species with different dispersal strategies: the case of Fucus serratus in northern Spain. Mar Ecol Prog Ser 295:57–68

    Google Scholar 

  • Ask IE, Azanza RV (2002) Advances in cultivation technology of commercial eucheumatoid species: a review with suggestions for future research. Aquaculture 206:257–77

    Google Scholar 

  • Beach KS, Smith CM, Michael T, Shin HW (1995) Photosynthesis in reproductive unicells of Ulva fasciata and Enteromorpha flexuosa: implications for ecological success. Mar Ecol Prog Ser 125:229–237

    Google Scholar 

  • Bégin C, Scheibling RE (2003) Growth and Survival of the Invasive Green Alga Codium fragile ssp. tomentosoides in Tide Pools on a Rocky Shore in Nova Scotia. Bot Mar 46:404–412

    Google Scholar 

  • Bindu MS, Levine IA (2011) The commercial red seaweed Kappaphycus alvarezii–an overview on farming and environment. J Appl Pcycol 23:789–796

    Google Scholar 

  • Blaxter M (2003) Counting angels with DNA. Nature 421:122–124

    PubMed  CAS  Google Scholar 

  • Bolton JJ, Robertson-Andersson DV, Shuuluka D, Kandjengo L (2009) Growing Ulva (Chlorophyta) in integrated systems as a commercial crop for abalone feed in South Africa: a SWOT analysis. J Appl Phycol 21:575–583

    Google Scholar 

  • Bolton JJ, Andreakis N, Anderson RJ (2011) Molecular evidence for three separate cryptic introductions of the red seaweed Asparagopsis (Bonnemaisoniales, Rhodophyta) in South Africa. Afr J Mar Sci. doi:10.2989/1814232X.2011.600339

    Google Scholar 

  • Boudouresque CF, Verlaque M (2002) Biological pollution in the Mediterranean Sea: invasive versus introduced macrophytes. Mar Poll Bull 44:32–38

    CAS  Google Scholar 

  • Brown AHD, Marshall DR (1981) Evolutionary changes accompanying colonization in plants. Evolution today, proceeding of the second international congress of systematic and evolutionary biology. In: Scudder GGT and Reveal JL (ed.). Carnegie-Mellon University, Pittsburgh, PA, pp 351–363

    Google Scholar 

  • Bruhn A, Dahl J, Nielsen HB, Nikolaisen L, Rasmussen MB, Markager S, Olesen B, Arias C, Jensen PD (2011) Bioenergy potential of Ulva lactuca: Biomass yield, methane production and combustion. Bioresour Technol 102:2595–2604

    PubMed  CAS  Google Scholar 

  • Bulboa CR, de Paula EJ (2005) Introduction of non-native species of Kappaphycus (Rhodophyta, Gigartinales) in subtropical waters: Comparative analysis of growth rates of Kappaphycus alvarezii and Kappaphycus striatum in vitro and in the sea in south-eastern Brazil. Phycol Res 53:183–188

    Google Scholar 

  • Cacabelos E, Olabarria C, Incera M, Troncoso JS (2010) Do grazers prefer invasive seaweeds? J Exp Mar Biol Ecol 393:182–187

    Google Scholar 

  • Carlton JT (1996) Biological invasions and cryptogenic species. Ecology 77:1653–1655

    Google Scholar 

  • Casas G, Scrosati R, Piriz ML (2004) The invasive kelp Undaria pinnatifida (Phaeophyceae, Laminariales) reduces native seaweed biodiversity in Nuevo Gulf (Patagonia, Argentina). Biol Invasions 6:411–416

    Google Scholar 

  • Castelar B, Perpetuo Reis R, Moura AL, Kirk R (2009) Invasive potential of Kappaphycus alvarezii off the south coast of Rio de Janeiro state, Brazil: a contribution to environmental secure cultivation in the tropics. Bot Mar 52:283–289

    Google Scholar 

  • Chapman AS (1999) From introduced species to invader: what determines variation in the success of Codium fragile ssp. tomentosoides (Chlorophyta) in the North Atlantic Ocean? Helgolander Mee 52:277–289

    Google Scholar 

  • Cheang CC, Chu KH, Fujita D, Yoshida G, Hiraoka M, Critchley A, Choi HG, Duan D, Serisawa Y, Angr Jr PO (2010) Low genetic variability of sargassum muticum (Phaeophyceae) revealed by a global analysis of native and introduced populations. J Phycol 46:1063–1074

    Google Scholar 

  • Conklin EJ, Smith JE (2005) Abundance and spread of the invasive red algae, Kappaphycus spp., in Kane'ohe Bay, Hawai'i and an experimental assessment of management options. Biol Invasions 7:1029–1039

    Google Scholar 

  • Costello C, Drake JM, Lodge DM (2007) Evaluating an invasive species policy: Ballast water exchange in the great lakes. Ecol Appl 17:655–662

    PubMed  Google Scholar 

  • Coyer JA, Hoarau G, Stam WT, Olsen JL (2007) Hybridization and introgression in a mixed population of the intertidal seaweeds Fucus evanescens and F. serratus. J Evol Biol 20:2322–2333

    PubMed  CAS  Google Scholar 

  • Davis MA, Pelsor M (2001) Experimental support for a resource-based mechanistic model of invisibility. Ecol Lett 4:421–428

    Google Scholar 

  • Davis MA, Grime JP, Thompson K (2000) Fluctuating resources in plant communities: a general theory of invasibility. J Ecol 88:528–534

    Google Scholar 

  • Dittel AI, Epifanio CE (2009) Invasion biology of the Chinese mitten crab Eriochier sinensis: a brief review. J Exp Mar Biol Ecol 374:79–92

    Google Scholar 

  • Doelle M, McConnell ML, VanderZwaag DL (2007) Invasive seaweeds: global and regional law and policy responses. Bot Mar 50:438–450

    Google Scholar 

  • Dunstan PK, Johnson CR (2007) Mechanisms of invasions: can the recipient community influence invasion rates? Bot Mar 50:361–372

    Google Scholar 

  • Engelen AH, Henriques N (2011) Mesograzers prefer mostly native seaweeds over the invasive brown seaweed Sargassum muticum. Hydrobiologia 669:157–165

    Google Scholar 

  • Figueroa FL, Bueno A, Korbee N, Santos R, Mata L, Schuenhoff A (2008) Accumulation of mycosporine-like amino acids in Asparagopsis armata grown in tanks with fishpond effluents of gilthead sea bream Asparus aurata. J World Aquacult Soc 39:692–699

    Google Scholar 

  • Flagella MM, Verlaque M, Soria A, Buia MC (2007) Macroalgal survival in ballast water tanks. Mar Pollut Bull 54:1395–401

    PubMed  CAS  Google Scholar 

  • Flagella MM, Andreakis N, Hiraoka M, Verlaque M, Buia MC (2010) Identification of cryptic Ulva species (Chlorophyta, Ulvales) transported by Ballast water. J Biol Res-Thessalon 13:47–57

    CAS  Google Scholar 

  • Gab-Alla AAFA (2007) Ecological study on community of exotic invasive seaweed Caulerpa prolifera in suez canal and its associated macro invertebrates. J Appl Sci 7:679–686

    Google Scholar 

  • Garzon HM, Wong TY (2010) DNA chips for species identification and biological phylogenies. Nat Comput. doi:10.1007/s11047-010-9232-y

    Google Scholar 

  • Geller JB, Darling JA, Carlton JT (2010) Genetic perspectives on marine biological invasions. Annu Rev Mar Sci 2:367–394

    Google Scholar 

  • Genovese G, Tedone L, Hamann MT, Morabito M (2009) The Mediterranean red alga Asparagopsis: a source of compounds against Leishmania. Mar Drugs 7:361–366

    PubMed Central  PubMed  CAS  Google Scholar 

  • Godwin H (1975) The history of the British flora, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Gollan JR, Wright JT (2006) Limited grazing pressure by native herbivores on the invasive seaweed Caulerpa taxifolia in a temperate Australian estuary. Mar Freshwater Res 57:685–694

    Google Scholar 

  • Guiry MD, Guiry GM (2008) AlgaeBase. (http://www.algaebase.org) World-wide electronic publication, National University of Ireland, Galway [updated: continuously]. Available from: http://www.algaebase.org/search/species/

  • Hayashi L, Jose de Paula E, Chow F (2007) Growth rate and carrageenan analysis in four strains of Kappaphycus alvarezii (Rhodophyta, Gigartinales) farmed in the subtropical waters of São Paulo State, Brazil. J Appl Phycol 19:393–399

    CAS  Google Scholar 

  • Hayden HS, Waaland JR (2004) A molecular systematic study of Ulva (Ulvaceae, Ulvales) from the northern Pacific. Phycologia 43:364–382

    Google Scholar 

  • Hemmingson JR, Furneaux FR, Thompson K (2006) Structure and antiviral activity of the galactofucan sulfates extracted from Undaria pinnatifida (Phaeophyta). J Appl Phycol 18:185–193

    CAS  Google Scholar 

  • Hewitt CL, Campbell ML, Gollasch S (2006) Alien species in aquaculture. Considerations for responsible use, IUCN. Gland, Switzerland, p 32

    Google Scholar 

  • Hewitt CL, Gollasch S, Minchin D (2009a) The vessel as a vector—biofouling, ballast water and sediments. In: Rilov R, Crooks JA (eds) Biological invasions in marine ecosystems. Springer, Berlin, pp 117–132

    Google Scholar 

  • Hewitt CL, Everett RA, Parker N, Campbell ML (2009b) Marine bioinvasion management: structural framework. In: Rilov R, Crooks JA (eds) Biological invasions in marine ecosystems. Springer, Berlin, pp 327–334

    Google Scholar 

  • Horridge GA (1951) Occurrence of Asparagopsis armata Harvey on the Scilly Isles. Nature 167:732–733

    Google Scholar 

  • Howden M, Hughes L, Dunlop M, Zethoven I, Hilbert D, Chilcott C (2003) Climate Change Impacts On Biodiversity In Australia, Outcomes of a workshop sponsored by the Biological Diversity Advisory Committee, 1–2 October 2002, Commonwealth of Australia, Canberra

    Google Scholar 

  • Hutchinson JFRS (1976) India: local and introduced crops. Philos Trans R Soc London 275:129–141

    Google Scholar 

  • Hwang EK, Baek JM, Park CS (2008) Cultivation of the green alga, Codium fragile (Suringar) Hariot, by artificial seed production in Korea. J Appl Phycol 20:469–475

    Google Scholar 

  • Johnson CR (2007) Seaweed invasions: conclusions and future directions. Bot Mar 50:451–457

    Google Scholar 

  • Kapraun DF (2005) Nuclear DNA content estimates in multicellular green, red and brown algae: phylogenetic considerations. Ann Bot 95:7–44

    PubMed  CAS  Google Scholar 

  • Klein J, Verlaque M (2008) The Caulerpa racemosa invasion: a critical review. Mar Poll Bull 56:205–225

    CAS  Google Scholar 

  • Kolar CS, Lodge DM (2001) Progress in invasion biology: predicting invaders. Trends Ecol Evol 16:199–204

    PubMed  Google Scholar 

  • Kraan S (2008) Sargassum muticum (Yendo) Fensholt in Ireland: an invasive species on the move. J Appl Phycol 20:825–832

    Google Scholar 

  • Kraan S, Barrington KA (2005) Commercial farming of Asparagopsis armata (Bonnemaisoniaceae, Rhodophyta) in Ireland, maintenance of an introduced species? J Appl Phycol 17:103–110

    Google Scholar 

  • Leliaert F, Zhang X, Ye N, Malta EJ, Engelen AH, Mineur F (2009) Identity of the Qingdao algal bloom. Phycol Res 57:147–151

    Google Scholar 

  • Li X, Dong S, Lei Y, Li Y (2007) The effect of stocking density of Chinese mitten crab Eriocheir sinensis on rice and crab seed yields in rice–crab culture systems. Aquaculture 273:487–493

    Google Scholar 

  • Lin W, Zhou G, Cheng X, Xu R (2007) Fast economical development accelerates biological invasions in China. PLoS One 2(11):e1208. doi:10.1371/journal.pone.0001208

    PubMed Central  PubMed  Google Scholar 

  • Lodge DM, Williams S, MacIsaac HJ, Hayes KR, Leung B, Reichard S, Mack RN, Moyle PB, Smith M, Andow DA, Carlton JT, McMichael A (2006) Biological invasions: recommendations for U.S. policy and management. Ecol Appl 16:2035–2054

    PubMed  Google Scholar 

  • Luhan MRJ, Sollesta H (2010) Growing the reproductive cells (carpospores) of the seaweed, Kappaphycus striatum, in the laboratory until outplanting in the field and maturation to tetrasporophyte. J Appl Phycol 22:579–585

    Google Scholar 

  • Mainka SA, Howard GW (2010) Climate change and invasive species: double jeopardy. Integr Zool 5:102–111

    PubMed  Google Scholar 

  • Manilal A, Sujith S, Kiran GS, Selvin J, Shakir C, Gandhimathi R, Panikkar MVN (2009) Biopotentials Of Seaweeds Collected From Southwest Coast Of India. J Mar Sci Technol 17:67–73

    Google Scholar 

  • Mata L, Schuenhoff A, Santos R (2010) A direct comparison of the performance of the seaweed biofilters, Asparagopsis armata and Ulva rigida. J Appl Phycol 22:639–644

    CAS  Google Scholar 

  • Matanjun P, Mohamed S, Mustapha NM, Muhammad K (2009) Nutrient content of tropical edible seaweeds, Eucheuma cottonii, Caulerpa lentillifera and Sargassum polycystum. J Appl Phycol 21:75–80

    CAS  Google Scholar 

  • Mayr E (1942) Systematics and the origin of species. Columbia University Press, New York

    Google Scholar 

  • McConnell O, Fenical W (1977) Halogen chemistry of the red alga Asparagopsis. Phytochemistry 16:367–374

    CAS  Google Scholar 

  • McHugh DJ (2003) A guide to the seaweed industry, FAO Fisheries Technical Paper. No. 441, Rome, pp 105

    Google Scholar 

  • Mehta GK, Meena R, Prasad K, Ganesan M, Siddhanta AK (2010) Preparation of galactans from Gracilaria debilis and Gracilaria salicornica (Gracilariales, Rhodophyta) of Indian waters. J Appl Phycol 22:623–627

    Google Scholar 

  • Meinesz A (1999) Killer algae: a true tale of biological invasion. University of Chicago Press, Chicago, 360

    Google Scholar 

  • Meyerson LA, Mooney HA (2007) Invasive alien species in an era of globalization. Front Ecol Environ 5:199–208

    Google Scholar 

  • Minchin D, Gollasch S, Cohen AN, Hewitt CL, Olenin S (2009) Characterizing vectors of marine invasions. In: Rilov R, Crooks JA (eds) Biological invasions in marine ecosystems. Springer, Berlin, pp 109–116

    Google Scholar 

  • Monteiro C, Engelen AH, Serrão EA, Santos R (2009) Habitat differences in the timing of reproduction of the invasive alga Sargassum muticum (Phaeophyta, sargassaceae) over tidal and lunar cycles. J Phycol 45:1–7

    Google Scholar 

  • Moritz C (1994) Defining “evolutionarily significant units” for conservation. Trends Ecol Evol 9:373–375

    PubMed  CAS  Google Scholar 

  • Mueller JM, Hellmann JJ (2008) An assessment of invasion risk from assisted migration. Conserv Biol 22:562–567

    PubMed  Google Scholar 

  • Muirhead JR, Gray DK, Kelly DW, Ellis SM, Heath DD, Macisaac HJ (2008) Identifying the source of species invasions: sampling intensity vs. genetic diversity. Mol Ecol 17:1020–1035

    PubMed  CAS  Google Scholar 

  • National Research Council (1996) Lost Crops of Africa. Volume 1: Grains. E-book, available via http://www.nap.edu/openbook.php?record_id=2305&page=R2. Cited 11 May 2011

  • Neill PE, Alcalde O, Faugeron S, Naverrete SA, Correa JA (2006) Invasion of Codium fragile subspecies tomentosoides in northern Chile: A new threat for Gracilaria farming. Aquaculture 259:202–210

    Google Scholar 

  • Nelson SG, Glenn EP, Moore D, Ambrose B (2009) Growth and distribution of the Macroalgae Gracilaria salicornia and G. parvispora (Rhodophyta) established from aquaculture introductions at Moloka‘i, Hawai‘i. Pac Sci 63:383–396

    Google Scholar 

  • Neves CS, Rocha RM (2008) Introduced and cryptogenic species and their management in Paranaguá Bay, Brazil. Braz Arch Biol Technol 51:623–633

    Google Scholar 

  • Ní Chualáin F, Maggs CA, Saunders GW, Guiry MD (2004) The invasive genus Asparagopsis (Bonnemaisoniaceae, Rhodophyta): molecular systematics, morphology and ecophysiology of Falkenbergia isolates. J Phycol 40:1112–1126

    Google Scholar 

  • Nuber N, Gornik O, Lauc G, Bauer N, Zuljevic´ A, Papes D, Zoldos V (2007) Genetic evidence for the identity of Caulerpa racemosa (Forsska˚l) J. Agardh (Caulerpales, Chlorophyta) in the Adriatic Sea. Eur J Phycol 42:113–120

    CAS  Google Scholar 

  • Nyberg CD, Wallentinus I (2005) Can species traits be used to predict marine macroalgal introductions? Biol Invasions 7:265–279

    Google Scholar 

  • O’Doherty DC, Sherwood AR (2007) Genetic Population Structure of the Hawaiian Alien Invasive Seaweed Acanthophora spicifera (Rhodophyta) as Revealed by DNA Sequencing and ISSR Analyses. Pac Sci 61:223–233

    Google Scholar 

  • Occhipinti-Ambrogi A (2007) Global change and marine communities: Alien species and climate change. Mar Poll Bull 55:342–352

    CAS  Google Scholar 

  • Ortiz J, Uquiche E, Robert P, Romero N, Quitral V, Llantén C (2009) Functional and nutritional value of the Chilean seaweed Codium fragile, Gracilaria chilensis and Macrocystis pyrifera. Eur J Lipid Sci Tech 111:320–327

    CAS  Google Scholar 

  • Oza RM, Zaidi SH (2001) A revised checklist of Indian marine algae. CSMCRI, Bhavnagar, Gujarat, pp 24–29

    Google Scholar 

  • Pandit MK, Pocock MJO, Kunin WE (2011) Ploidy influences rarity and invasiveness in plants. J Ecol doi:10.1111/j.1365-2745.2011.01838.x

    Google Scholar 

  • Pang SJ, Liu F, Shan FL, Xu N, Zhang ZH (2010) Tracking the algal origin of the Ulva bloom in the Yellow Sea by combination of molecular, morphological and physiological analysis. Mar Environ Res 69:207–215

    PubMed  CAS  Google Scholar 

  • Paul NA, de Nys R (2008) Promise and pitfalls of locally abundant seaweeds as biofilters for integrated aquaculture. Aquaculture 281:49–55

    Google Scholar 

  • Paul NA, de Nys R, Steinberg PD (2006) Chemical defence against bacteria in the red alga Asparagopsis armata: linking structure with function. MEPS 306:87–101

    CAS  Google Scholar 

  • Paula EJ, Eston VR (1987) Are there other Sargassum species potentially as invasive as S. muticum? Bot Mar 30:405–410

    Google Scholar 

  • Pickering TD, Skelton P, Sulu RJ (2007) Intentional introductions of commercially harvested alien seaweeds. Bot Mar 50:338–350

    Google Scholar 

  • Provan J, Murphy S, Maggs CA (2005) Tracking the invasive history of the green alga Codium fragile subsp. tomentosoides. Mol Ecol 14:189–194

    PubMed  Google Scholar 

  • Provan J, Booth D, Todd NP, Beatty GE, Maggs CA (2008) Tracking biological invasions in space and time: elucidating the invasive history of the green alga Codium fragile using old DNA. Diversity Distrib 14:343–354

    Google Scholar 

  • Raniello R, Mollo E, Lorenti M, Gavagnin M, Buia MC (2007) Phytotoxic activity of caulerpenyne from the Mediterranean invasive variety of Caulerpa racemosa: a potential allelochemical. Biol Invasions 9:361–368

    Google Scholar 

  • Rilov G, Crooks JA (2009) In: Biological invasions in marine ecosystems: Ecological, management and geographical perspectives. Rilov and Crooks (ed.). Springer, Berlin, pp 619–626

    Google Scholar 

  • Rodgers SK, Cox EF (1999) Rate of spread of introduced Rhodophytes Kappaphycus alvarezii, Kappaphycus striatum, and Gracilaria salicornica and their current distributions in Kane’ohe Bay, O’ahu, Hawai’i. Pac Sci 53:232–241

    Google Scholar 

  • Ruiz GM, Carlton CT (2003) Invasive species: vectors and management strategies. Island, Washington DC

    Google Scholar 

  • Russell DJ (1992) The ecological invasion of Hawaiian reefs by two marine red algae, Acanthophora spicifera (Vahl) Boerg. and Hypnea musciformis (Wulfen) J. Ag., and their association with two native species, Laurencia nidifica J. Ag. and Hypnea cervicornis. J Ag ICES Mar Sci Symp 194:110–125

    Google Scholar 

  • Russell L, Hepburn C, Hurd C, Stuart M (2008) The expanding range of Undaria pinnatifida in southern New Zealand: distribution, dispersal mechanisms and the invasion of wave-exposed environments. Biol Invasions 10:103–115

    Google Scholar 

  • Ryder E, Nelson S, Glenn E, Nagler P, Napolean S, Fitzsimmons K (2004) Review: production of Gracilaria parvispora in two-phase polyculture systems in relation to nutrient requirements and uptake. Bull Fish Res Agen 1:71–76

    Google Scholar 

  • Salvador N, Garreta AG, Lavelli L, Ribera MA (2007) Antimicrobial activity of Iberian macroalgae. Sci Mar 71:101–113

    Google Scholar 

  • Santelices B, Aedo D, Hoffman A (2002) Banks of microscopic forms and survival to darkness of propagules and microscopic stages of macroalgae. Rev Chil Hist Nat 75:547–555

    Google Scholar 

  • Schaffelke B, Hewitt CL (2007) Impacts of introduced seaweeds. Bot Mar 50:397–417

    Google Scholar 

  • Schaffelke B, Campbell ML, Hewitt CL (2005) Reproductive phenology of the introduced kelp Undaria pinnatifida (Phaeophyta, Laminariales) in Tasmania, Australia. Phycologia 44:84–94

    Google Scholar 

  • Schaffelke B, Smith JE, Hewitt CL (2006) Introduced macroalgae—a growing concern. J Appl Phycol 18:529–541

    Google Scholar 

  • Schuenhoff A, Mata L, Santos R (2006) The tetrasporophyte of Asparagopsis armata as a novel seaweed biofilter. Aquaculture 252:3–11

    Google Scholar 

  • Sellers E, Simpson A, Curd-Hetrick S (2010) List of Invasive Alien Species (IAS) Online Information Systems. A ‘living document’ based on a preliminary draft document, prepared for the Experts Meeting Towards the Implementation of a Global Invasive Species Information Network (GISIN), Baltimore, Maryland, USA, 6–8 April 2004. http://www.gisinetwork.org/Documents/draftiasdbs.pdf

  • Setchell WA, Gardner NL (1924) New marine algae from the Gulf of California. Proc Calif Acad Sci 12:695–949

    Google Scholar 

  • Sherwood AR (2007) Where are we now regarding Hawaiian stream algal systematics? (a suspiciously cosmopolitan flora). Bishop Mus Bull Cult Environ Stud 3:195–206

    Google Scholar 

  • Sherwood AR (2008) Phylogeography of Asparagopsis (Bonnemaisoniales, Rhodophyta) in the Hawaiian Islands: two mtDNA markers support three separate introductions. Phycologia 47:79–88

    CAS  Google Scholar 

  • Smith JE, Hunter CL, Conklin EJ, Most EJ, Sauvage R, Squair T, Smith C, Celia M (2004) Ecology of the invasive red alga Gracilaria salicornia (Rhodophyta) on O’ahu, Hawai’i. Pac Sci 58:325–343

    Google Scholar 

  • Stam WT, Olsen JL, Zaleski SF, Murray SN, Brown KR, Walters LJ (2006) A forensic and phylogenetic survey of Caulerpa species (Caulerpales, Chlorophita) from the Florida coast, local aquarium shops, and e-commerce: establishing a proactive baseline for early detection. J Phycol 42:1113–1124

    Google Scholar 

  • Taylor WR (1945) Pacific marine algae of the Allan Hancock Expeditions to the Galapagos Islands. Allan Hancock Pacific Expeditions 12: i-iv, 1–528, 3 figs, 100 pls

    Google Scholar 

  • Thornber CS, Kinlan BP, Graham MH, Stachowicz JJ (2004) Population ecology of the invasive kelp Undaria pinnatifida in California: environmental and biological controls on demography. MEPS 268:69–80

    Google Scholar 

  • Trowbridge CD (1996) Introduced versus native subspecies of Codium fragile: How distinctive is the invasive subspecies tomentosoides? Mar Biol 126:193–204

    Google Scholar 

  • Uwai S, Yotsukura N, Serisawa Y, Muraoka D, Hiraoka M, Kogame K (2006a) Intraspecific genetic diversity of Undaria pinnatifida in Japan, based on the mitochondrial cox3 gene and the ITS1 of nrDNA. Hydrobiologia 553:345–356

    CAS  Google Scholar 

  • Uwai S, Nelson W, Neill K, Wang WD, Aguilar-Rosas LE, Boo SM, Kitayama T, Kawai H (2006b) Genetic diversity in Undaria pinnatifida (Laminariales, Phaeophyceae) deduced from mitochondria genes—origins and succession of introduced populations. Phycologia 45:687–695

    Google Scholar 

  • Valentine JP, Magierowski RH, Johnson CR (2007) Mechanisms of invasion: establishment, spread and persistence of introduced seaweed populations. Bot Mar 50:351–360

    Google Scholar 

  • Verbruggen H, Leliaert F, Maggs CA, Shimada S, Schils T, Provan J, Booth D, Murphy S, De Clerck O, Littler DS, Littler MM, Coppejans E (2007) Species boundaries and phylogenetic relationships within the green algal genus Codium (Bryopsidales) based on plastid DNA sequences. Mol Phyl Evol 44:240–254

    CAS  Google Scholar 

  • Verlaque M, Durand C, Huisman JM, Boudouresque CF, Le Parco Y (2003) On the identity and origins of the Mediterranean invasive Caulerpa racemosa (Caulerpales, Chlorophyta). Eur J Phycol 38:325–339

    Google Scholar 

  • Voisin M, Engel CR, Viard F (2005) Differential shuffling of native genetic diversity across introduced regions in a brown alga: Aquaculture vs. maritime traffic effects. Proc Natl Acad Sci 102:5432–5437

    PubMed Central  PubMed  CAS  Google Scholar 

  • Vroom P, Smith CM (2001) The challenge of siphonous green algae. Am Sci 89:525–531

    Google Scholar 

  • Wallentinus I, Nyberg CD (2007) Introduced marine organisms as habitat modifiers. Mar Poll Bull 55:323–332

    CAS  Google Scholar 

  • Wares JP, Hughes AR, Grosberg RK (2005) Mechanisms that drive evolutionary change: insights from species introductions and invasions. In: Species invasions, insights into ecology, evolution, and biogeography. Sax DF, Stachowicz JJ, Gaines SD (eds.). Sinauer & Associates, Sunderland, pp 229–257

    Google Scholar 

  • Wattier R, Maggs CA (2001) Intraspecific variation in seaweeds: the application of new tools and approaches. Adv Bot Res 35:171–212

    Google Scholar 

  • Whitney KD, Gabler CA (2008) Rapid evolution in introduced species, ‘invasive traits’ and recipient communities: challenges for predicting invasive potential. Diversity Distrib 14:569–580

    Google Scholar 

  • Williams SL, Smith JE (2007) A global review of the distribution, taxonomy, and impacts of introduced seaweeds. Annu Rev Ecol Evol Syst 38:327–359

    Google Scholar 

  • Williamson M, Fitter A (1996) The varying success of invaders. Ecology 77:1661–1666

    Google Scholar 

  • Willis CG, Ruhfel BR, Primack RB, Miller-Rushing AJ, Losos JB, Davis CC (2010) Favorable climate change response explains non-native species’ success in Thoreau’s Wwoods. PLoS ONE 5(1):e8878. doi:10.1371/journal.pone.0008878

    PubMed Central  PubMed  Google Scholar 

  • Woolard FX, Moore RE, Roller PP (1979) Halogenated acetic and acrylic acids from the red alga Asparagopsis taxiformis. Phytochemistry 18:617–620

    CAS  Google Scholar 

  • Wright JT, Davis AR (2006) Demographic feedback between clonal growth and fragmentation in an invasive seaweed. Ecology 87:1744–1754

    PubMed  CAS  Google Scholar 

  • Yeh WL, Chen GY (2004) Nuclear rDNA and internal transcribed spacer sequences clarify Caulerpa racemosa vars. From other Caulerpa species. Aquat Bot 80:193–207

    CAS  Google Scholar 

  • Zaleski SF, Murray SN (2006) Taxonomic diversity and geographic distributions of aquarium-traded species of Caulerpa (Chlorophyta: Caulerpaceae) in southern California, USA. MEPS 314:97–108

    Google Scholar 

  • Zemke-White WL (2004) Assessment of the current knowledge on the environmental impacts of seaweed farming in the tropics. Marine Science into the New Millennium: New Perspectives and Challenges. In: Proceedings of the Asia-Pacific Marine Science and Technology Conference, 12–16 May Kuala Lumpur 2002, Malaysia, pp 465–476

    Google Scholar 

  • Zubia M, Fabre MS, Kerjean V, Deslandes E (2009) Antioxidant and cytotoxic activities of some red algae (Rhodophyta) from Brittany coasts (France). Bot Mar 52:268–277

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikos Andreakis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Andreakis, N., Schaffelke, B. (2012). Invasive Marine Seaweeds: Pest or Prize?. In: Wiencke, C., Bischof, K. (eds) Seaweed Biology. Ecological Studies, vol 219. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28451-9_12

Download citation

Publish with us

Policies and ethics