Azides

  • Robert Matyáš
  • Jiří Pachman
Chapter

Abstract

Azides are substances containing the \( {\hbox{N}}_{{3}}^{ - } \) group. They exist as inorganic salts, organic compounds, organo-metals, or complexes. For the purpose of this book, we have decided to include the inorganic and organic compounds. Some organic substances that contain the azido group are included in other chapters (e.g., tetrazoles, other substances). We have also decided to separate out complex compounds containing the azido group and place them into a separate chapter with other complexes.

Keywords

Sodium Azide Detonation Velocity Lead Nitrate Azido Group Lead Azide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Curtius, T.: Ueber Stickstoffwasserstoffäure. Berichte der deutschen chemischen Gesellschaft 23, 3023–3033 (1890)CrossRefGoogle Scholar
  2. 2.
    Curtius, T., Radenhauser, R.: Zur Kenntniss der Stickstoffwasserstoffsäure. Journal für praktische Chemie 43, 207–208 (1891)CrossRefGoogle Scholar
  3. 3.
    Danilov, J.N., Ilyusin, M.A., Tselinskii I.V.: Promyshlennye vzryvchatye veshchestva; chast I. Iniciiruyushchie vzryvshchatye veshchestva. Sankt-Peterburgskii gosudarstvennyi tekhnologicheskii institut, Sankt-Peterburg (2001)Google Scholar
  4. 4.
    Bubnov, P.F.: Initsiruyushchie vzryvchatye veshchestva i sredstva initsirovaniya. Gosudarstvennoe izdatelstvo oboronnoi promyshlennosti, Moskva (1940)Google Scholar
  5. 5.
    Fedoroff, B.T., Sheffield, O.E., Kaye, S.M.: Encyclopedia of Explosives and Related Items. Picatinny Arsenal, New Jersey (1960–1983)Google Scholar
  6. 6.
    Krauz, C.: Technologie výbušin. Vědecko-technické nakladatelství, Praha (1950)Google Scholar
  7. 7.
    Evans, B.L., Yoffe, A.D., Gray, P.: Physics and chemistry of the inorganic azides. Chem. Rev. 59, 515–568 (1959)CrossRefGoogle Scholar
  8. 8.
    Urbański, T.: Chemistry and Technology of Explosives. Pergamon, Oxford (1984)Google Scholar
  9. 9.
    Hyronimus, F.: Improvements in and relating to the charge of ammunition primers. GB Patent 1,819, 1908Google Scholar
  10. 10.
    Rintoul, W.: Explosives. Rep. Prog. Appl. Chem. 5, 523–565 (1920)Google Scholar
  11. 11.
    Audrieth, L.F.: Hydrazoic acid and its inorganic derivates. Chem. Rev. 15, 169–224 (1934)CrossRefGoogle Scholar
  12. 12.
    Miles, F.D.: The formation and characteristic of crystals of lead azide and of some other initiating explosives. J. Chem. Soc. 2532–2542 (1931)Google Scholar
  13. 13.
    Hattori, K., McCrone, W.: Lead azide, Pb(N3)2. Anal. Chem. 28, 1791–1792 (1956)CrossRefGoogle Scholar
  14. 14.
    Stettbacher, A.: Die Ermittlung des absoluten spezifischen Gewichts von Zündund Sprengstoffen. Chemisches Zentralblatt 113, 366–367 (1942)Google Scholar
  15. 15.
    Fair, H.D., Walker, R.F.E.: Energetic Materials. Physics and Chemistry of Inorganic Azides. Plenum, New York (1977)Google Scholar
  16. 16.
    Miles, F.D.: The formation and constitution of crystals of lead salts containing water-soluble colloid. Philos. Trans. R. Soc. Lond. A Math. Phys. Sci. 235, 125–164 (1935)Google Scholar
  17. 17.
    Davis, T.L.: The Chemistry of Powder and Explosives. Wiley, New York (1943)Google Scholar
  18. 18.
    Taylor, A.C., Thomas, A.T.: Spontaneous explosions during crystal growth of lead azide. J. Cryst. Growth 3, 391–394 (1968)CrossRefGoogle Scholar
  19. 19.
    Taylor, G.W.C.: The preparation of gamma lead azide. In: Proceedings of Symposium on Lead and Copper Azide, pp. A-3, 20-23, Waltham Abbey, 1966Google Scholar
  20. 20.
    Lamnevik, S., Soderquist, R.: On lead azides. 1 Refinement of the unit cell dimensions of alpha- and beta- lead azide. On a transformation of beta- to alpha- lead azide in the solid state. Report A 1105-F 110. FOA (1963)Google Scholar
  21. 21.
    Špičák, S., Šimeček, J.: Chemie a technologie třaskavin. Vojenská technická akademie Antonína Zápotockého, Brno (1957)Google Scholar
  22. 22.
    Jung, P.C.: Initiation and Detonation in Lead Azide and Silver Azide at Sub-millimeter Geometrics. Texas Technical University, Lubbock (2006)Google Scholar
  23. 23.
    Roth, J.: Initiation of lead azide by high-intensity light. J. Chem. Phys. 41, 1929–1936 (1964)CrossRefGoogle Scholar
  24. 24.
    Wöhler, L., Krupko, W.: Über die Lichtempfindlichkeit der Azide des Silbers, Quecksilberoxyduls, Bleis und Kupferoxyduls, sowie über basisches Blei- und Cupriazid. Berichte der deutschen chemischen Gesellschaft 46, 2045–2057 (1913)CrossRefGoogle Scholar
  25. 25.
    Todd, G., Eather, R., Heron, T.: The decomposition of lead azide under storage conditions. In: Proceedings of Symposium on Lead and Copper Azide, pp. B-2, 34–44, Waltham Abbey, 1966Google Scholar
  26. 26.
    McLaren, A.C.: The influence of preheating on the detonation velocity of lead azide. Research 10, 409–410 (1957)Google Scholar
  27. 27.
    Gray, P., Waddington, T.C.: Thermochemistry and reactivity of azides. I. Thermochemistry of the inorganic azides. Proc. R. Soc. Lond. A Math. Phys. Sci. A235, 106–119 (1956)Google Scholar
  28. 28.
    Yoffe, A.D.: Thermal decomposition and explosion of azides. Proc. R. Soc. Lond. A Math. Phys. Sci. A208, 188–199 (1951)Google Scholar
  29. 29.
    Graybush, R.J., May, F.G., Forsyth, A.C.: Differential thermal analysis of primary explosives. Thermochim. Acta 2, 153–162 (1971)CrossRefGoogle Scholar
  30. 30.
    Urbański, T.: Chemistry and Technology of Explosives. PWN—Polish Scientific Publisher, Warszawa (1967)Google Scholar
  31. 31.
    Lamnevik, S.: Lead azide, the ideal detonant? In: Jenkins, J.M., White, J.R. (eds.) Proceedings of the International Conference on Research in Primary Explosives, vol. 2, pp. 9/1–9/17, Waltham Abbey (1975)Google Scholar
  32. 32.
    Brown, M.E., Swallowe, G.M.: The thermal decomposition of the silver(I) and mercury(II) salts of 5-nitrotetrazole and of mercury(II) fulminate. Thermochim. Acta 49, 333–349 (1981)CrossRefGoogle Scholar
  33. 33.
    Khmelnitskii, L.I.: Spravochnik po vzryvchatym veshchestvam. Voennaya ordena Lenina i ordena Suvorova Artilleriiskaya inzhenernaya akademiya imeni F. E. Dzerzhinskogo, Moskva (1962)Google Scholar
  34. 34.
    Urbański, T.: Chemie a technologie výbušin. SNTL, Praha (1959)Google Scholar
  35. 35.
    Taylor, G.W.C.: Technical requirements and prospects for new primary explosives. In: Jenkins, J.M., White, J.R. (eds.) Proceedings of the International Conference on Research in Primary Explosives, vol. 3, pp. 18/1–18/21, Waltham Abbey (1975)Google Scholar
  36. 36.
    Blay, N.J., Rapley, R.J.: In: Jenkins, J.M., White, J.R. (eds.) Proceedings of the International Conference on Research in Primary Explosives, vol. 3, pp. 20/1–20/19, Waltham Abbey (1975)Google Scholar
  37. 37.
    Wyatt, R.H.: Copper azide corrosion. In: Proceedings of Symposium on Lead and Copper Azide, pp. A-2, 15–19, Waltham Abbey, 1966Google Scholar
  38. 38.
    Wythes, P.E.: Accidents in manufacture of lead azide. In: Proceedings of Symposium on Lead and Copper Azide, pp. D-2, 99–102, Waltham Abbey, 1966Google Scholar
  39. 39.
    Military Explosives, Report TM-9-1300-214, Headquarters, Department of the Army (1984)Google Scholar
  40. 40.
    Meyer, R., Köhler, J., Homburg, A.: Explosives. Wiley-VCH, Weinheim (2002)CrossRefGoogle Scholar
  41. 41.
    Šelešovský, J., Matyáš, R., Musil, T.: In: Using probit analysis for sensitivity tests - sensitivity curve and reliability. 14th Seminar on New Trends in Research of Energetic Materials, pp. 964–968, Pardubice, 2011Google Scholar
  42. 42.
    Matyáš, R., Šelešovský, J., Musil, T.: Sensitivity to friction for primary explosives. J. Hazard. Mater. 213–214, 236–41 (2012)CrossRefGoogle Scholar
  43. 43.
    Clark, A.K., Davies, N., Hubbard, P.J., Lee, P.R.: Cross sensitisation to impact between lead azide and tetryl. In: Jenkins, J.M., White, J.R. (eds.) Proceedings of International Conference on Research in Primary Explosives, vol. 3, pp. 22/1-22/15, Waltham Abbey (1975)Google Scholar
  44. 44.
    Medlock, L.E., Leslie, J.P.: Some aspects of the preparation and characteristics of lead azide precipitated in the presence of gelatin. In: Jenkins, J.M., White, J.R. (eds.) Proceedings of the International Conference on Research in Primary Explosives, vol. 2, pp. 10/1–10/16, Waltham Abbey (1975)Google Scholar
  45. 45.
    Tomlinson, W.R., Sheffield, O.E.: Engineering Design Handbook, Explosive Series of Properties Explosives of Military Interest. Report AMCP 706-177 (1971)Google Scholar
  46. 46.
    Bagal, L.I.: Khimiya i tekhnologiya iniciiruyushchikh vzryvchatykh veshchestv. Masinostroenie, Moskva (1975)Google Scholar
  47. 47.
    Kast, H., Haid, A.: Über die sprengtechnischen Eigenschaften der wichtigsten Initialsprengstoffe. Zeitschrift für das angewandte Chemie 38, 43–52 (1925)CrossRefGoogle Scholar
  48. 48.
    Wallbaum, R.: Sprengtechnische Eigenschaften und Lagerbeständigke der wichtigsten Initialsprengstoffe. Zeitschrift für das gesamte Schiess- und Sprengstoffwesen 34, 197–201 (1939)Google Scholar
  49. 49.
    Kabik, I., Urman, S.: Hazards of copper azide fuzes. In: Proceedings of Minutes of the 14th Explosive Safety Seminar, pp. 533–552 (1972)Google Scholar
  50. 50.
    Blechta, F.: Dnešní stav otázky náhražek třaskavé rtuti. Chemický obzor 3, 330–336 (1928)Google Scholar
  51. 51.
    Curtius, T.: Neues vom Stickstoffwasserstoff. Berichte der deutschen chemischen Gesellschaft 24, 3341–3349 (1891)CrossRefGoogle Scholar
  52. 52.
    Hanus, M.: Méně známé třaskaviny. Synthesia a.s., VÚPCH, Pardubice (1996)Google Scholar
  53. 53.
    Holloway, K.J., Taylor, G.W.C., Thomas, A.T.: Manufacture of dextrinated lead azide. US Patent 3,173,818, 1965Google Scholar
  54. 54.
    Thomas, A.T.: Spontaneous explosion during crystal growth of lead azide. In: Proceedings of Symposium on Lead and Copper Azide, pp. D-3, 103–111, Waltham Abbey, 1966Google Scholar
  55. 55.
    Garrett, W.L., Downs, D.S., Gora, T., Fair, H.D., Wiegand, D.A.: Preparation, characterization and electric field initiation of lead azide single crystal. In: Jenkins, J.M.,White, J.R. (eds.) Proceedings of the International Conference on Research in Primary Explosives, vol. 1, pp. 4/1–4/9, Waltham Abbey (1975)Google Scholar
  56. 56.
    Garrett, W.L.: The growth of large lead azide crystals. Mater. Res. Bull. 7, 949–954 (1972)CrossRefGoogle Scholar
  57. 57.
    Herz, E.V.: A process for manufacture of detonating compositions for detonators and primers. GB Patent 187,012, 1922Google Scholar
  58. 58.
    Herz, E.V.: A process for manufacture of detonating compositions for detonators or primers. US Patent 1,498,001, 1924Google Scholar
  59. 59.
    Spear, R.J., Elischer, P.P.: Studies of stab initiation. Sensitization of lead azide by energetic sensitizers. Aust. J. Chem. 35, 1–13 (1982)CrossRefGoogle Scholar
  60. 60.
    Friederich, W.: Manufacture of primig compositions. GB Patent 180,605, 1922Google Scholar
  61. 61.
    Todd, G., Tasker, M.P.: The identity of the gamma modification of basic lead azide type I. Helv. Chim. Acta 54(7), 2210–2212 (1971)CrossRefGoogle Scholar
  62. 62.
    Sinha, S.K.: Study of basic azides of lead by thermometric titration. In: Hansson, J. (ed.) Proceedings of 3rd Symposium on Chemical Problems Connected with the Stability of Explosives, pp. 16–32. Sektionen for detonik och Forbranning, Ystad (1973)Google Scholar
  63. 63.
    Sinha, S.K., Srivastava, R.C., Surve, R.N.: Basic azides of lead as safer primary explosives. In: Jenkins, J.M., White, J.R. (eds.) Proceedings of the International Conference on Research in Primary Explosives, vol. 2, pp. 11/1–11/18, Waltham Abbey (1975)Google Scholar
  64. 64.
    Agrawal, J.P.: High Energy Materials—Propellants, Explosives, Pyrotechnics. Wiley-VCH, Weinheim (2010)CrossRefGoogle Scholar
  65. 65.
    Taylor, C.A., Rinkenbach, W.H.: Silber azide: An initiator of detonation. Army Ordnance 5, 824–825 (1925)Google Scholar
  66. 66.
    Piechowicz, T.: Solubilité de l’azoture d’argent dans l’ammoniaque et dans la pyridine. Bulletin de la Societe Chimique de France 5, 1566–1567 (1971)Google Scholar
  67. 67.
    Taylor, A.C., Nims, L.F.: The standard potential of the silver-silver azide electrode. J. Am. Chem. Soc. 60, 262–264 (1938)CrossRefGoogle Scholar
  68. 68.
    Dennis, L.M., Isham, H.: Hydronitric acid V. J. Am. Chem. Soc. 29, 18–31 (1907)CrossRefGoogle Scholar
  69. 69.
    Merwe, L.: The preparation and chemical and physical characterization of silver azide. In: Proceedings of 12th Symposium on Explosives and Pyrotechnics, vol. 12, 1984Google Scholar
  70. 70.
    Lamnevik, S.: Prevention of copper azide formation in ammunition. In: Proceedings of Symposium on Lead and Copper Azide, pp. C-6, 92–96, Waltham Abbey, 1966Google Scholar
  71. 71.
    Taylor, G.W.C.: The Manufacture of Silver Azide RD 1336. Report 2/R/50 (Accession No. ADA 474242), Explosives Research and Development Establishment, Waltham Abbey (1950)Google Scholar
  72. 72.
    Field, J.E.: The mechanisms of initiation and propagation in primary explosives: a review. In: Jenkins, J.M., White, J.R. (eds.) Proceedings of the International Conference on Research in Primary Explosives, vol. 1, pp. 1/1–1/24, Waltham Abbey, Essex (1975)Google Scholar
  73. 73.
    Taylor, G.W.C., Jenkins, J.M.: Progress toward primary explosives on improved stability. In: Proceedings of 3rd Symposium on Chemical Problems Connected with the Stability of Explosives, pp. 43–46, Ystad, Sweden (1973)Google Scholar
  74. 74.
    Bates, L.R., Jenkins, J.M.: Search for new detonator. In: Jenkins, J.M., White, J.R. (eds.) Proceedings of the International Conference on Research in Primary Explosives, vol. 2, Waltham Abbey (1975)Google Scholar
  75. 75.
    Bekk, J.: The photographic behaviour of silver azoimide. J. Chem. Soc. 108, II200–II201 (1915)Google Scholar
  76. 76.
    Evans, B.L., Yoffe, A.D.: Structure and stability of inorganic azides. II. Some physical and optical properties, and the fast decomposition of solid monovalent inorganic azides. Proc. R. Soc. Lond. A Math. Phys. Sci. A250, 346–366 (1959)Google Scholar
  77. 77.
    Courtney-Pratt, J.S., Rogers, G.T.: Initiation of explosion by light and by flying fragments. Nature 175, 632–633 (1955)CrossRefGoogle Scholar
  78. 78.
    Wöhler, L., Krupko, W.: Action of light on silver, mercurous, lead and cuprous azoimides; basic azoimides of lead and copper. J. Chem. Soc. 104II, 703 (1913)Google Scholar
  79. 79.
    Gray, P.: Chemistry of the inorganic azides. Quart. Rev. 17, 441–473 (1963)CrossRefGoogle Scholar
  80. 80.
    Hitch, A.R.: Thermal decomposition of certain inorganic trinitrides. J. Am. Chem. Soc. 40, 1195–1204 (1918)CrossRefGoogle Scholar
  81. 81.
    Millar, R.W.: Lead free initiator materials for small electro explosive devices for medium caliber munitions. Final Report 04 June 2003. Report QinetiQ/FST/CR032702/1.1, QuinetiQ, Farnborough (2003)Google Scholar
  82. 82.
    Taylor, A.C., Rinkenbach, W.H.: Sensitivities of detonating compounds to frictional impact, impact, and heat. J. Franklin Inst. 204, 369–376 (1927)CrossRefGoogle Scholar
  83. 83.
    Wöhler, L., Martin, F.: Azides; Sensitiveness of. J. Soc. Chem. Ind. 36, 570–571 (1917)Google Scholar
  84. 84.
    Roux, J.J.P.A.: The dependence of friction sensitivity of primary explosives upon rubbing surface roughness. Propellants Explosives Pyrotechnics 15, 243–247 (1990)CrossRefGoogle Scholar
  85. 85.
    Evans, B.L., Yoffe, A.D.: The burning and explosion of single crystals. Proc. R. Soc. Lond. A238, 325–333 (1956)Google Scholar
  86. 86.
    Bowden, F.P., Williams, R.J.E.: Initiation and propagation of explosion in azides and fulminates. Proc. R. Soc. Lond. A Math. Phys. Sci. 1951, A176–A188 (1951)Google Scholar
  87. 87.
    Yoffe, A.D., Evans, B.L., Deb, S.K.: Foreign cations in silver azide. Nature 180, 294–295 (1957)CrossRefGoogle Scholar
  88. 88.
    Wöhler, L., Martin, F.: Die Initialwirkung von Aziden und Fulminaten. Zeitschrift für das gesamte Schiess- und Sprengstoffwesen, (1917); 12, 18–21Google Scholar
  89. 89.
    Darier, G.E., Goudet, C.: Preventing explosions in handling azides and other explosives. US Patent 1,349,411, 1920Google Scholar
  90. 90.
    Gray, P., Waddington, T.C.: Detonation and decomposition of silver azide sensitized by the cyanamide ion. Chem. Ind. 1255–1257 (1955)Google Scholar
  91. 91.
    Blechta, F.: Verfahren zur Herstellung von Initialzündsätzen, welche kolloidale Silber- und Quesksilberazide in lockerer, nicht zusammenbackender Form enthalten. AT Patent 126,150, 1932Google Scholar
  92. 92.
    Blechta, F.: Une nouvelle amorce a l’azothydrure. Chimie et industrie 921–925 (1933)Google Scholar
  93. 93.
    Taylor, G.W.C.: Improvements in the manufacture of silver azide. GB Patent 781,440, 1957Google Scholar
  94. 94.
    Williams, E., Peyton, S.V., Harris, R.C.: Improvements in or relating to the manufacture of silver azide. GB Patent 887,141, 1962Google Scholar
  95. 95.
    McGuchan, R.: Improvements in primary explosive compositions and their manufacture. In: Proceedings of 10th Symposium on Explosives and Pyrotechnics, San Francisco, 1979Google Scholar
  96. 96.
    Costain, T.S.: Process for producing silver azide. US Patent 3,943,235, 1976Google Scholar
  97. 97.
    Hirlinger, J.M., Bichay, M.: New Primary Explosives Development for Medium Caliber Stab Detonators. Report SERDP PP-1364, US Army ARDEC, Washington DC (2004)Google Scholar
  98. 98.
    Hirlnger, J., Fronabarger, J., Williams, M., Armstrong, K., Cramer, R.J.: Lead azide replacement program. In: Proceedings of NDIA, Fuze Conference, 2005Google Scholar
  99. 99.
    Hodgkinson, W.R.: Improvements in and relating to the production of azides. GB Patent 128,014, 1919Google Scholar
  100. 100.
    Turrentine, J.W.: Contributions of electrochemistry of hydronitric acid and its salts. I. The corrosion of some metals in sodium trinitride solution. J. Am. Chem. Soc. 33, 803–828 (1911)CrossRefGoogle Scholar
  101. 101.
    Cirulis, A.: Die explosiven Eigenschaften des Kupferazids Cu(N3)2, Zeitschrift fur das gesamte Schiess- und Sprengstoffwesen (1943); 38, 42–45Google Scholar
  102. 102.
    Straumanis, M., Cirulis, A.: Das Kupfer(II)-azid. Darstellungsmethoden, Bildung und Eigenschaften. Zeitschrift für anorganische und allgemeine Chemie 251, 315–331 (1943)CrossRefGoogle Scholar
  103. 103.
    Colton, R.J., Rabalais, J.W.: Electronic structure of some inorganic azides from X-ray electron spectroscopy. J. Chem. Phys. 64, 3481–3486 (1976)CrossRefGoogle Scholar
  104. 104.
    Wilsdorf, H.: Die Kristallstruktur des einwertigen Kupferazids, CuN3. Acta Crystallogr. 1, 115–118 (1948)CrossRefGoogle Scholar
  105. 105.
    Duke, J.R.C.: The crystallography of copper azides. In: Proceedings of the Symposium on Lead and Copper Azides, pp. C-5, 87–91, Waltham Abbey, 1966Google Scholar
  106. 106.
    Harris, R.C.: The formation and detection of copper azides corrosions. In: Proceedings of Symposium on Lead and Copper Azide, pp. C-1, 70–71, Waltham Abbey, 1966Google Scholar
  107. 107.
    Lamnevik, S.: Copper azide corrosion. In: Proceedings of Symposium on Lead and Copper Azide, pp. C-2, 72–77, Waltham Abbey, 1966Google Scholar
  108. 108.
    Holloway, K.J.: The preparation, identification and sensitiveness of copper azide. In: Proceedings of Symposium on Lead and Copper Azide, pp. C-3, 78–83, Waltham Abbey, 1966Google Scholar
  109. 109.
    Turrentine, J.W., Moore, R.L.: The action of hydronitric acid on cuprous chloride and metallic copper. J. Am. Chem. Soc. 34, 382–384 (1912)CrossRefGoogle Scholar
  110. 110.
    Singh, K.: Sensitivity of cuprous azide towards heat and impact. Trans. Faraday Soc. 55, 124–129 (1959)CrossRefGoogle Scholar
  111. 111.
    Curtius, T., Rissom, J.: Azoimide. J. Chem. Soc. 76, B92 (1899)Google Scholar
  112. 112.
    Senise, P., Neves, E.F.A.: Solubility study of copper(II) azide in aqueous sodium azide solutions of low ionic strength. J. Inorg. Nucl. Chem. 33, 351–358 (1971)CrossRefGoogle Scholar
  113. 113.
    Medlock, L.E.: Corrosion of copper detonator tubes in the presence of lead azide. In: Proceedings of Symposium on Lead and Copper Azide, pp. C-4, 84–86, Waltham Abbey, 1966Google Scholar
  114. 114.
    Okubo, S., Shindo, K., Oinuma, S.: Copper azide detonators. I. Preparation of copper azide and its impact sensitivity test. CAN 52, 8559 (1958)Google Scholar
  115. 115.
    Wöhler, L., Martin, F.: Über neue Fulminate und Azide. Berichte der deutschen chemischen Gesellschaft 50, 586–596 (1917)CrossRefGoogle Scholar
  116. 116.
    Nockemann, P., Cremer, U., Ruschewitz, U., Meyer, G.: Mercurous azide, Hg2(N3)2. Zeitschrift für anorganische und allgemeine Chemie 629, 2079–2082 (2003)CrossRefGoogle Scholar
  117. 117.
    Belomestnykh, V.N.: Uprugie cvoistva neorganicheskikh azidov pri ctandartnykh usloviyakh. Neorganicheskie materialy 29, 210–215 (1993)Google Scholar
  118. 118.
    Birckenbach, L.: Cadmium azide (at the same time a warning). Zeitschrift für anorganische und allgemeine Chemie 214, 94–96 (1933)CrossRefGoogle Scholar
  119. 119.
    Wöhler, L., Martin, F.: Sensitiveness of azides. Angew. Chem. 30(I), 33–39 (1917)Google Scholar
  120. 120.
    Rathsburg, H.: Über die Bestimmung der Reibungsempfindlichkeit von Zünstoffen. Zeitschrift für das angewandte Chemie 41, 1284–1286 (1928)CrossRefGoogle Scholar
  121. 121.
    Curtius, T., Rissom, J.: Neue Untersuchungen über den Stickstoffwasserstoff N3H. J. für praktische Chemie 58, 261–309 (1898)CrossRefGoogle Scholar
  122. 122.
    Klapötke, T.M., Geissler, P.: Preparation and characterization of the first binary arsenic azide species: As(N3)3 and [As(N3)4][AsF6]. J. Chem. Soc. Dalton Trans. 3365–3366 (1995)Google Scholar
  123. 123.
    Klapötke, T.M., Schulz, A., McNamara, J.: Preparation, characterization and ab initio computation of the first binary antimony azide, Sb(N3)3. J. Chem. Soc. Dalton Trans. 2985–2987 (1996)Google Scholar
  124. 124.
    Haiges, R., Vij, A., Boatz, J.A., Schneider, S., Schroer, T., Gerken, M., Christe, K.O.: First structural characterization of binary AsIII and SbIII azides. Chemistry 10, 508–517 (2004)CrossRefGoogle Scholar
  125. 125.
    Villinger, A., Schulz, A.: Binary bismuth(III) azides: Bi(N3)3, [Bi(N3)4]-, and [Bi(N3)6]3-. Angew. Chem. Int. Ed. 49, 8017–8020 (2010)CrossRefGoogle Scholar
  126. 126.
    Haiges, R., Boatz, J.A., Vij, A., Vij, V., Gerken, M., Schneider, S., Schroer, T., Yousufuddin, M., Christe, K.O.: Polyazide chemistry: Preparation and characterization of As(N3)5, Sb(N3)5, and [P(C6H5)4][Sb(N3)6]. Angew. Chem. 116, 6844–6848 (2004)CrossRefGoogle Scholar
  127. 127.
    Boyer, J.H., Canter, F.C.: Alkyl and aryl azides. Chem. Rev. 54, 1–57 (1954)CrossRefGoogle Scholar
  128. 128.
    Finger, H.: Über Abkömmlinge des Cyanurs. J. für praktische Chemie 75, 103–104 (1907)CrossRefGoogle Scholar
  129. 129.
    Taylor, C.A., Rinkenbach, W.H.: Preparation and detonating properties of cyanuric triazide. J. Franklin Inst. 196, 551 (1923)Google Scholar
  130. 130.
    Hart, C.V.: Carbonic acid azides. J. Am. Chem. Soc. 50, 1922–1930 (1928)CrossRefGoogle Scholar
  131. 131.
    Ott, E., Ohse, E.: Zur Kenntnis einfacher Cyan- und Cyanurverbindungen. II. Über das Cyanurtriazid, (C3N12). Berichte der deutschen chemischen Gesellschaft 54, 179–186 (1921)CrossRefGoogle Scholar
  132. 132.
    Ott, E.: Explosive and process of making same. US Patent 1,390,378, 1921Google Scholar
  133. 133.
    Ott, E.: Verfahren zur Herstellung von Initialzündmitteln und von Treib- und Sprengmitteln. DE Patent 350,564, 1922Google Scholar
  134. 134.
    Hughes, E.W.: The crystal structure of cyanuric triazide. J. Chem. Phys. 3, 1–5 (1935)CrossRefGoogle Scholar
  135. 135.
    Sutton, T.C.: Structure of cyanuric triazide (C3N3)(N3)3. Philos. Mag. 15, 1001–1018 (1933)Google Scholar
  136. 136.
    Ficheroulle, H., Kovache, A.: Contribution à l`étude des explosifs d’amorçage. Memorial des poudres 41, 1–22 (1959)Google Scholar
  137. 137.
    Imray, O.: Manufacture of a new explosive. GB Patent 170,359, 1921Google Scholar
  138. 138.
    Gillan, E.G.: Synthesis of nitrogen-rich carbon nitride networks from an energetic molecular azide precursor. Chem. Mater. 12, 3906–3912 (2000)CrossRefGoogle Scholar
  139. 139.
    Muraour, H.: Sur la théorie des réactions explosives. Cas particulier des explosifs d’amorçage. Mémories présentés a la Société chimique 51, 1152–1166 (1932)Google Scholar
  140. 140.
    Mehta, N., Cheng, G., Cordaro, E., Naik, N., Lateer, B., Hu, C., Stec, D., Yang, K.: Performance testing of lead-free stab detonator. In: Proceedings of NDIA Fuze Conference, 2006Google Scholar
  141. 141.
    Pepekin, V.I.: Limiting detonation velocities and limiting propelling powers of organic explosives. Dokl. Phys. Chem. 414(2), 159–161 (2007)CrossRefGoogle Scholar
  142. 142.
    Kroke, E., Schwarz, M., Buschmann, V., Miehe, G., Fuess, H., Riedel, R.: Nanotubes formed by detonation of C/N precursors. Adv. Mater. 11, 158–161 (1999)CrossRefGoogle Scholar
  143. 143.
    Utschig, T., Schwarz, M., Miehe, G., Kroke, E.: Synthesis of carbon nanotubes by detonation of 2,4,6-triazido-1,3,5-triazine in the presence of transition metals. Carbon 42, 823–828 (2004)CrossRefGoogle Scholar
  144. 144.
    Fogelzang, A.E., Egorshev, V.Y., Pimenov, A.Y., Sinditskii, V.P., Saklantii, A.R., Svetlov, B.S.: Issledovanie statsionarnogo goreniya initsiiruyushchikh vzryvchatykh veshchestv pri vysokykh davleniyakh. Dokl. Akad. Nauk SSSR 282, 1449–1452 (1985)Google Scholar
  145. 145.
    Huynh, M.V., Coburn, M.D., Meyer, T.J., Wetzer, M.: Green primaries: Environmentally friendly energetic complexes. Proc. Natl. Acad. Sci. 103, 5409–5412 (2006)CrossRefGoogle Scholar
  146. 146.
    Huynh, M.V., Coburn, M.D., Meyer, T.J., Wetzer, M.: Green primary explosives: 5-nitrotetrazolato-N 2-ferrate hierarchies. Proc. Natl. Acad. Sci. 103, 10322–10327 (2006)CrossRefGoogle Scholar
  147. 147.
    Huynh, M.H.V., Hiskey, M.A., Hartline, E.L., Montoya, D.P., Gilardi, R.: Polyazido high-nitrogen compounds: hydrazo- and azo-1,3,5-triazine. Angew. Chem. Int. Ed. 43, 4924–4928 (2004)CrossRefGoogle Scholar
  148. 148.
    Huynh, M.H.V., Hiskey, M.A., Pollarod, C.J., Montoya, D.P., Hartline, E.L., Gilardi, R.: 4,4′,6,6′-Tetrasubstituted hydrazo- and azo-1,3,5-triazines. J. Energetic Mater. 22, 217–229 (2004)CrossRefGoogle Scholar
  149. 149.
    Huynh, M.H.V., Hiskey, M.A., Archuleta, J.G., Roemer, E.L.: Preparation of nitrogen-rich nanolayered, nanoclustered, and nanodendritic carbon nitrides. Angew. Chem. Int. Ed. 44, 737–739 (2005)CrossRefGoogle Scholar
  150. 150.
    Huynh, M.H.V., Hiskey, M.A.: Preparation of high nitrogen compound and materials therefrom. US Patent 2006/0211565, 2006Google Scholar
  151. 151.
    Loew, P., Weis, C.D.: Azo-1,3,5-triazines. J. Heterocyc. Chem. 13, 829–833 (1976)CrossRefGoogle Scholar
  152. 152.
    Li, X.T., Li, S.H., Pang, S.P., Yu, Y.Z., Luo, Y.J.: A new efficient route for the synthesis of 4,4′,6,6′-tetra(azido)azo-1,3,5-triazine. Chin. Chem. Lett. 18, 1037–1039 (2007)CrossRefGoogle Scholar
  153. 153.
    Turek, O.: Le 2,4,6-trinitro-1,3,5-triazido-benzene, nouvel explosif d’amorçage. Chimie et industrie 26, 781–794 (1931)Google Scholar
  154. 154.
    Turek, O.: 1,3,5-Triazido-2,4,6-trinitrobenzen, nová iniciálná výbušina. Chemický obzor 7, 76–79; 97–104 (1932)Google Scholar
  155. 155.
    Adam, D., Karaghiosoff, K., Klapotke, T.M., Hioll, G., Kaiser, M.: Triazidotrinitro benzene: 1,3,5-(N3)3-2,4,6-(NO2)3C6. Propellants Explosives Pyrotechnics 27, 7–11 (2002)CrossRefGoogle Scholar
  156. 156.
    Ficheroulle, H., Kovache, A.: Contribution à l`étude des explosifs d’amorçage. Mémorial des poudres 31, 1–27 (1949)Google Scholar
  157. 157.
    Zielinski, B.: Ignition mixture for percussion caps of all kind, small munitions, and primers. US Patent 2,111,719, 1938Google Scholar
  158. 158.
    Turek, O.: Blasting cartridge, percussion cap, detonator, detonating fuse, and the like. US Patent 1,743,739, 1930Google Scholar
  159. 159.
    Turek, O.: A method of producing 2,4,6-trinitro-1,3,5-triazidobenzene. GB Patent 298,981, 1928Google Scholar
  160. 160.
    Turek, O.: Verfahren zur Herstellung von 1,3,5-Trinitro-2,4,6-triazidobenzol. DE Patent 498,050, 1930Google Scholar
  161. 161.
    Turek, O.: Improvements in and connected with explosive charges for detonators, percussion caps, boosters, detonating fuses, projectiles and the like. GB Patent 298,629, 1927Google Scholar
  162. 162.
    Turek, O.: Verfahren zur Herstellung von Sprengladungen für Sprengkapseln, Zündkapseln, Detonationszündschnüre u. dgl. DE Patent 494,289, 1928Google Scholar
  163. 163.
    Improvements in ignition mixtures for percussion caps of all kind, small munitions and primers. GB Patent 465,768, 1936Google Scholar
  164. 164.
    Fries, K., Ochwat, P.: Neues über Dichlor-2.3-naphthochinon-1.4. Berichte der deutschen chemischen Gesellschaft 56, 1291–1304 (1923)CrossRefGoogle Scholar
  165. 165.
    Šorm, F.: O tetrazidobenzchinonu (1,4). Chemický obzor 14, 37–39 (1939)Google Scholar
  166. 166.
    Gilligan, W.H., Kamlet, M.J.: On the explosive properties of tetraazido-p-benzoquinones. Tetrahedron Lett. 19, 1675–1676 (1978)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Robert Matyáš
    • 1
  • Jiří Pachman
    • 1
  1. 1.Faculty of Chemical TechnologyUniversity of PardubicePardubiceCzech Republic

Personalised recommendations