Tetrazole Ring-Containing Complexes

  • Robert Matyáš
  • Jiří Pachman


Heterocycles with high nitrogen content (triazoles and tetrazoles) have been studied by researchers of energetic materials for a very long time. The triazole derivatives were found to be useful in the area of secondary explosives and propellants, while tetrazole compounds were found to have some potential in priming. Heavy metal salts of a variety of tetrazole derivatives were examined in early studies and some even found practical applications.


Burning Rate Detonation Velocity Ammonium Perchlorate Tetrazole Ring Central Metal Atom 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Connelly, N.G., Damhus, T., Hartshorn, R.M., Hutton, A.T. (eds.): Red Book: Nomenclature of Inorganic Chemistry: IUPAC Recommendations 2005. Royal Society of Chemistry Publishing, Cambridge (2005)Google Scholar
  2. 2.
    Sinditskii, V.P., Fogelzang, A.E.: Energeticheskie materialy na osnove koordinacionnykh soedinenii. Rossiiskii khimicheskii zhurnal XLI, 74–80 (1997)Google Scholar
  3. 3.
    Ilyushin, M.A., Tselinskii, I.V.: Iniciiruyushchie vzryvshchatye veshchestva Sostoyanie i perspektivy. Rossiiskii khimicheskii zhurnal XLI, 3–13 (1997)Google Scholar
  4. 4.
    Lieberman, M.L.: Chemistry of (5-cyanotetrazolato-N 2)pentaamminecobalt(III) perchlorate and similar explosive coordination compounds. Ind. Eng. Chem. Prod. Res. Dev. 24, 436–440 (1985)CrossRefGoogle Scholar
  5. 5.
    Massis, T.M., Morenus, P.K., Huskisson, D.H., Merrill, R.M.: Stability and compatibility studies with the inorganic explosive 2-(5-cyanotetrazolato)pentaamminecobalt(III) perchlorate (CP). J. Hazard. Mater. 5, 309–323 (1982)CrossRefGoogle Scholar
  6. 6.
    Weese, R.K., Burnham, A.K., Fontes, A.T.: A study of the properties of CP: Coefficient of thermal expansion, decomposition kinetics and reaction to spark, friction and impact. Int. Annu. Conf. ICT 36, 37/1–37/12 (2005)Google Scholar
  7. 7.
    Graeber, E.J., Morosin, B.: Structures of pentaammine(5-cyanotetrazolato-N 2)cobalt(llI) perchlorate (CP), [Co(C2N5)(NH3)5](ClO4)2, and (5-amidinotetrazolato-N 1, N 5)tetraamminecobalt(III) bromide (ATCB), [Co(C2H3N6)(NH3)4]Br2. Acta Crystallogr. C39, 567–570 (1983)Google Scholar
  8. 8.
    Balahura, R.J., Purcell, W.L., Victoriano, M.E., Lieberman, M.L., Loyola, V.M., Fleming, W., Fronabarger, J.W.: Preparation, characterization, and chromium(II) reduction kinetics of tetrazole complexes of pentaamminecobalt (III). Inorg. Chem. 22, 3602–3608 (1983)CrossRefGoogle Scholar
  9. 9.
    Geng, J., Lao, Y.: Electronic structure and thermal decomposition of high energy coordination compound CP. In: Proceedings of 17th International Pyrotechnics Seminar, pp. 410–415, Beijing, China, Oct 28-31, 1991Google Scholar
  10. 10.
    Geng, J., Lao, Y.: The electronic energy-state structure of new explosive 2-(5-cyanotetrazolato) pentaamminecobalt(III) perchlorate. In: Proceedings of 16th International Pyrotechnics Seminar, pp. 304–313, Jönköping, Sweden, June 24-28, 1991Google Scholar
  11. 11.
    Massis, T.M., Morenus, P.K., Huskisson, D.H., Merrill, R.M.: In: Barton, L.R. (ed.) Compatibility of Plastics/Materials with Explosives Processing Explosives, pp. 105–119. Materials Process Division, American Defense Preparedness Association, Washington, DC (1980)Google Scholar
  12. 12.
    Lieberman, M.L.: Bonfire-safe low-voltage detonator. US Patent 4,907,509, 1990Google Scholar
  13. 13.
    Lieberman, M.L., Fronabarger, J.W.: Status of the development of 2-(5-cyano-2 H-tetrazolato) penta ammine cobalt (III) perchlorate for DDT devices. In: Proceedings of 7th International Pyrotechnic Seminar, pp. 322–355, Vail, Colorado, 1980Google Scholar
  14. 14.
    Arp, H.P.H., Decken, A., Passmore, J., Wood, D.J.: Preparation, characterization, X-ray crystal structure, and energetics of cesium 5-cyano-1,2,3,4-tetrazolate: Cs[NCCNNNN]. Inorg. Chem. 39, 1840–1848 (2000)CrossRefGoogle Scholar
  15. 15.
    Oliveri-Mandala, E., Passalacqua, T.: Azione dell’acido azotidrico sul cianogeno. Formazione del ciano-tetrazolo. Gazzetta Chimica Italiana 41, II, 430–435 (1911)Google Scholar
  16. 16.
    Lifschitz, J.: Synthese der Pentazol-Verbindungen I. Berichte der deutschen chemischen Gesellschaft 48, 410–420 (1915)CrossRefGoogle Scholar
  17. 17.
    Benson, F.R.: The chemistry of the tetrazoles. Chem. Rev. 41, 1–61 (1947)CrossRefGoogle Scholar
  18. 18.
    Matsuda, K., Morin, L.T.: Preparation and reactions of 1-cyanoformimidic acid hydrazide. J. Org. Chem. 26, 3783–3787 (1961)CrossRefGoogle Scholar
  19. 19.
    Morin, L.T., Matsuda, K.: Preparation of 5-cyanotetrazoles. US Patent 3,021,337, 1962Google Scholar
  20. 20.
    Lieberman, M.L., Villa, F.J., Marchi, D.L., Lause, A.L., Yates, D., Fronabarger, J.W.: Review of low voltage detonators. In: Proceedings of 11th Symposium on Explosives and Pyrotechnics, Philadelphia, 1981Google Scholar
  21. 21.
    Luebcke, P.E., Dickson, P.M., Field, J.E.: An experimental study of the deflagration-to-detonation transition in granular secondary explosives. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 448, 439–448 (1995)CrossRefGoogle Scholar
  22. 22.
    Lieberman, M.L.: Spark-safe low-voltage detonator. US Patent 4,858,529, 1989Google Scholar
  23. 23.
    Munger, A.C., Tibbitts, E.E., Neyer, B.T., Thomes, J.A., Knick, D.R., Demana, T.A.: Development of a full qualified detonator for the Titan IV launch vehicle. In: Proceedings of 22nd International Pyrotechnics Seminar, pp. 591–615, Fort Collins, CO, 1996Google Scholar
  24. 24.
    Fleming, W., Fronabarger, J.W., Lieberman, M.L., Loyola, V.M.: Synthesis and characterization of 5-substituted tetrazolatopentaamminecobalt(III) perchlorates. In: Proceedings of 2nd Chemical Congress of the North American Continent, Las Vegas, NV, 1980Google Scholar
  25. 25.
    Johnson, R., Fronabarger, J., Fleming, W., Lieberman, M., Loyola, V.: Synthesis and characterization of 5-substituted tetrazolatopentaamminecobalt(III) perchlorates. In: Proceedings of International Chemical Congress of Pacific Basin Societies, Honolulu, HI, 1984Google Scholar
  26. 26.
    Ilyushin, M.A., Tselinskii, I.V., Sudarikov, A.M.: Razrabotka komponentov vysokoenergeticheskikh kompozicii. SPB:LGU im. A.S.Pushkina – SPBGTI(TU), Sankt Peterburg (2006)Google Scholar
  27. 27.
    Ilyushin, M.A., Sudarikov, A.M., Tselinskii, I.V.: Metallokompleksy v vysokoenergeticheskikh kompoziciyakh. SPB:LGU im. A.S.Pushkina – SPBGTI(TU), Sankt Peterburg (2010)Google Scholar
  28. 28.
    Ilyushin, M.A., Tselinskii, I.V., Chernai, A.V.: Svetochustvitelnye vzryvshchatye veshchectva i sostavy i ich iniciirovanie lazernym monoimpulsom. Rossiiskii khimicheskii zhurnal XLI, 81–88 (1997)Google Scholar
  29. 29.
    Ilyushin, M.A., Tselinskii, I.V.: Ispolzovanie lazernogo iniciirovaniya energoemkikh coedinenii v nauke i tekhnike (obzor). Zhurnal prikladnoi khimii 73, 1233–1239 (2000)Google Scholar
  30. 30.
    Ilyushin, M.A., Tselinskii, I.V., Bachurina, I.V., Novoselova, L.O., Konyushenko, E.N., Kozlov, A.S., Gruzdev, Y.A.: Application of energy saturated complex perchlorates. In: Avrorin, E.N., Simonenko, V.A. (eds.) Proceedings of Zababakin Scientific Talks—International Conference on High Energy Density Physics, vol. 849, Snezhinsk, Russia (2005)Google Scholar
  31. 31.
    Ilyushin, M.A., Bachurina, I.V., Smirnov, A.V., Tselinskii, I.V., Shugalei, I.V.: Study of the interaction of polynitro compounds with transition metal complexes with 1,5-pentamethylenetetrazole as a ligand. Cent. Eur. J. Energetic Mater. 7, 33–46 (2010)Google Scholar
  32. 32.
    Bachurina, I.V., Ilyushin, M.A., Tselinskii, I.V., Gruzdev, Y.A.: High-energy complex copper(II) perchlorate with 1,5-pentamethylenetetrasole as ligand. Russ. J. Appl. Chem. 80, 1643–1646 (2007)CrossRefGoogle Scholar
  33. 33.
    Ilyushin, M.A., Gruzdev, Y.A., Bachurina, I.V., Smirnov, A.V., Tselinskii, I.V., Andreeva, Y.N.: The compatibility of high explosives with energetic coordination complexes of cobalt(II). In: Otis, J., Krupka, M. (eds.) Proceedings of New Trends in Research of Energetic Materials, vol. 2, pp. 640–644. Univerzita Pardubice, Pardubice (2007)Google Scholar
  34. 34.
    Zhilin, A.Y., Ilyushin, M.A., Tselinskii, I.V., Nikitina, Y.A., Kozlov, A.S., Shugalei, I.V.: Complex energetic perchlorates of cobalt(III) amminates, with cyclopentamethylenetetrazole as ligand. Russ. J. Appl. Chem. 78, 188–192 (2005)CrossRefGoogle Scholar
  35. 35.
    Kuska, H.A., Ditri, F.M., Popov, A.I.: Electron spin resonance of pentamethylenetetrazole manganese(II) and copper(II) complexes. Inorg. Chem. 5, 1272–1277 (1966)CrossRefGoogle Scholar
  36. 36.
    Bates, L.R.: The potential of tetrazoles in initiating explosives systems. In: Proceedings of 13th Symposium on Explosives and Pyrotechnics, pp. III1–III10, Hyatt, Palmetto Dunes, Hilton Head Island. South Carolina. December 2-4, 1986Google Scholar
  37. 37.
    Morosin, B., Dunn, G.R., Assink, R., Massis, T.M., Fronabarger, J., Duesler, E.N.: The secondary explosive tetraamine-cis-bis(5 H-nitro-2 H-tetrazolato-N 2)cobalt(III) perchlorate at 293 and 213 K. Acta Crystallogr. C53, 1609–1611 (1997)Google Scholar
  38. 38.
    Fronabarger, J., Schuman, A., Chapman, R.D., Fleming, W., Sanborn, W.B., Massis, T.: Chemistry and development of BNCP, a novel DDT explosive. In: Proceedings of 31st AIAA 95-2858; Joint propulsion conference and exhibit, San Diego, CA, 1995Google Scholar
  39. 39.
    Ilyushin, M.A., Tselinskii, I.V., Zhilin, A.Y., Ugryumov, I.A., Smirnov, A.V., Kozlov, A.S.: Coordination complexes as inorganic explosives for initiation systems. Hanneng Cailiao (Energetic Materials) 12, 15–19 (2004)Google Scholar
  40. 40.
    Talawar, M.B., Agrawal, A.P., Asthana, S.N.: Energetic co-ordination compounds: Synthesis, characterization and thermolysis studies on bis-(5-nitro-2H-tetrazolato-N 2)tetraammine cobalt(III) perchlorate (BNCP) and its new transition metal (Ni/Cu/Zn) perchlorate analogues. J. Hazard. Mater. 120, 25–35 (2005)CrossRefGoogle Scholar
  41. 41.
    Zeman, S.: Technologie základních výbušin. Univerzita Pardubice, Pardubice (2005)Google Scholar
  42. 42.
    Fronabarger, J.W., Sanborn, W.B., Massis, T.: Recent activities in the development of the explosive-BNCP. In: Proceedings of 22nd International Pyrotechnics Seminar, pp. 645–652, Fort Collins, Colorado USA, July 15-19, 1996Google Scholar
  43. 43.
    Merson, J.A., Salas, F.J., Harlan, J.G.: The development of laser ignited deflagration-to-detonation transition (DDT) detonators and pyrotechnic actuators. In: Proceedings of 19th International Pyrotechnics Seminar, pp. 191–206, Christchurch, NEW ZEALAND, Feb 21-25, 1994Google Scholar
  44. 44.
    Zhilin, A.Y., Ilyushin, M.A., Tselinskii, I.V., Kozlov, A.S., Lisker, I.S.: High energy capacity cobalt (II) tetrazolates. Zhurnal prikladnoi khimii 76, 592–596 (2003)Google Scholar
  45. 45.
    Fyfe, D.W., Fronabarger, J., Brickes, R.W.: BNCP prototype detonator studies using a semiconductor bridge initiator. In: Tulis, A.J. (ed.) International Pyrotechnics Seminar, vol. 20, pp. 341–343. IIT Research Institute, Colorado Springs, CO (1994)Google Scholar
  46. 46.
    Schlessinger, G.: Inorganic Synthesis. McGraw-Hill, New York (1960)Google Scholar
  47. 47.
    Fronabarger, J., Schuman, A., Chapman, R.D., Fleming, W., Sanborn, W.B., Massis, T.: Chemistry and development of BNCP, a novel DDT explosive. In: Proceedings of International Symposium on Energetic Materials Technology, ADPA Meeting #450, pp. 254–258, Orlando, FL, 1994Google Scholar
  48. 48.
    Hirlinger, J.M., Bichay, M.: New Primary Explosives Development for Medium Caliber Stab Detonators. Report SERDP PP-1364. US Army ARDEC, Washington, DC (2004)Google Scholar
  49. 49.
    Hirlinger, J.M.: Ivestigating Alternative ‘GREEN’ Primary Explosives In: Proceedings of NDIA 39th Annual Gun & Ammunition Missiles & Rockets Conference & Exhibition; Presentation, Baltimore, USA, 2004Google Scholar
  50. 50.
    Hirlinger, J., Fronabarger, J., Williams, M., Armstrong, K., Cramer, R.J.: Lead azide replacement program. In: Proceedings of 49th Annual Fuze Conference. National Defense Industrial Association (NDIA), Seattle, WA (2005)Google Scholar
  51. 51.
    Hirlinger, J.: Investigating alternative “green” primary explosives. In: Proceedings of 39th Annual Gun & Ammunition Conference, Baltimore, MD, 2004Google Scholar
  52. 52.
    Fogelzang, A.E., Sinditskii, V.P., Egorshev, V.Y., Serushkin, V.V.: Effect of structure of energetic materials on burning rate. In: Brill, T.B., Russel, T.P., Tao, W.C., Wardle, R.B. (eds.) Proceedings of Material Research Society Symposia, vol. 418, pp. 151–161. Materials Research Society, Boston, MA (1995)Google Scholar
  53. 53.
    Huynh, M.H.V., Coburn, M.D., Meyer, T.J., Wetzer, M.: Green primaries: Environmentally friendly energetic complexes. Proc. Natl. Acad. Sci. 103, 5409–5412 (2006)CrossRefGoogle Scholar
  54. 54.
    Huynh, M.H.V.: Lead-free primary explosives. Patent WO2008054538, 2008Google Scholar
  55. 55.
    Huynh, M.H.V., Coburn, M.D., Meyer, T.J., Wetzer, M.: Green primary explosives: 5-nitrotetrazolato-N 2-ferrate hierarchies. Proc. Natl. Acad. Sci. 103, 10322–10327 (2006)CrossRefGoogle Scholar
  56. 56.
    Huynh, M.H.V.: Explosive complexes. US Patent 20080200688A1, 2008Google Scholar
  57. 57.
    Friedrich, M., Gavez-Ruiz, J.C., Klapötke, T.M., Mayer, P.: BTA copper complexes. Inorg. Chem. 44, 8044–8052 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Robert Matyáš
    • 1
  • Jiří Pachman
    • 1
  1. 1.Faculty of Chemical TechnologyUniversity of PardubicePardubiceCzech Republic

Personalised recommendations