Advertisement

Tetrazoles

  • Robert Matyáš
  • Jiří Pachman
Chapter

Abstract

Tetrazoles are chemical compounds characterized by a doubly unsaturated five-membered ring containing four nitrogen atoms and one carbon atom. The tetrazole ring usually exists in two tautomeric forms, 1H and 2H:

Keywords

Sodium Salt Silver Salt Impact Sensitivity Lead Salt Tetrazole Ring 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Fedoroff, B.T., Sheffield, O.E., Kaye, S.M.: Encyclopedia of Explosives and Related Items. Picatinny Arsenal, New Jersey (1960–1983)Google Scholar
  2. 2.
    Bagal, L.I.: Khimiya i tekhnologiya iniciiruyushchikh vzryvchatykh veshchestv. Mashinostrojenije, Moskva (1975)Google Scholar
  3. 3.
    Matushin, Y.N., Lebedev, V.P.: Thermochemical properties of mononitroderivates of azoles and oxadiazoles. In: Proceedings of 28th International Annual Conference of ICT, pp. 98/1–98/10, Karlsruhe, 1997Google Scholar
  4. 4.
    Bates, L.R., Jenkins, J.M.: Search for new detonators. In: Proceedings of International Conference on Research in Primary Explosives, pp. 14/1–14/18, Waltham Abbey, England, 1975Google Scholar
  5. 5.
    Chen, Z.X., Xiao, H., Yang, S.: Theoretical investigation on the impact sensitivity of tetrazole derivates and their metal salts. Chem. Phys. 250, 243–248 (1999)CrossRefGoogle Scholar
  6. 6.
    Haskins, P.J.: Electronic structure of some explosives and its relationship to sensitivity In: Jenkins, J.M., White, J.R. (eds.) International Conference on Research of Primary Explosives, vol. 1, pp. 6/1–6/28, Waltham Abbey (1975)Google Scholar
  7. 7.
    Avanesov, D.C.: Praktikum po fiziko-khimicheskim icpytaniyam vzryvchatykh veshchectv. Gosudarstbennoe izdatelstvo oboronnoi promyshlennosti, Moskva (1959)Google Scholar
  8. 8.
    Ilyushin, M.A., Tselinskii, I.V., Sudarikov, A.M.: Razrabotka komponentov vysokoenergicheskikh kompozitsii. SPB:LGU im. A. S. Pushkina – SPBGTI(TU), Sankt-Peterburg (2006)Google Scholar
  9. 9.
    Hoffman, K.A., Roth, R.: Aliphatische Diazosalze. Berichte der deutschen chemischen Gesellschaft 43, 682–688 (1910)CrossRefGoogle Scholar
  10. 10.
    Patinkin, S.H., Horwitz, J.P., Lieber, E.: The structure of tetracene. J. Am. Chem. Soc. 77, 562–567 (1955)CrossRefGoogle Scholar
  11. 11.
    Duke, J.R.C.: X-ray crystal and molecular structure of “tetrazene”, (“tetracene”), C2H8N10O. Chem. Commun. 1, 2–3 (1971)Google Scholar
  12. 12.
    Davis, T.L.: The Chemistry of Powder and Explosives. Wiley, New York (1943)Google Scholar
  13. 13.
    Krauz, C.: Technologie výbušin. Vědecko-technické nakladatelství, Praha (1950)Google Scholar
  14. 14.
    Špičák, S., Šimeček, J.: Chemie a technologie třaskavin. Vojenská technická akademie Antonína Zápotockého, Brno (1957)Google Scholar
  15. 15.
    Rinkenbach, W.H., Burton, O.E.: Explosive characteristics of tetracene. Army Ordonance 12, 120–123 (1931)Google Scholar
  16. 16.
    Meyer, R., Köhler, J., Homburg, A.: Explosives. Wiley-VCH, Weinheim (2002)CrossRefGoogle Scholar
  17. 17.
    Danilov, J.N., Ilyushin, M.A., Tselinskii, I.V.: Promyshlennye vzryvchatye veshchestva; chast I. Iniciiruyushchie vzryvshchatye veshchestva. Sankt-Peterburgskii gosudarstvennyi tekhnologicheskii institut, Sankt-Peterburg (2001)Google Scholar
  18. 18.
    Urbański, T.: Chemistry and Technology of Explosives. Pergamon, Oxford (1984)Google Scholar
  19. 19.
    Wallbaum, R.: Sprengtechnische Eigenschaften und Lagerbeständigkei der wichtigsten Initialsprengstoffe. Zeitschrift für das gesamte Schiess- und Sprengstoffwesen 34, 161–163 (1939)Google Scholar
  20. 20.
    Tomlinson, W.R., Sheffield, O.E.: Engineering Design Handbook, Explosive Series of Properties Explosives of Military Interest. Report AMCP 706-177, 1971Google Scholar
  21. 21.
    Matyáš, R., Šelešovský, J., Musil, T.: Sensitivity to friction for primary explosives. J. Hazard. Mater. 213–214, 236–241 (2012)CrossRefGoogle Scholar
  22. 22.
    Urbański, T.: Chemistry and Technology of Explosives. PWN—Polish Scientific Publisher, Warszawa (1967)Google Scholar
  23. 23.
    Lieber, E., Smith, G.B.L.: The chemistry of aminoguanidine and related substances. Chem. Rev. 25, 213–271 (1939)CrossRefGoogle Scholar
  24. 24.
    Hagel, R., Redecker, K.: Sintox—a new, non-toxic primer composition by Dynamit Nobel AG. Propellants Explosives Pyrotechnics 11, 184–187 (1986)CrossRefGoogle Scholar
  25. 25.
    Brede, U., Hagel, R., Redecker, K.H., Weuter, W.: Primer compositions in the course of time: From black powder and SINOXID to SINTOX compositions and SINCO booster. Propellants Explosives Pyrotechnics 21, 113–117 (1996)CrossRefGoogle Scholar
  26. 26.
    Nesveda, J., Brandejs, S., Jirásek K.: Non toxic and non-corrosive ignition mixtures. WO Patent 01/21558, 2001Google Scholar
  27. 27.
    Whelan, D.J., Spear, R.J., Read, R.W.: The thermal decomposition of some primary explosives as studied by differential scanning calorimetry. Thermochim. Acta 80, 149–163 (1984)CrossRefGoogle Scholar
  28. 28.
    Mihina, J.S., Herbst, R.M.: The reaction of nitriles with hydrazonic acid: Synthesis of monosubstituted tetrazoles. J. Org. Chem. 15, 1082–1092 (1950)CrossRefGoogle Scholar
  29. 29.
    Thiele, J.: Ueber Nitro- und Aminoguanidin. Justus Liebigs Annalen der Chemie 270, 1–63 (1892)CrossRefGoogle Scholar
  30. 30.
    Bates, L.R., Jenkins, J.M.: Salts of 5-Substituted Tetrazole: Part 2: Metallic Salts and Complexes of Tetrazole 5-Aminotetrazole, 5-Phenyltetrazole, and 5-Methyltetrazole. Report AD 727350. Explosives Research and Development Establishment, Waltham Abbey (1970).Google Scholar
  31. 31.
    Taylor, F.: Primary Explosive Research. Report NAVORD 2800, Naval Ordinance, 1953Google Scholar
  32. 32.
    Benson, F.R.: The chemistry of the tetrazoles. Chem. Rev. 41, 1–61 (1947)CrossRefGoogle Scholar
  33. 33.
    Hantzsch, A., Vagt, A.: Ueber das sogenannte Diazoguanidin. Justus Liebigs Annalen der Chemie 314, 339–369 (1901)CrossRefGoogle Scholar
  34. 34.
    Arient, J., Vobořil, I.: Způsob přípravy 5-aminotetrazolu. CS Patent 190,055, 1979Google Scholar
  35. 35.
    Stollé, R.: Zur Kenntnis des Amino-5-tetrazols. Berichte der deutschen chemischen Gesellschaft 62, 1118–1126 (1929)CrossRefGoogle Scholar
  36. 36.
    Stollé, R., Schick, E.: Verfahren zur Darstellung von Aminotetrazol. DE Patent 426,343, 1926Google Scholar
  37. 37.
    Daugherty, N.A., Brubaker, C.H.J.: Complexes of copper(II) and some 5-substituted tetrazoles. J. Am. Chem. Soc. 83, 3779–3782 (1961)CrossRefGoogle Scholar
  38. 38.
    Rittenhouse, C.T.: Di-silver aminotetrazole perchlorate. US Patent 3,663,553, 1972Google Scholar
  39. 39.
    Karaghiosoff, K., Klapötke, T.M., Sabaté, C.M.: Energetic silver salt with 5-aminotetrazole ligands. Chemistry 15, 1164–1176 (2009)CrossRefGoogle Scholar
  40. 40.
    Bates, L.R., Jenkins, J.M.: Production of 5-nitrotetrazole salts. US Patent 4,094,879, 1978Google Scholar
  41. 41.
    Bates, L.R., Jenkins, J.M.: Improvements in or relating to production of 5-nitrotetrazole salts. GB Patent 1,519,796, 1978Google Scholar
  42. 42.
    Bates, L.R.: The potential of tetrazoles in initiating explosives systems. In: Proceedings of 13th Symposium on Explosives and Pyrotechnics, pp. III1–III10, 1986Google Scholar
  43. 43.
    Koldobskii, G.I., Soldatenko, D.S., Gerasimova, E.S., Khokhryakova, N.R., Shcherbinin, M.B., Lebedev, V.P., Ostrovskii, V.A.: Tetrazoles: XXXVI. Synthesis, structure, and properties of 5-nitrotetrazole. Russ. J. Org. Chem. 33, 1771–1783 (1997)Google Scholar
  44. 44.
    Khmelnitskii, L.I.: Spravochnik po vzryvchatym veshchestvam. Voennaya ordena Lenina i ordena Suvorova Artilleriiskaya inzhenernaya akademiya imeni F. E, Dzerzhinskogo, Moskva (1962)Google Scholar
  45. 45.
    Herz, E.: C-nitrotetrazole compounds. US Patent 2,066,954, 1937Google Scholar
  46. 46.
    Gilligan, W.H., Kamlet, M.J.: Synthesis of Mercuric 5-nitrotetrazole. Report NSWC/WOL TR 76-146. Navel Surface Weapons Center, Silver Spring, MD (1976)Google Scholar
  47. 47.
    Hirlinger, J., Fronabarger, J., Williams, M., Armstrong, K., Cramer, R.J.: Lead azide replacement program. In: Proceedings of NDIA, Fuze Conference, Seattle, Washington, April 5-7, 2005Google Scholar
  48. 48.
    Fronabarger, J., Sanborn, W.B., Bichay, M.: An investigation of some alternatives to lead based primary explosive. In: Proceedings of 37th AIAA 2001-3633; Joint Propulsion Conference and Exhibit, pp. 1–9, Salt Lake City, Utah, 2001Google Scholar
  49. 49.
    Fronabarger, J.W., Williams, M.D., Sanborn, W.B.: Lead-free primary explosive composition and method of preparation. US Patent 2009/0069566 A1, 2009Google Scholar
  50. 50.
    Fronabarger, J.W., Williams, M.D., Sanborn, W.B.: Lead-free primary explosive composition and method of preparation. WO Patent 2008/048351 A2, 2008Google Scholar
  51. 51.
    Klapötke, M., Sabaté, C.M., Welch, J.M.: Alkali metal 5-nitrotetrazolate salts: prospective replacements for service lead(II) azide in explosive initiators. Dalton Trans. 6372–6380 (2008)Google Scholar
  52. 52.
    Millar, R.W.: Lead-free Initiator Materials for Small Electro-explosive Devices for Medium Caliber Munitions. Report QinetiQ/FST/CR032702/1.1, QINETIQ Ltd, Farnborough, 2003Google Scholar
  53. 53.
    Harris, A.D., Herber, R.H., Jonassen, H.B., Wertheim, G.K.: Complexes of iron(II) and some 5-substituted tetrazoles. J. Am. Chem. Soc. 85, 2927–2930 (1963)CrossRefGoogle Scholar
  54. 54.
    Brown, M.E., Swallowe, G.M.: The thermal decomposition of the silver(I) and mercury(II) salts of 5-nitrotetrazole and of mercury(II) fulminate. Thermochim. Acta 49, 333–349 (1981)CrossRefGoogle Scholar
  55. 55.
    Blay, N.J., Rapley, R.J.: The testing of primary explosives for stability and compatibility In: Jenkins, J.M., White, J.R. (eds.) Proceedings of the International Conference on Research in Primary Explosives, vol. 3, pp. 20/1–20/19, Waltham Abbey (1975)Google Scholar
  56. 56.
    Redman, L.D., Spear, R.J.: Mercuric 5-Nitrotetrazole, a Possible Replacement for Lead Azide in Australian Ordnance. Part 1. An Assessment of Preparation Methods. Report MRL-R-901, Department of Defense, Material Research Laboratories, Ascot Vale, 1983Google Scholar
  57. 57.
    Klapötke, M., Sabaté, C.M.: Less sensitive transition metal salts of the 5-nitrotetrazolate anion. Cent. Eur. J. Energetic Mater. 7, 161–173 (2010)CrossRefGoogle Scholar
  58. 58.
    Lee, K., Coburn, M.D.: Binary eutectics formed between ammonium nitrate and amine salts of 5-nitrotetrazole I. Preparation and initial characterization. J. Energetic Mater. 1, 109–122 (1983)CrossRefGoogle Scholar
  59. 59.
    Scott, C.L.: Mercuric 5-nitrotetrazole as a lead azide replacement. In: Proceedings of the International Conference on Research in Primary Explosives, vol. 2, pp 15/1-15/23 Waltham Abbey, (1975)Google Scholar
  60. 60.
    Hirlinger, J.M.: Investigating alternative “green” primary explosives. In: Proceedings of NDIA 39th Annual Gun & Ammunition Missiles & Rockets Conference & Exhibition, Baltimore, MD, 2004Google Scholar
  61. 61.
    Gilligan, W.H., Kamlet, M.J.: Method of preparing the acid copper salt of 5-nitrotetrazole. US Patent 4,093,623, 1978Google Scholar
  62. 62.
    Hirlinger, J.M., Bichay, M.: New Primary Explosives Development for Medium Caliber Stab Detonators. Report SERDP PP-1364, US Army ARDEC, 2004Google Scholar
  63. 63.
    Talawar, M.B., Agrawal, A.P., Asthana, S.N.: Energetic co-ordination compounds: Synthesis, characterization and thermolysis studies on bis-(5-nitro-2H-tetrazolato-N 2)tetraammine cobalt(III) perchlorate (BNCP) and its new transition metal (Ni/Cu/Zn) perchlorate analogues. J. Hazard. Mater. 120, 25–35 (2005)CrossRefGoogle Scholar
  64. 64.
    Spear, R.J., Elischer, P.P.: Studies of stab initiation. Sensitization of lead azide by energetic sensitizers. Aust. J. Chem. 35, 1–13 (1982)CrossRefGoogle Scholar
  65. 65.
    Lee, K., Coburn, M.D.: Ethylenediamine salt of 5-nitrotetrazole and preparation. US Patent 4,552,598, 1985Google Scholar
  66. 66.
    McGuchan, R.: Improvements in primary explosive compositions and their manufacture. In: Proceedings of 10th Symposium on Explosives and Pyrotechnics, San Francisco, 1979Google Scholar
  67. 67.
    Glover, D.J.: Analysis of Mercuric 5-nitrotetrazole. Report NSWC/WOL/TR 77-71. Naval Surface Weapon Center, Silver Spring, MD (1977)Google Scholar
  68. 68.
    Fronabarger, J.W., Williams, M.D.: Preparation of lead-free primary explosive. US Patent 2010/0280254 A1, 2010Google Scholar
  69. 69.
    Scott, C., Leopold, H.S.: Single chemical electric detonator. US Patent 3,965,951, 1976Google Scholar
  70. 70.
    Tompa, A.S.: Thermal stability of an explosive detonator. Thermochim. Acta 80, 367–377 (1984)CrossRefGoogle Scholar
  71. 71.
    Scott, C.L., Leopold, H.S.: Stab-initiated explosive device containing a single explosive charge. US Patent 4,024,818, 1977Google Scholar
  72. 72.
    Duguet, J.: Priming composition which is sensitive to percussion and a method for preparing it. US Patent 4,566,921, 1986Google Scholar
  73. 73.
    Hagel, R., Bley, U.: Anzündmittel. DE Patent 10,221,044, 2002Google Scholar
  74. 74.
    Piechowicz, T.: Les explosifs d`amorcage nouveaux et leurs applications spatiales. In: Proceedings of Utilisation des éléments pyrotechniques et explosifs dans les systèmes spatiaux; Colloque International, pp. 99–104, Tarbes, 1968Google Scholar
  75. 75.
    Henry, R.A., Finnegan, W.G.: An improved procedure for the deamination of 5-aminotetrazole. J. Am. Chem. Soc. 76, 290–291 (1954)CrossRefGoogle Scholar
  76. 76.
    Taylor, G.W.C., Jenkins, J.M.: Progress toward primary explosives on improved stability. In: Proceedings of 3rd Symposium on Chemical Problems Connected with the Stability of Explosives, pp. 43–46, Ystad, 1973Google Scholar
  77. 77.
    Stierstorfer, J., Klapötke, T.M., Hammerl, A., Chapman, R.D.: 5-Azido-1H-tetrazole—Improved synthesis, crystal structure and sensitivity data. Zeitschrift für anorganische und allgemeine Chemie 634, 1051–1057 (2008)CrossRefGoogle Scholar
  78. 78.
    Lieber, E., Levering, D.R.: The reaction of nitrous acid with diaminoguanidine in acetic acid media. Isolation and structure proof of reaction products. J. Am. Chem. Soc. 73, 1313–1317 (1951)CrossRefGoogle Scholar
  79. 79.
    Friedrich, W.: Spreng- und Zündstoffe. DE Patent 695,254, 1940Google Scholar
  80. 80.
    Rathsburg, H.: Explosive compound for primers and detonators. US Patent 1,511,771, 1924Google Scholar
  81. 81.
    Friedrich, W., Flick, K.: Verfahren zur Herstellung von Tetrazylazid bzw. seinen Salzen. DE Patent 719,135, 1942Google Scholar
  82. 82.
    Marsh, F.D.: Cyanogen azide. J. Org. Chem. 37, 2966–2969 (1972)CrossRefGoogle Scholar
  83. 83.
    Klapötke, T.M., Stierstorfer, J.: The CN7- anion. J. Am. Chem. Soc. 131, 1122–1134 (2009)CrossRefGoogle Scholar
  84. 84.
    Hammerl, A., Klapötke, T.M., Noth, H., Warchhold, M.: Synthesis, structure, molecular orbital and valence bond calculations for tetrazole azide, CHN7. Propellants Explosives Pyrotechnics 28, 165–173 (2003)CrossRefGoogle Scholar
  85. 85.
    Rathsburg, H.: Initial primers and a process for their manufacture. GB Patent 185,555, 1921Google Scholar
  86. 86.
    Thiele, J., Ingle, H.: Ueber einige Derivate des Tetrazols. Justus Liebigs Annalen der Chemie 287, 233–265 (1895)CrossRefGoogle Scholar
  87. 87.
    Thiele, J.: Ueber Isocyantetrabromid. Berichte der deutschen chemischen Gesellschaft 26, 2645–2647 (1893)CrossRefGoogle Scholar
  88. 88.
    Thiele, J., Marais, J.T.: Tetrazolderivate aus Diazotetrazotsäure. Justus Liebigs Annalen der Chemie 273, 144–160 (1893)CrossRefGoogle Scholar
  89. 89.
    Hammerl, A., Holl, G., Klapötke, T.M., Mayer, P., Noth, H., Piotrowski, H., Warchhold, M.: Salts of 5,5′-azotetrazolate. Eur. J. Inorg. Chem. 834–845 (2002)Google Scholar
  90. 90.
    Reddy, G.O., Chatterjee, A.K.: A thermal study of the salts of azotetrazole. Thermochim. Acta 66, 231–244 (1983)CrossRefGoogle Scholar
  91. 91.
    Thiele, J.: Ueber Azo- und Hydrazoverbindungen des Tetrazols. Justus Liebigs Annalen der Chemie 303, 57–75 (1898)CrossRefGoogle Scholar
  92. 92.
    Singh, R.P., Verma, R.D., Meshri, D.T., Shreeve, J.N.M.: Energetic nitrogen-rich salts and ionic liquids. Angew. Chem. 45, 3584–3601 (2006)CrossRefGoogle Scholar
  93. 93.
    Pierce-Butler, M.A.: Structure of bis[hydroxolead(III)] 5,5′-azotetrazolediide. Acta Crystallogr. B 38, 2681–2683 (1982)CrossRefGoogle Scholar
  94. 94.
    Mayants, A.G., Vladimirov, V.N., Razumov, N.M., Shlyanochnikov, V.A.: Razlozhenie solei azotetrazola v kislykh sredakh. Zhurnal organicheskoi khimii 27, 2450–2455 (1991)Google Scholar
  95. 95.
    Hiskey, M.A., Goldman, N., Stine, J.R.: High-nitrogen energetic materials derived from azotetrazolate. J. Energetic Mater. 16, 119–127 (1998)CrossRefGoogle Scholar
  96. 96.
    Taylor, G.W.C., Thomas, A.T.: Improvements in the manufacture of lead azotetrazole. GB Patent 986,631, 1965Google Scholar
  97. 97.
    Rathsburg, H.: Manufacture of detonating compositions. US Patent 1,580,572, 1926Google Scholar
  98. 98.
    Stollé, R., Roser, O.: Abkömmlinge des Amino-5-tetrazols. Journal für praktische Chemie 139, 63–64 (1934)CrossRefGoogle Scholar
  99. 99.
    Friederich, W.: Disruptive or brisant explosive composition. US Patent 2,170,943, 1939Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Robert Matyáš
    • 1
  • Jiří Pachman
    • 1
  1. 1.Faculty of Chemical TechnologyUniversity of PardubicePardubiceCzech Republic

Personalised recommendations