Advertisement

Acetylides

  • Robert Matyáš
  • Jiří Pachman
Chapter

Abstract

Acetylides are salts of acetylene, which is, under normal conditions, a gas with a slightly acidic character (pK a is 25, for comparison pK a of acetic acid is 4.76). Due to their acidic nature, one or both of the hydrogen atoms can be substituted by a metal atom. Furthermore, acetylene forms so-called metallo-addition compounds usually containing the acetylene molecule and an added metal compound (C2H2·MX) [1].

Keywords

Silver Nitrate Ignition Temperature Detonation Velocity Silver Nitrate Solution Impact Sensitivity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Nieuwland, J.A., Vogt, R.R.: The Chemistry of Acetylene. Reinhold Publishing Corporation, New York (1945)Google Scholar
  2. 2.
    Fedoroff, B.T., Sheffield, O.E., Kaye, S.M.: Encyclopedia of Explosives and Related Items. Picatinny Arsenal, New Jersey (1960–1983)Google Scholar
  3. 3.
    Nieuwland, J.A., Maguire, J.A.: Reactions of acetylene with acidified solutions of mercury and silver salts. J. Am. Chem. Soc. 28, 1025–1031 (1906)CrossRefGoogle Scholar
  4. 4.
    Gmelins Handbuch der anorganischen Chemie – Silber, pp. 270–273. Verlag Chemie, Weinheim (1973)Google Scholar
  5. 5.
    Vestin, R., Ralf, E.: Solver compounds of acetylene. Acta Chem. Scand. 3, 101–143 (1949)CrossRefGoogle Scholar
  6. 6.
    Redhouse, A.D., Woodward, P.: Crystallographic data for silver acetylide. Acta Crystallogr. 17, 616–617 (1964)CrossRefGoogle Scholar
  7. 7.
    Keiser, E.H.: The composition of the explosive copper and silver compounds of acetylene. Am. Chem. J. 14, 285–290 (1892)Google Scholar
  8. 8.
    Quet, M.: Note sur un phénomène de polarité dans la décomposition des gaz par ľétincelle électrique, et sur les produits que ľon obtient en décomposant ľalcohol par ľétincelle électrique ou la chaleur. Comptes rendus hebdomadaires des séances de l’Académie des sciences 40, 903–905 (1858)Google Scholar
  9. 9.
    Stettbacher, A.: Neuere Initialexplosivstoffe. Zeitschrift für das gesamte Schiess- und Sprengstoffwesen 11, 1–4 (1916)Google Scholar
  10. 10.
    McCowan, J.D.: Decomposition of silver acetylide. Trans. Faraday Soc. 59, 1860–1864 (1963)CrossRefGoogle Scholar
  11. 11.
    Finch, A., Gardner, P.J., Head, A.J., Majdi, H.S.: The standard enthalpy of formation of silver acetylide. Thermochim. Acta 180, 325–330 (1991)CrossRefGoogle Scholar
  12. 12.
    Köhn, J.: Untersuchungen über die explosiven Eigenschaften von Silberacetylid. Amts- und Mitteilungsblatt der Bundesanstalt für Materialprüfung 8, 57–62 (1978)Google Scholar
  13. 13.
    Krauz, C.: Technologie výbušin. Vědecko-technické nakladatelství, Praha (1950)Google Scholar
  14. 14.
    Babko, A.K., Grebelskaya, M.I.: Rastvorimost atsetilenidov medi, serebra i rtuti. Zhurnal obshchey khimii 22, 66–76 (1952)Google Scholar
  15. 15.
    Keiser, E.H.: The metallic derivatives of acetylene. Am. Chem. J. 15, 535–539 (1893)Google Scholar
  16. 16.
    Taki, K.: Reactive species in the explosion of silver acetylide I. Reaction with saturated hydrocarbons. Bull. Chem. Soc. Jpn. 42, 2906–2911 (1969)CrossRefGoogle Scholar
  17. 17.
    Guo, G.-C., Zhou, G.-D., Mak, T.C.W.: Structural variation in novel double salts of silver acetylide with silver nitrate: Fully encapsulated acetylide dianion in different polyhedral silver cages. J. Am. Chem. Soc. 121, 3136–3141 (1999)CrossRefGoogle Scholar
  18. 18.
    Guo, G.-C., Wang, Q.-G., Zhou, G.-D., Mak, T.C.W.: Synthesis and characterization of Ag2C2•2AgClO4•2H2O: A novel layer-type structure with the acetylide dianion functioning in a m6-h1,h1:h2,h2:h2,h2 bonding mode inside an octahedral silver cage. Chem. Commun. 339–340 (1998)Google Scholar
  19. 19.
    Guo, G.-C., Zhou, G.-D., Wang, Q.-M., Mak, T.C.W.: A fully encapsulated acetylenediide in Ag2C2•8AgF. Angew. Chem. Int. Ed. 37, 630–632 (1998)CrossRefGoogle Scholar
  20. 20.
    Wang, Q.-M., Mak, T.C.W.: Coexistence of differently capped trigonal prismatic C2@Ag7 cages in a triple salt of silver(I) acetylide. J. Cluster Sci. 12, 391–398 (2001)CrossRefGoogle Scholar
  21. 21.
    Taylor, A.C., Rinkenbach, W.H.: Sensitivities of detonating compounds to frictional impact, impact, and heat. J. Franklin Inst. 204, 369–376 (1927)CrossRefGoogle Scholar
  22. 22.
    Khmelnitskii, L.I.: Spravochnik po vzryvchatym veshchestvam. Voennaya ordena Lenina i ordena Suvorova Artilleriiskaya inzhenernaya akademiya imeni F. E, Dzerzhinskogo, Moskva (1962)Google Scholar
  23. 23.
    Matyáš, R., Šelešovský, J., Musil, T.: Sensitivity to friction for primary explosives. J. Hazard. Mater. 213–214, 236–241 (2012)Google Scholar
  24. 24.
    Tammann, G., Kröger, C.: Über die Verpuffungstemperatur und Schlagempfindlichkeit von flüssigen und festen Explosivstoffen. Zeitschrift für anorganische und allgemeine Chemie 169, 1–32 (1928)CrossRefGoogle Scholar
  25. 25.
    Danilov, J.N., Ilyushin, M.A., Tselinskii, I.V.: Promyshlennye vzryvchatye veshchestva; chast I. Iniciiruyushchie vzryvshchatye veshchestva. Sankt-Peterburgskii gosudarstvennyi tekhnologicheskii institut, Sankt-Peterburg (2001)Google Scholar
  26. 26.
    Boldyrev, V.V., Pronkin, V.P.: Povyshenie termicheskoi ustoichivosti atsetilenida serebra vvedeniem dobavok kadmiya. Zhurnal vsesoyuznogo khimicheskogo obshchestva im. D. I. Mendeleeva 6, 476–477 (1961)Google Scholar
  27. 27.
    Shaw, J.A., Fisher, E.: Silver acetylide compound and process of making same. US Patent 2,483,440, 1949Google Scholar
  28. 28.
    Shaw, J.A., Fisher, E.: A new acetylene silver nitrate complex. J. Am. Chem. Soc. 68, 2745 (1946)CrossRefGoogle Scholar
  29. 29.
    Stadler, R.: Analytische und sprengstofftechnische Untersuchungen an Azetylensilber. Zeitschrift für das gesamte Schiess- und Sprengstoffwesen 33, 269–272, 302–305, 334–338 (1938)Google Scholar
  30. 30.
    Eggert, J.: Über Acetylensilber. Chemiker-Zeitung 42, 199–200 (1918)Google Scholar
  31. 31.
    Stettbacher, A.: Zündsprengstoffe. Nitrocellulose 11, 227–229 (1940)Google Scholar
  32. 32.
    Eggert, J.: Über einige Vorlesungsversuche mit Acetylen-silber. Berichte der deutschen chemischen Gesellschaft 51, 454–456 (1918)CrossRefGoogle Scholar
  33. 33.
    Urbański, T.: Chemistry and Technology of Explosives. PWN—Polish Scientific Publisher, Warszawa (1967)Google Scholar
  34. 34.
    Semple, J.B.: Improvements relating to the detonation of explosives. GB Patent 133,393, 1918Google Scholar
  35. 35.
    FR Patent 321,285, 1902Google Scholar
  36. 36.
    Benham, R.A.: Preliminary Experiments Using Light-Initiated High Explosive for Driving Thin Flyer Plates. Report SAND-79-1847 (1980)Google Scholar
  37. 37.
    Benham, R.A.: Initiation and Gas Expansion Model for the Light-Initiated Explosive Silver Acetylide-Silver Nitrate. Report SAND-79-1829 (1980)Google Scholar
  38. 38.
    Sladkov, A.M., Ukhin, L.Y.: Copper and silver acetylides in organic synthesis. Russ. Chem. Rev. 748–763 (1968)Google Scholar
  39. 39.
    Osterlof, J.: Crystal structure of Ag2C2•6AgNO3 and 2CuCl•C2H2. Acta Crystallogr. 7 (1954)Google Scholar
  40. 40.
    Chou, K.-T.: Crystal structure of Ag2C2•6AgNO3. Chem. Abstr. 60, 2399 (1964)Google Scholar
  41. 41.
    Jin, X., Zhou, G., Wu, N., Tang, Y., Huang, H.: Structure determination and refinement of silver acetylide-silver nitrate (1:6). Chem. Abstr. 113, 88547 (1990)Google Scholar
  42. 42.
    Shaw, J.A., Fisher, E.: Mercury acetylide-silver nitrate complex and process of making same. US Patent 2,474,869, 1949Google Scholar
  43. 43.
    Klement, R., Köddermann-Gros, E.: Die Oxydationsprodukte des Kupfer(I)-acetylides. Zeitschrift für anorganische Chemie 254, 201–216 (1947)CrossRefGoogle Scholar
  44. 44.
    Blochmann, R.: Ueber die Vorgänge bei der unvollständigen Verbrennung des Leuchtgases und über das Verhalten desselben in der Hitze bei Abschlufs von Luft. Justus Liebigs Annalen der Chemie 173, 167–191 (1874)CrossRefGoogle Scholar
  45. 45.
    Morita, S.: The effect of oxygen on the explosivity of red cuprous acetylide. Chem. Abstr. 50, 6047 (1956)Google Scholar
  46. 46.
    Polyakov, N.N.: Opredelenie acetilenidov medi v prisutstvii drugikh soedinenii medi. Zhurnal analiticheskoi khimii 8, 302–305 (1953)Google Scholar
  47. 47.
    Rupe, H.: Zwei Vorlesungsversuche. Journal für praktische Chemie 88, 79–82 (1913)CrossRefGoogle Scholar
  48. 48.
    Durand, J.-F.: Doubles décompositions, en milieu aqueux, entre ses acétylures métalliques et des sels. Comptes rendus hebdomadaires des séances de l’Académie des sciences 177, 693–695 (1923)Google Scholar
  49. 49.
    Špičák, S., Šimeček, J.: Chemie a technologie třaskavin. Vojenská technická akademie Antonína Zápotockého, Brno (1957)Google Scholar
  50. 50.
    Brameld, V.F., Clark, M.T., Seyfang, A.P.: Copper acetylides. J. Soc. Chem. Ind. 66, 346–353 (1947)CrossRefGoogle Scholar
  51. 51.
    Rintoul, W.: Explosives. Rep. Prog. Appl. Chem. 5, 523–565 (1920)Google Scholar
  52. 52.
    Burrows, L.A., Lawson, W.E.: Electric blasting initiator. US Patent 2,086,531, 1937Google Scholar
  53. 53.
    Reppe, W.: Äthinylierung. Justus Liebigs Annalen der Chemie 596, 6–11 (1955)CrossRefGoogle Scholar
  54. 54.
    Reppe, W., Keyssner, E.: Verfahren zur Herstellung von Alkoholen der Acetylenreihe. DE Patent 726,714, 1937Google Scholar
  55. 55.
    Reppe, W., Keyssner, E.: Production of alkinols. US Patent 2,232,867, 1941Google Scholar
  56. 56.
    Reppe, W., Steinhofer, A., Spaenig, H., Locker, K.: Production of alkinols. US Patent 2,300,969, 1942Google Scholar
  57. 57.
    Reppe, W., Steinhofer, A., Trieschmann, H.-G.: Verfahren zur Ausführung katalytischer Umsetzungen. DE Patent 734,881, 1939Google Scholar
  58. 58.
    Pietsch, E., Kotowski, A.: Über den Nachweis sehr geringer Mengen von Acetylen. Angew. Chem. 44, 309–312 (1931)CrossRefGoogle Scholar
  59. 59.
    Söderbaum, H.G.: Ueber die Einwirkung des Acetylens auf Cuprisalze. Berichte der deutschen chemischen Gesellschaft 30, 814–815 (1897)CrossRefGoogle Scholar
  60. 60.
    Bagal, L.I.: Khimiya i tekhnologiya iniciiruyushchikh vzryvchatykh veshchestv. Mashinostroenie, Moskva (1975)Google Scholar
  61. 61.
    Plimpton, R.T., Travers, M.W.: Metallic derivates of acetylene. I. Mercuric acetylide. J. Chem. Soc. 264–269 (1894)Google Scholar
  62. 62.
    Malý, J., Kuča, L.: Struktura a rozpad acetylidu rtuti. Chemické listy 47 (1953)Google Scholar
  63. 63.
    Keiser, E.H.: Metallic derivates of acetylene. J. Chem. Soc. 61 (1894)Google Scholar
  64. 64.
    Ferber, E., Römer, E.: Über einige neue Acetylen-Quecksilber-Komplexsalze. Journal für praktische Chemie 277–283 (1934)Google Scholar
  65. 65.
    Burkard, E., Travers, W.T.: The action of acetylene on the acetates of mercury. J. Chem. Soc. 81, 1270–1272 (1902)CrossRefGoogle Scholar
  66. 66.
    Plimpton, R.T.: Metallic derivates of acetylene. Proc. Chem. Soc. 8, 109–111 (1892)Google Scholar
  67. 67.
    Mathews, J.A., Watters, L.L.: The carbide of gold. J. Am. Chem. Soc. 22, 108–111 (1900)CrossRefGoogle Scholar
  68. 68.
    Vicente, J., Chicote, M.-T., Abrisqueta, M.-D., Jones, P.G.: New neutral and anionic alkynylgold(I) complexes via new synthetic methods. Crystal and molecular structures of [(PPh3)2N][Au(CCCH2OH)2], [Au(CCSiMe3)(CNtBu)], and [Au(CCR)PR′3] (R′=Cyclohexyl, R=CH2Cl, CH2Br; R′=Ph, R=SiMe3, tBu). Organometallics 16, 5628–5636 (1997)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Robert Matyáš
    • 1
  • Jiří Pachman
    • 1
  1. 1.Faculty of Chemical TechnologyUniversity of PardubicePardubiceCzech Republic

Personalised recommendations