Advertisement

Magnetotellurics: Basic Theoretical Concepts

  • G. Dhanunjaya Naidu
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

The magnetotelluric method or magnetotellurics (MT) is an electromagnetic geophysical exploration technique that images the electrical properties (distribution) of the earth at subsurface depths. The energy for the magnetotelluric technique is from natural source of external origin. When this external energy, known as the primary electromagnetic field, reaches the earth’s surface, part of it is reflected back and remaining part penetrates into the earth. Earth acts as a good conductor, thus electric currents (known as telluric currents) are induced in turn produce a secondary magnetic field.

Keywords

Apparent Resistivity Skin Depth Magnetic Field Component Static Shift Electric Field Component 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Tikhnov AN (1950) The determination of the electrical properties of deep layers of the earth’s crust. Dokl Acad Nauk SSR 73:295–297 (in Russian)Google Scholar
  2. 2.
    Cagniard L (1953) Basic theory of the magnetotelluric method of geophysical prospecting. Geophysics 18:605–635CrossRefGoogle Scholar
  3. 3.
    Christopherson KR (1998) MT gauges earth’s electric fields. AAPG explorer, pp 22–31Google Scholar
  4. 4.
    Keller GV (1987) Resistivity characteristics of geological targets. In: Nabighian M (ed) Electromagnetic methods in applied geophysics. Society of Exploration Geophysicists, Tulsa Oklahoma, pp 13–51Google Scholar
  5. 5.
    Radhakrishnamurthy C, Likhite SD (1970) Hopkinson effect, blocking temperature and Curie point in basalts. Earth Planet Sci Lett 7:389–396CrossRefGoogle Scholar
  6. 6.
    Vozoff K (1972) The magnetotelluric method in the exploration of sedimentary basins. Geophysics 37:98–141CrossRefGoogle Scholar
  7. 7.
    Vozoff K (1991) The magnetotelluric method. In: Nabighian M (ed) Electromagnetic methods in applied geophysics II. Society of Exploration Geophysicists, Tulsa OklahomaGoogle Scholar
  8. 8.
    Telford WM, Geldart LP, Sheriff RE (1990) Applied geophysics. Cambridge University Press, Cambridge, pp 306–309CrossRefGoogle Scholar
  9. 9.
    Keller GV, Frischknecht FC (1966) Electrical methods in geophysical prospecting. Pergamon, New York, p 517Google Scholar
  10. 10.
    Wait JR (1970) Electromagnetic waves in stratified media: a classic reissue. IEEE Press, 1996Google Scholar
  11. 11.
    Weaver JT (1994) Mathematical methods for Geo-electromagnetic induction. Research studies press Ltd., TauntonGoogle Scholar
  12. 12.
    Egbert G (1990) Comments on “concerning dispersion relations for the magnetotelluric impedance tensor”. In: Yee E, Paulson K (eds) Geophys J Int 102:1–8Google Scholar
  13. 13.
    Everett JE, Hyndman RD (1967) Magnetotelluric investigations in southwestern Australia. Phys Earth Planet Inter 1:49–54CrossRefGoogle Scholar
  14. 14.
    Swift CM Jr, (1967) A magnetotelluric investigation of an electrical conductivity anomaly in the southern United states. Ph.D. thesis, Department of Geology and Geophysics, M.I.T, MAGoogle Scholar
  15. 15.
    Jones FW, Vozoff K (1978) The calculation of magnetotelluric quantities for three-dimensional inhomogenities. Geophysics 43:1167–1175CrossRefGoogle Scholar
  16. 16.
    Everett JE, Hyndman RD (1967) Geomagnetic variations and electrical conductivity structure in southwestern Australia. Phys Earth Planet Inter 1:24–34CrossRefGoogle Scholar
  17. 17.
    Madden TR, Swift CM Jr (1969) Magnetotelluric studies of the electrical conductivity structure of the crust and upper mantle: in the earth’s crust and upper mantle. In: PJ Hart (ed) Am Geophys Un Monogr 469–479Google Scholar
  18. 18.
    Jupp DLB, Vozoff K (1976) Stable iterative methods for the inversion of geophysical data. Geophy J Ro Astr Soc 42:957–976CrossRefGoogle Scholar
  19. 19.
    Simpson F, Bahr K (2005) Practical magnetotellurics. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  20. 20.
    Parkinson W (1959) Directions of rapid geomagnetic variations. Geophys J R Astr Soc 2:1–14CrossRefGoogle Scholar
  21. 21.
    Wiese H (1962) Geomagnetische tiefensondierung. Teil II: Die streichrichtung der Untergrundstrukturen des elektrischen Widerstandes, erschlossen aus geomagnetischen variationen. Geofis Pura et Appl 52:83–103CrossRefGoogle Scholar
  22. 22.
    Jones FW, Price AT (1970) The perturbations of alternating geomagnetic fields by conductivity anomalies. Geophys J R astr Soc 20:317–334CrossRefGoogle Scholar
  23. 23.
    Wannamaker PE, Hohmann GW, Ward SH (1984) Magnetotelluric responses of three-dimensional bodies in layered earths. Geophysics 49:1517–1533CrossRefGoogle Scholar
  24. 24.
    Eggers DE (1982) An eigenstate formulation of the magnetotelluric impedance tensor. Geophysics 47:1204–1214CrossRefGoogle Scholar
  25. 25.
    Spitz S (1985) The magnetotelluric impedance tensor properties with respect to rotations. Geophysics 50:1610–1617CrossRefGoogle Scholar
  26. 26.
    Latorraca GA, Madden TR, Korringa J (1986) An analysis of the magnetotelluric impedance for three-dimensional conductivity structures. Geophysics 51:1819–1829CrossRefGoogle Scholar
  27. 27.
    Yee S, Paulson KV (1987) The canonical decomposition and its relationship to other forms of magnetotelluric impedance tensor analysis. J Geophys 61:173–189Google Scholar
  28. 28.
    Bahr K (1988) Interpretation of the magnetotelluric impedance tensor: regional induction and local distortion. J Geophys 62:119–127Google Scholar
  29. 29.
    Groom RW, Baily RC (1989) Decomposition of magnetotellurics impedance tensor in the presence of local three dimensional galvanic distortions. J Geophys Res 94:1913–1925CrossRefGoogle Scholar
  30. 30.
    Yungul SH (1961) Magnetotelluric sounding three-layer interpretation curves. Geophysics 26:465–473CrossRefGoogle Scholar
  31. 31.
    Marquardt DW (1963) An algorithm for least-square estimation of non linear parameters. J SIMA 11:431–441Google Scholar
  32. 32.
    Backus GE, Gillbert JF (1968) The resolving power of gross earth data. Geophys J R Astr Soc 16:169–205CrossRefGoogle Scholar
  33. 33.
    Rodi W, Mackie RL (2001) Nonlinear conjugate gradients algorithm for 2-D magnetotelluric inversions. Geophysics 66:174–187CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.MagnetotelluricsCSIR–National Geophysical Research InstituteHyderabadIndia

Personalised recommendations