Advertisement

Fabrication of Low Dimensional Nanowire-Based Devices using Dieletrophoresis

  • Ramazan Kizil
Chapter
Part of the NanoScience and Technology book series (NANO)

Abstract

Bottom-up assembly of nanostructured materials, such as metallic nanowires and carbon nanotubes, has proven to be a facile way of building electronic devices or sensing platforms with unparallel ease of device dimension control. Electric field assisted manipulation of roughly 320 nm diameter \(6\,\mu \mathrm{m}\) long nanowires with composition of Au–Ag–Au under ac bias across the lithographically defined parallel electrodes forms the basis of bottom-up assembly approach followed in this study. Nanowires were first aligned electrofluidically under ac bias of 10 Vpp and 1 kHz across 5 and \(6\,\mu \mathrm{m}\) separated electrodes. Chemical etching of the Ag segment in the nanowires aligned across the predefined electrodes resulted in reduction of the dimension of the electrode separation from \(5\,\mu \mathrm{m}\) to 50–100 nm. The alignment yield of \(6\,\mu \mathrm{m}\) Au–Ag–Au striped nanowires across gold electrodes was as high as 70%. The nanowires-based device was employed to the capture and electrical characterization of preferably a single 100 nm Au nanosphere in the nanogap.

Keywords

Biomolecular Interaction Nonuniform Electric Field Dielectrophoretic Force Metallic Nanowires Macroscopic World 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This chapter was prepared partly from nanowires-based nanoelectronics research at Penn State University, State College, PA. The author acknowledges great help of Dr. Mingwei Lie for microfabrication and invaluable contributions and research idea of professors Christine Keating and Theresa Mayer.

References

  1. 1.
    I. Amlani, A.M. Rawlett, L. Nagahara, K.R. Tsui. An approach to transport measurements of electronic molecules. Appl. Phys. Lett. 80, 2761–2763 (2002)Google Scholar
  2. 2.
    C.L. Asbury, G. van den Engh. Trapping of DNA in nonuniform oscillating electric fields. Biophys. J. 74, 1024–1030 (1998)Google Scholar
  3. 3.
    M.A. Banger, C.M. Hangarter, B. Yoo, Y. Rheem, W. Chen, A. Mulchandani, N.V. Myung. Magnetically assembled multisegmented Nanowires and their applications. Electroanalysis. 21, 61–67 (2009)Google Scholar
  4. 4.
    A. Bezryadin,C. Dekker, G. Schmid. Electrostatic trapping of single conducting nanoparticles between nanoelectrodes. Appl. Phys. Lett. 71, 1273–1275 (1997)Google Scholar
  5. 5.
    K.H. Bhatt, O.D. Velev. Control and modeling of the dielectrophoretic assembly of on-chip nanoparticle wires. Langmuir. 20, 467–476 (2004)Google Scholar
  6. 6.
    E. Braun, Y. Eichen, U. Sivan, G. Ben-Yoseph, DNA-templated assembly and electrode attachment of a conducting silver wire. Nature 391, 775–778 (1998)Google Scholar
  7. 7.
    Y. Cui, Q. Wei, C.M. Lieber, Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science. 293, 1289–1292 (2001)Google Scholar
  8. 8.
    S.A. Dayeh, C. Soci, P.K.L. Yu, E.T. Yu, D. Wang, Influence of surface states on the extraction of transport parameters from InAs nanowire field effect transistors. Appl. Phys. Lett. 90, 16212-1–16212-3 (2007)Google Scholar
  9. 9.
    F. Dewarrat, M. Calame, C. Schonenberger, Orientation and Positioning of DNA molecules with an electric field technique. Single Mol. 3, 189–193 (2002)Google Scholar
  10. 10.
    C. Durkan, M.A. Scheider, M.E. Welland, Analysis of failure mechanisms in electrically stresses Au nanowires. Appl. Phys. Lett. 86, 1280–1286 (1999)Google Scholar
  11. 11.
    P.R.C. Gascoyne, J. Vykoukal, Particle separation by dielectrophoresis. Electrophoresis 23, 1973–1983 (2002)Google Scholar
  12. 12.
    W.A. Germishuizen, C. Walti, R. Wirtz, M.B. Johnston, M. Pepper, A.G. Davies, A.P.J. Middleberg, Selective dielectrophoretic manipulation of surface immobilized DNA molecules. Nanotechnology 14, 896–902 (2003)Google Scholar
  13. 13.
    J.K. Gimzewski, C. Joachim, Nanoscale science of single molecules using local probes. Science 283, 1683–1688 (2002)Google Scholar
  14. 14.
    C. Gurtner, E. Tu, N. Jamshidi, R.W. Haigis, T.J. Onofrey, C.F. Edman, R. Sosnowski, B. Wallace, M.J. Heller, Microelectronic array devices and techniques for electric field enhanced DNA hybridization in low-conductance buffers. Electrophoresis 23, 1543–1550 (2002)Google Scholar
  15. 15.
    V. Haguet, D. Martin, L. Marcon, T. Heim, D. Stievand, Combines nanogap nanoparticles nanosensor for electrical detection of biomolecular interactions between polypeptides. Appl. Phys. Lett. 84, 1312–1215 (2004)Google Scholar
  16. 16.
    B. Hartzell, B. McCord, D. Asare, H. Chen, J.J. Heremans, V. Soghomonian, Comporative current-voltage characteristcs of nicked and repaired DNA. Appl. Phys. Lett. 82, 4800 (2003)Google Scholar
  17. 17.
    B. He, T.J. Morrow, C.D. Keating, Nanowire sensors for multiplexed detection of biomolecules. Curr. Opin. Chem. Biol. 12, 522–528 (2008)Google Scholar
  18. 18.
    M.J. Heller, E. Tu, R. Martinsons, R.R. Anderson, C. Gurtner, A. Forster, R. Sosnowski: Active microelectronic array systems for DNA hybridization, genotyping, pharmacogenomics and nanofabrication Applications. In: Dekker, M. (eds.) Integrated Microfabricated Devices, pp. 223–270, Heller and Guttman, Chap. 10 (2002)Google Scholar
  19. 19.
    R. Holzel, N. Gajovic-Eichelmann, F.F. Bier, Oriented and vectorial immobilization of linear M13 dsDNA between interdigitaded electrodes-towards single molecule DNA nanostructures. Biosens. Bioelectron. 18, 555–564 (2003)Google Scholar
  20. 20.
    J. Homola, S.S. Yee, G. Gauglitz, Surface plasmon resonance sensors: review. Sens. Actuators B 54, 3 (1998)Google Scholar
  21. 21.
    Y. Huang, X. Duan, Q. Wei, C.M. Lieber, One-dimensional nanostructures into functional Networks. Science 291, 630–633 (2001)Google Scholar
  22. 22.
    Y. Huang, J. Mo Yang, P.J. Hopkins, S. Kassagne, M. Tirido, A.H. Forster, H. Reese, Separations of simulants of biological warfare agents from blood by a miniaturized dielectrophoresis device. Biomed. Microdevices 5, 217–225 (2003)Google Scholar
  23. 23.
    M.P. Hughes, Strategies for dielectrophoretic separation in laboratory-on-a-chip systems. Electrophoresis 23, 2569–2582 (2002)Google Scholar
  24. 24.
    A. Javey, S. Nam, R.S. Friedman, H. Yan, C.M. Lieber, Layer-by-layer assembly of nanowires for three-dimensional, multifunctional electronics. Nano Lett. 7, 773–777 (2007)Google Scholar
  25. 25.
    T.B. Jones, Electromechanics of Particles (Cambridge University Press, Cambridge, 1995)Google Scholar
  26. 26.
    Y.V. Kervennic, H.S.J. van der Zant, A.F. Morpurgo, L. Gurevich, L.P. Kouwenhoven, Nanometer-spaced electrodes with calibrated separation. Appl. Phys. Lett. 80, 321–323 (2002)Google Scholar
  27. 27.
    S.I. Khondaker, Z. Yao, Fabrication of nanometer spaced electrodes using gold nanoparticles. Appl. Phys. Lett. 81, 4613 (2002)Google Scholar
  28. 28.
    D.L. Klein, P.L. McEuen, J.E. Bowen Katari, R. Roth, A.P. Alivisatos, An approach to electrical studies of single nanocrystals. Appl. Phys. Lett. 68, 2574 (1996)Google Scholar
  29. 29.
    J.F. Klemic, E. Stern, M.A. Reed, Hotwiring biosensors. Nat. Biotechnol. 19, 294–295 (2001)Google Scholar
  30. 30.
    R. Krahne, A. Yacoby, A. Shtrikman, I. Bar-Joseph, T. Dadosh, J. Sperling, Fabrication of nanoscale gaps in integrated circuits. Appl. Phys. Lett. 81, 730–733 (2002)Google Scholar
  31. 31.
    R. Krahne, T. Dadosh, Y. Gordin, A. Yacoby, A. Shtrikman, D. Mahalu, J. Sperling, I. Bar-Joseph, Nanoparticles and nanogaps: controlled positioning and fabrication. Phys. E 17, 498–502 (2003)Google Scholar
  32. 32.
    C.Z. Li, H.X. He, A. Bogozi, J.S. Bunch, N.J. Tao, Molecular detection based on conductance quantization of nanowires. Appl. Phys. Lett. 76, 1333–1335 (2000)Google Scholar
  33. 33.
    K. Liu, P.H. Avouris, J. Bucchignano, R. Martel, S. Sun, J. Michi, Simple fabrication scheme for sub-10nm electrode gaps using electron beam lithography. Appl. Phys. Lett. 80, 865–867 (2002)Google Scholar
  34. 34.
    R. Mariella, MEMS for bio-assays. Biomed. Microdevices 4, 77–87 (2002)Google Scholar
  35. 35.
    H. Morgan, M.P. Hughes, N.G. Green, Separation of submicron bioparticles by dielectrophoresis. Biophys. J. 77, 516–525 (1999)Google Scholar
  36. 36.
    A.F. Morpurgo, C.M. Marcus, D.B. Robinson, Controlled fabrication of metallic electrodes with atomic separation. Appl. Phys. Lett. 74, 2084–2086 (1999)Google Scholar
  37. 37.
    A. Motayed, M. He, A.V. Davydov, J. Melngailis, S.N. Mohammad, Realization of reliable GaN nanowire transistors utilizing dielectrophoretic alignment technique. J. Appl. Phys. 100, 114310-9 (2006)Google Scholar
  38. 38.
    S.R. Nicewarner-Pena, R.G. Freeman, B.D. Reiss, L. He, D.J. Pena, I.D. Walton, R. Cromer, C.D. Keating, M.J. Natan, Submicrometer metallic barcodes. Science 294, 137–141 (2001)Google Scholar
  39. 39.
    S. Niyogi, C. Hangarter, R.M. Thamankar, Y. Chiang, R. Kawakami, N.V. Myung, R.C. Haddon, Magnetically assembled multiwalled carbon nanotubes on ferromagnetic contacts. J. Phys. Chem. B 108, 19818–19824 (2004)Google Scholar
  40. 40.
    J. Park, A.N. Pasupathy, J.I. Goldsmith, A.V. Soldatov, C. Chang, Y. Yaish, J.P. Sethna, H.D. Abruna, D.C. Ralph, P.L. McEun, Wiring up single molecules. Thin Solid Films 438439, 457–461 (2003)Google Scholar
  41. 41.
    H. Park, A.K.L. Lim, A.P. Alivisatos, J. Park, P.L. McEuen, Fabricatiom of metallic electrodes with nanometer separation by electromigration. Appl. Phys. Lett. 75, 301–303 (1999)Google Scholar
  42. 42.
    S.J. Park, A. Taton, C.A. Mirkin, Array based electrical detection of DNA with nanoparticle probes. Science 295, 1503 (2002)Google Scholar
  43. 43.
    R. Pethig, V. Bressler, Y. Chen, K.M. Tate, Dielectrophoretic studies of the activation of human T lymphocytes using a newly developed cell profiling system. Electrophoresis 23, 2057–2063 (2002)Google Scholar
  44. 44.
    H.A. Pohl, Dielectrophoresis (Cambridge University Press, Cambridge, 1978)Google Scholar
  45. 45.
    D. Porath, Y. Levi, M. Tarabiah, O. Millo, Tunneling spectroscopy of isolated C60 molecules in the presence of charging effects. Phys. Rev. B 56, 9829–9833 (1997)Google Scholar
  46. 46.
    D. Porath, A. Bezryadin, S. Vries, C. Dekker, Direct measurements of electrical transport through DNA molecules. Nature 403, 635–638 (2000)Google Scholar
  47. 47.
    S. Raychaudhuri, S.A. Dayeh, D. Wang, E.T. Yu, Precise semiconductor nanowire placement through dielectrophoresis. Nano Lett. 9, 2260–2266 (2009)Google Scholar
  48. 48.
    M.A. Reed, C. Zhou, C.J. Muller, T.P. Burgin, J.M. Tour, Conductance of molecular junctions. Science 278(5336), 252–254 (1997)Google Scholar
  49. 49.
    B.D. Reiss, R. Griffith Freeman, I.D. Walton, S.M. Norton, P.C. Smith, W.G. Stamos, C.D. Keating, M.J. Natan, Electrochemical synthesis and optical readout of striped metal rods with submicron features. J. Electroanalyt. Chem. 522, 95–103 (2002)Google Scholar
  50. 50.
    P.A. Smith, C.D. Nordquist, T.N. Jackson, T.S. Mayer, B.R. Martin, J. Mbindyo, T.E. Mallouk, Electric-field assisted assembly of metallic nanowires. Appl. Phys. Lett. 77, 1399–1401 (2000)Google Scholar
  51. 51.
    R. Sordan, M. Burghard, K. Kern, Removable template route to metallic nanowires and nanogaps. Appl. Phys. Lett. 79, 2073–2075 (2001)Google Scholar
  52. 52.
    C.P.T. Svensson, T. Martensson, J. Tragardh, C. Larsson, M. Rask, D. Hessman, J. Samuelson, J. Ohlsson, Monolithic GaAs/InGaP nanowire light emitting diodes on silicon. Nanotechnology 19, 305201–305207 (2008)Google Scholar
  53. 53.
    M. Tanase, D.M. Silevitch, A. Hultgreen, L.A. Bauer, P.C. Searson, G.J. Meyer, D.H. Reich, Magnetic trapping and self-assembly of multicomponent nanowires. J. Appl. Phys. 91, 8549–8551 (2002)Google Scholar
  54. 54.
    C. Thelander, L.E. Fröberg, C. Rehnstedt, L. Samuelson, L.-E. Wernersson, Vertical enhancement-mode InAs nanowires field-effect transistor with 50 nm wrap gate. IEEE Electron Device Lett. 29, 206–208 (2008).Google Scholar
  55. 55.
    O.D. Velev, E.W. Kaler, In situ assembly of colloidal particles into miniaturized biosensors. Langmuir 15, 3693–3698 (1999)Google Scholar
  56. 56.
    D. Wang, S. Jin, Y. Wu, C.M. Lieber, Large-scale hierarchical organization of nanowire arrays for integrated nanosystems. Nano Lett. 3, 1255–1259 (2003)Google Scholar
  57. 57.
    M. Washizu, O. Kurosawa, Electrical manipulation of DNA in microfabricated structures. IEEE Trans. Indust. Appl. 26, 1165–1172 (1990)Google Scholar
  58. 58.
    M. Washizu, O. Kurosawa, I. Arai, S. Suziki, N. Shimamoto, Application of electrostatic stretch-and positioning of DNA. IEEE Trans. Indust. Appl. 31, 447–456 (1995)Google Scholar
  59. 59.
    S. Weiss Fluorescence spectroscopy of single biomolecules. Science 283, 1676–1683 (1999)Google Scholar
  60. 60.
    H. Zhou, M. Wissinger, J. Fallert, R. Hauschild, R. Stelzl, C. Klingshirn, H. Kalt, Ordered, uniform-sized ZnO nanolaser arrays. Appl. Phys. Lett. 91, 181112-1–181112-3 (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Chemical Engineering DepartmentIstanbul Technical UniversityMaslakIstanbul

Personalised recommendations