Nitrogen Halides

  • Robert Matyáš
  • Jiří Pachman


The nitrogen halides are substances containing three atoms of one of the halogens bound together with one atom of nitrogen. The most common one is without question nitrogen triiodide which is often used for demonstration purposes due to its extreme sensitivity to mechanical impulse and impressive purple cloud formed as a result of the explosion. Nitrogen trichloride and nitrogen tribromide are both quite sensitive and explode easily. The last nitrogen halide in the family is a fluorine analog which does not possess explosive behavior and is therefore not mentioned in the following sections.


Boron Nitride Aqueous Ammonia Ammonium Chloride Extreme Sensitivity Ammonium Chloride Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Dulong, M.: Ueber die verpuffende Verbindung des Salz - und Stick - Gases I. Schweigger’s Journal für Chemie und Physik 8, 302–308 (1811)Google Scholar
  2. 2.
    Dulong, M., Thenard, M.M., Berthollet, C.L.: Sur un Mémoire de M. Dulong, sur une nouvelle substance détonante. Annales de chimie 86, 37 (1813)Google Scholar
  3. 3.
    Davy, H.: On a new detonating compound. Philos. Trans. R. Soc. Lond. 103, 1–7 (1813)Google Scholar
  4. 4.
    Snelders, H.A.M.: De ontdekking van het stikstoftrichloride. Chemie Techniek revue 22, 457–459 (1967)Google Scholar
  5. 5.
    Baker, J.C.: Improvements in process of bleaching and maturing flour. GB Patent 159,166, 1922Google Scholar
  6. 6.
    Mellor, J.W.: A Comprehensive Treatise on Inorganic and Theoretical Chemistry. Longmans Green, London (1958)Google Scholar
  7. 7.
    Krauz, C.: Technologie výbušin. Vědecko-technické nakladatelství, Praha (1950)Google Scholar
  8. 8.
    Whiteley, M.A. (ed.): Halides of Nitrogen. Longman, Green, London, (1949)Google Scholar
  9. 9.
    Walke, W.: Lectures on Explosives. Wiley, New York (1897)Google Scholar
  10. 10.
    Patnaik, P.: Handbook of Inorganic Chemicals. McGraw-Hill, New York (2003)Google Scholar
  11. 11.
    Fedoroff, B.T., Sheffield, O.E., Kaye, S.M.: Encyclopedia of Explosives and Related Items. Picatinny Arsenal, New Jersey (1960–1983)Google Scholar
  12. 12.
    Špičák, S., Šimeček, J.: Chemie a technologie třaskavin. Vojenská technická akademie Antonína Zápotockého, Brno (1957)Google Scholar
  13. 13.
    Wisser, J.P.: Explosive Materials—The Phenomena and Theories of Explosion. D. Van Nostrand, New York (1907)Google Scholar
  14. 14.
    Hentschel, W.: Ueber Chlorstickstoff. Berichte der deutschen chemischen Gesellschaft 30, 1434–1437 (1897)CrossRefGoogle Scholar
  15. 15.
    Selivanoff, T.: Chlorides and iodides of nitrogen. J. Chem. Soc. 66, 312–313 (1894)Google Scholar
  16. 16.
    Rai, H.: Note on nitrogen chloride, with a convenient method for its preparation. Chem. News 117, 253 (1918)Google Scholar
  17. 17.
    Dowell, C.T., Bray, W.C.: Experiments with nitrogen trichloride. J. Am. Chem. Soc. 39, 896–905 (1917)CrossRefGoogle Scholar
  18. 18.
    Griffiths, J.G.A., Norrish, R.O.W.: Photosensitized decomposition of nitrogen trichloride and the induction period of hydrogen-chlorine reaction. Trans. Faraday Soc. 27, 451–461 (1931)CrossRefGoogle Scholar
  19. 19.
    Bowen, E.J.: The photochemistry of unstable substances. J. Chem. Soc. 123, 1199–1206 (1923)CrossRefGoogle Scholar
  20. 20.
    Kovacic, P., Lowery, M.K., Field, K.W.: Chemistry of N-bromamines and N-chloramines. Chem. Rev. 70, 639–665 (1970)CrossRefGoogle Scholar
  21. 21.
    Noyes, W.A.: Inorganic Syntheses. McGraw-Hill Book, New York (1939)Google Scholar
  22. 22.
    Noyes, W.A., Lyon, A.C.: The reaction between chlorine and ammonia. J. Am. Chem. Soc. 23, 460–463 (1901)CrossRefGoogle Scholar
  23. 23.
    Noyes, W.A.: The interaction between nitrogen trichloride and nitric oxide. Reactions of compounds with odd electrons. J. Am. Chem. Soc. 50, 2902–2910 (1928)CrossRefGoogle Scholar
  24. 24.
    Kolbe, H.: Beobachtungen über die oxydirene Wirkung des Sauerstoffs, wenn derselbe mit Hülfe einer elektrischen Säule entwickelt wird. Journal für praktische Chemie 41, 137–139 (1847)CrossRefGoogle Scholar
  25. 25.
    Kolbe, H.: Observations on the oxidizing power of oxygen when disengaged by means of voltaic electricity. Mem. Proc. Chem. Soc. Lond. 3, 285–287 (1845)CrossRefGoogle Scholar
  26. 26.
    Van der Lee, G.: Process for producing nitrogen trichloride. US Patent 2,248,650, 1941Google Scholar
  27. 27.
    Staudt, E.: Process for the manufacture of nitrogen trichloride. US Patent 2,118,903, 1938Google Scholar
  28. 28.
    Staudt, E.: Process for producing nitrogen trichloride. US Patent 2,199,942, 1940Google Scholar
  29. 29.
    Balard, A.J.: Recherches sur la nature des combinaisons décolorantes du chlore. Annales des Chimie et des Physique, 225–304 (1834)Google Scholar
  30. 30.
    Hentschel, W.: Ueber die Zusammensetzung des Chlorstickstoffs. Berichte der deutschen chemischen Gesellschaft 30, 1792–1795 (1897)CrossRefGoogle Scholar
  31. 31.
    Noyes, W.A.: An attempt to prepare nitro-nitrogen trichloride, an electromer of ammono-nitrogen trichloride. J. Am. Chem. Soc. 35, 767–775 (1913)CrossRefGoogle Scholar
  32. 32.
    Schlessinger, G.G.: Nitrogen trichloride-ether mix explodes. Chem. Eng. News 44, 46 (1966)Google Scholar
  33. 33.
    Baker, J.C.: Process of producing nitrogen trichloride. US Patent 1,510,132, 1924Google Scholar
  34. 34.
    Coleman, G.H., Craig, D.: Nitrogen trichloride and unsaturated ketones. J. Am. Chem. Soc. 49, 2593–2596 (1927)CrossRefGoogle Scholar
  35. 35.
    Coleman, G.H., Craig, D.: Nitrogen trichloride and unsaturated ketones. II. J. Am. Chem. Soc. 50, 1816–1820 (1928)CrossRefGoogle Scholar
  36. 36.
    Coleman, G.H., Howells, H.P.: Addition of nitrogen trichloride to unsaturated hydrocarbons. I. J. Am. Chem. Soc. 45, 3084–3089 (1923)CrossRefGoogle Scholar
  37. 37.
    Coleman, G.H., Mullins, G.M.: Nitrogen trichloride and unsaturated acids. J. Am. Chem. Soc. 51, 937–910 (1929)CrossRefGoogle Scholar
  38. 38.
    Coleman, G.H., Mullins, G.M., Pickering, E.: Nitrogen trichloride and unsaturated hydrocarbons. II. J. Am. Chem. Soc. 50, 2739–2741 (1928)CrossRefGoogle Scholar
  39. 39.
    Coleman, G.H., Buchanan, M.A., Paxson, W.L.: Reaction of nitrogen trichloride with Grignard reagent. J. Am. Chem. Soc. 55, 3669–3672 (1933)CrossRefGoogle Scholar
  40. 40.
    Jander, J.: Recent chemistry and structure investigation of nitrogen triiodide, tribromide, trichloride, and related compounds. Adv. Inorg. Chem. Radiochem. 19, 1–63 (1976)CrossRefGoogle Scholar
  41. 41.
    Galal-Gorchev, H., Morris, J.C.: Formation and stability of bromamide, bromimide, and nitrogen tribromide in aqueous solution. Inorg. Chem. 4, 899–905 (1965)CrossRefGoogle Scholar
  42. 42.
    Klapötke, T.: The reaction of bromine azide with bromine. Polyhedron 16, 2701–2704 (1997)CrossRefGoogle Scholar
  43. 43.
    Performance-oriented packaging standards; changes to classification, hazard communication, packaging and handling requirements based on UN standards and agency initiative. Fed. Reg. 55, 52402–52729 (1990)Google Scholar
  44. 44.
    Roozeboom, H.W.B.: Ammonium tribromide. J. Chem. Soc. 42, 140 (1882)Google Scholar
  45. 45.
    Inman, G.W., Lapointe, T.F., Johnson, J.D.: Kinetics of nitrogen tribromide decomposition in aqueous solution. Inorg. Chem. 15, 3037–3042 (1976)CrossRefGoogle Scholar
  46. 46.
    Cremer, H.W., Duncan, D.R.: Nitrogen triiodide. J. Chem. Soc. 2750–2754 (1930)Google Scholar
  47. 47.
    Chattaway, F.D.: The constitution of the so-called “Nitrogen iodide”. J. Chem. Soc. 69, 1572–1583 (1896)CrossRefGoogle Scholar
  48. 48.
    Meldrum, F.R.: The thermal decomposition of nitrogen iodide. Proc. R. Soc. Lond. A 174, 410–424 (1940)Google Scholar
  49. 49.
    Tornieporth-Oetting, I., Klapöke, T.: Nitrogen triiodide. Angew. Chem. Int. Ed. 29, 677–679 (1990)CrossRefGoogle Scholar
  50. 50.
    Greenwood, N.N.: Chemistry of the Elements. Elsevier, Oxford (1997)Google Scholar
  51. 51.
    Andrews, M.V., Shaffer, J., McCain, D.C.: Nitrogen-iodine bond strength. Thermochemistry of nitrogen triiodide ammine. J. Inorg. Nucl. Chem. 33, 3945–3947 (1971)CrossRefGoogle Scholar
  52. 52.
    Tudela, D.: Nitrogen triioidide. J. Chem. Educ. 79, 558 (2002)CrossRefGoogle Scholar
  53. 53.
    Chattaway, F.D., Orton, K.J.P.: The action of light on nitrogen iodide. Am. Chem. J. 24, 159–167 (1900)Google Scholar
  54. 54.
    Chattaway, F.D., Orton, K.J.P.: The formation and constitution of nitrogen iodide. Am. Chem. J. 24, 342–355 (1900)Google Scholar
  55. 55.
    Hartl, H., Ullrich, D.: Die Kristallstruktur von Stickstofftrijodid-1-Pyridin NI3.C5H5N. Zeitschrift für anorganische und allgemeine Chemie 409, 228–236 (1974)CrossRefGoogle Scholar
  56. 56.
    Jander, J., Bayersdorfer, L., Höhne, K.: Nitrogen-iodine compounds. V. Adducts of nitrogen triiodide with N-bases and their application for constitution determination of nitrogen iodide [nitrogen to iodine ratio 2:3]. Chem. Abst. CAN 68, 110940 (1968)Google Scholar
  57. 57.
    Pritzkow, H.: Die Kristallstruktur von Stickstofftrijodid-1-Dijod-1-Hexamethylentetramin NI3.I2.C6H12N4. Zeitschrift für anorganische und allgemeine Chemie 409, 237–247 (1974)CrossRefGoogle Scholar
  58. 58.
    Meerkämper, B.: Zum Verhalten des Jodstickstoffs beim Belichten mit Strahlung verschiedener Intensität. Zeitschrift für Elektrochemie und Angewandte Physikalische Chemie 58, 387–416 (1954)Google Scholar
  59. 59.
    Henderson, G.H.: α-Particles as detonators. Nature 109, 749 (1922)CrossRefGoogle Scholar
  60. 60.
    Poole, H.H.: The detonating action of α-particles. Sci. Proc. R. Dublin Soc. 17, 93–95 (1922)Google Scholar
  61. 61.
    Bowden, F.P., Singh, K.: Irradiation of explosives with high-speed particles and the influence of crystal size on explosion. Proc. R. Soc. Lond. A 227, 22–37 (1954)Google Scholar
  62. 62.
    Feenenberg, E.: The detonation of nitrogen iodide by nuclear fission. Phys. Rev. 55, 980–981 (1939)CrossRefGoogle Scholar
  63. 63.
    Hanus, M.: Méně známé třaskaviny. Synthesia a.s., VUPCH, Pardubice (1996)Google Scholar
  64. 64.
    Garner, W.E., Latchem, W.E.: Note on the decomposition of nitrogen iodide. Trans. Faraday Soc. 32, 567–569 (1936)CrossRefGoogle Scholar
  65. 65.
    Hambly, G.F., Peters, R.: Explosion of nitrogen triiodide: A safer and cleaner demonstration. J. Chem. Educ. 70, 943 (1993)CrossRefGoogle Scholar
  66. 66.
    Bärnighausen, H., Hartl, H., Jander, J.: Kristalldaten von Stickstofftrijodid-1-Ammoniak NI3.NH3. Zeitschrift für Naturforschung. Teil B. Anorganische Chemie, organische Chemie, Biochemie, Biophysik, Biologie 21, 591 (1966)Google Scholar
  67. 67.
    Chudnov, A.F.: Sposob polucheniya iodictogo azota. SU Patent 1,212,935, 1986Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Robert Matyáš
    • 1
  • Jiří Pachman
    • 1
  1. 1.Faculty of Chemical TechnologyUniversity of PardubicePardubiceCzech Republic

Personalised recommendations