Production of Bioethanol from Food Industry Waste: Microbiology, Biochemistry and Technology

  • V. K. Joshi
  • Abhishek Walia
  • Neerja S. Rana


Biofuels such as bioethanol are becoming a viable alternative to fossil fuels. Progressive depletion of conventional fossil fuels along with increasing energy consumption and greenhouse gas emissions has led to a search renewable and sustainable energy sources. Food industry waste such as lignocellulosic biomass provides enormous potential for bioethanol production because of its low cost and huge availability. To produce bioethanol from cellulosic biomass, a pretreatment process is employed to reduce the sample size, break down the hemicelluloses into sugars, and open up the structure of the cellulose component. The cellulose portion is hydrolyzed by acids or enzymes into glucose sugar that is fermented to bioethanol. The sugars from the hemicelluloses are also fermented to bioethanol. As such, ethanol producing microorganisms, mainly Zymomonas mobilis and Saccharomyces cerevisiae are potential candidates for ethanol production. However, the substrates are not cost-effective, as the organisms are not able to hydrolyze complex sugars such as lignocellulose, several Gram-negative bacteria such as Escherichia coli, Z. mobilis, Klebsiella oxytoca, Gram-positive bacteria such as Clostridium cellulolyticum, Lactobacillus casei, and several yeast strains have been engineered for bioethanol production from cellulosic substrates.


Ethanol Production Wheat Straw Rice Straw Sugarcane Bagasse Ethanol Yield 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Aarts MG, Keijzer CJ, Stiekema WJ, Pereira A (1995) Molecular characterization of the CERI gene of Arabidopsis involved in epicuticular wax biosynthesis and pollen fertility. Plant Cell 7:2115–2127Google Scholar
  2. 2.
    Abate C, Callieri D, Rodriguez E, Garro O (1996) Ethanol production by a mixed culture of flocculant strain of Zymomonas mobilis and Saccharomyces sp. Appl Microbiol Biotechnol 45:580CrossRefGoogle Scholar
  3. 3.
    Abrini J, Naveau H, Nyns EJ (1994) Clostridium autoethanogenum, sp. nov., an anaerobic bacterium that produces ethanol from carbon monoxide. Arch Microbiol 161:345–351CrossRefGoogle Scholar
  4. 4.
    Alper H, Moxley J, Nevoigt E, Fink GR, Stephanopoulos G (2006) Engineering yeast transcription machinery for improved ethanol tolerance and production. Science 314:1565–1568CrossRefGoogle Scholar
  5. 5.
    Anderson E (1982) Brazil sets lofty goals for ethanol. Chem Eng News 60(3):15Google Scholar
  6. 6.
    Andren RK, Erickson RI, Medeiros JE (1976) In: Gaden EL, Mandels M, Reese ET, Sapno LA (eds) Enzymatic conversion of cellulosic material: technology and application. Wiley, New York, p 177Google Scholar
  7. 7.
    Anuj KC, Ravinder R, Lakshmi MN, Rao V, Ravindra P (2007) Economic and environmental impact of bioethanol production technology. Biotechnol Mole Biol Rev 2(1):14–32Google Scholar
  8. 8.
    Atsumi S, Cann AF, Connor MR, Shen CR, Smith KM, Brynildsen MP, Chou KJ, Hanai T, Liao JC (2008) Metabolic engineering of Escherichia coli for 1-butanol production. Metab Eng 10(305):311Google Scholar
  9. 9.
    Atsumi S, Hanai T, Liao JC (2008) Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature 451:86–89CrossRefGoogle Scholar
  10. 10.
    Atwell WA (2001) An overview of wheat development, cultivation, and production. Cereal Foods World 46:59–62Google Scholar
  11. 11.
    Badger PC, Broder DJ (1989) Ethanol production from food processing wastes. Hort Sci 24(2):227Google Scholar
  12. 12.
    Baxter LL, Miles TR, Miles TR Jr, Jenkins BM, Dayton DC, Milne TA, Bryers RW, Oden LL (1996) The behavior of inorganic material in biomass-fired power boilers—field and laboratory experiences: volume ii of alkali deposits found in biomass power plants. National Renewable Energy Laboratory, Golden, CO. Report: NREL/TP-433-814Google Scholar
  13. 13.
    Bazua CD, Wilke CR (1977) Ethanol effects on the kinetics of continuous fermentation with Saccharomyces cerevisiae. Biotechnol Bioeng Symp 7:105Google Scholar
  14. 14.
    Bengtsson O, Jeppsson M, Sonderegger M, Parachin NS, Sauer U, Hahn-Hagerdal B, Gorwa-Grauslund MF (2008) Identification of common traits in improved xylose-growing Saccharomyces cerevisiae for inverse metabolic engineering. Yeast 25(11):835–847CrossRefGoogle Scholar
  15. 15.
    Bermejo LL, Welker NE, Papoutsakis ET (1998) Expression of Clostridium acetobutylicum ATCC 824 genes in Escherichia coli for acetone production and acetate detoxification. Appl Environ Microbiol 64:1079–1085Google Scholar
  16. 16.
    Bhat PK, Singh MBD (1975) Ethanol production from coffee waste. J Coffee Res 5(3–4):71Google Scholar
  17. 17.
    Bloch F, Brown GE, Farkas DF (1973) Am Potato J 50(10):357CrossRefGoogle Scholar
  18. 18.
    Borzani W, Gerb A, Delahiguera GA, Pires MH, Piolovic R (1993) Batch ethanol fermentation of molasses-A correlation between the time required to complete fermentation and the initial concentration of sugar and yeast cells. World J Microbiol Biotechnol 9(2):265CrossRefGoogle Scholar
  19. 19.
    Bothast RJ, Saha BC, Flosenzier AV, Ingram LO (1994) Fermentation of L-arabinose, d-xylose and d-glucose by ethanologenic recombinant Klebsiella oxytoca strain P2. Biotechnol Lett 16(4):401–406CrossRefGoogle Scholar
  20. 20.
    Boussarsar H, Roge B, Mathlouth M (2009) Optimization of sugarcane bagasse conversion by hydrothermal treatment for the recovery of xylose. Bioresour Technol. doi: 10.1016/j.biortech.2009.07.019 Google Scholar
  21. 21.
    Bradock RJ (1977) Practical aspects of food manufacturing specially products. In: Proceedings of 17th IFT annual short course for food indust. Institute of Food and Agricultural Science, University of Florida, GainesvilleGoogle Scholar
  22. 22.
    Bridson EY, Broker A (1970) Design of media. In: Noms J, Ribbins D (eds) Methods in microbiology, vol 3A. Academic Press, New York, p 229Google Scholar
  23. 23.
    Brown SW, Oliver SG, Harrisson DEF, Righelato RC (1981) Ethanol inhibition of yeast growth and fermentation. Differences in magnitude and complexity of the effect. Eur J Appl Microbiol Biotechnol 11:151CrossRefGoogle Scholar
  24. 24.
    Carvalheiro F, Duarte LC, Girio FM (2008) Hemicellulose biorefineries: a review on biomass pretreatments. J Sci Ind Res 67:849–864Google Scholar
  25. 25.
    Chaabane FB, Aldiguier AS, Alfenore S, Cameleyre X, Blanc P, Bideaux C, Guillouet SE, Roux G, Molina-Jouve C (2006) Very high ethanol productivity in an innovative continuous two-stage bioreactor with cell recycle. Bioprocess Biosyst Eng 29:49–57CrossRefGoogle Scholar
  26. 26.
    Chandrakant P, Bisaria VS (1998) Simultaneous bioconversion of cellulose and hemicellulose to ethanol. Crit Rev Biotechnol 18:295–331CrossRefGoogle Scholar
  27. 27.
    Chang VS, Nagwani M, Kim CH, Holtzapple MT (2001) Oxidative lime pretreatment of high-lignin biomass: poplar wood and newspaper. Appl Biochem Biotechnol 94:1–28CrossRefGoogle Scholar
  28. 28.
    Chaudhary AB, Chincholkar SB (1986) Cell immobilization: a critical approach to ethanol by Schizosaccharomyces pombe. Indian J Microb 36:75Google Scholar
  29. 29.
    Converti A, Perego P, Borghi MD, Ferraiolo G (1989) Pretreatment operations and alcohol fermentation of orange wastes. J Ferm Bioeng 68(4):277Google Scholar
  30. 30.
    Cysewski GR, Wilke CR (1976) Fermentation kinetics and process economics for the production of ethanol. Report LBL-4480. Lawrence Berkeley Laboratory, BerkeleyGoogle Scholar
  31. 31.
    Cysewski GR, Wilke CR (1976) Utilization of cellulosic material through enzymatic hydrolysis. Biotechnol Bioeng 18:1297CrossRefGoogle Scholar
  32. 32.
    Daniel SL, Hsu T, Dean SI, Drake HL (1990) Characterization of the hydrogen and carbon monoxide-dependent chemolithotrophic potentials of the acetogens Clostridium thermoaceticum and Acetogenium kivui. J Bacteriol 172:4464–4471Google Scholar
  33. 33.
    Davis EE, Jung SC (1974) The American type culture collection. ATCC, RockvillaGoogle Scholar
  34. 34.
    De Deken RH (1966) The Crabtree effect: a regulatory system in yeast. J Gen Microbiol 44:149Google Scholar
  35. 35.
    Deanda K, Zhang M, Eddy C, Picataggio S (1996) Development of an arabinose fermenting Zymomonas mobilis strain by metabolic pathway engineering. Appl Environ Microbiol 62(12):4465–4470Google Scholar
  36. 36.
    Dekker RFH (1985) Biodegradation of the hemicelluloses. In: Higuchi T (ed) Biosynthesis and biodegradation of wood components. Academic Press, Orlando, p 503Google Scholar
  37. 37.
    Demirbas A (2009) Biohydrogen, for future engine fuel demands (Chapter 3). In Kim NY, Cho JS, Yoon WB, Lee SY, Kang DH, Lee HY (eds) Biofuels. Springer, New York, pp 61–84Google Scholar
  38. 38.
    Den Haan R, van Zyl WH (2003) Enhanced xylan degradation and utilisation by Pichia stipitis overproducing fungal xylanolytic enzymes. Enzyme Microb Technol 33(5):620–628CrossRefGoogle Scholar
  39. 39.
    Doelle HW, Kennedy LD, Doelle MB (1991) Scale up of ethanol production from sugarcane using Zymomonas mobilis. Process Biochem 24:137Google Scholar
  40. 40.
    Doran JB, Aldrich HC, Ingram LO (1994) Saccharification and fermentation of sugar-cane bagasse by Klebsiella oxytoca P2 containing chromosomally integrated genes encoding the Zymomonas mobilis ethanol pathway. Biotechnol Bioeng 44(2):240–247CrossRefGoogle Scholar
  41. 41.
    Drapcho CM, Nhuan NP, Walker TH (2008) Biofuels engineering process technology, vol 42. Mc Graw Hill Companies, New York, pp 383–386Google Scholar
  42. 42.
    Eggeman T, Elander RT (2005) Process and economic analysis of pretreatment technologies. Bioresour Technol 96:2019–2025CrossRefGoogle Scholar
  43. 43.
    Eriksson KEL, Blanchette RA, Ander P (1990) Microbial and enzymatic degradation of wood and wood components, vol 1. Springer, Berlin, p 407Google Scholar
  44. 44.
    Fall R, Phelps P, Spindler D (1984) Bioconversion of xylan to triglycerides by oil-rich yeasts. Appl Environ Microb 47:1130Google Scholar
  45. 45.
    Fengel D, Wegener G (1983) Wood: chemistry, ultrastructure, reactions. Walter de Gruyter and Co, BerlinCrossRefGoogle Scholar
  46. 46.
    Flickinger MC (1980) Current biological research in conversion of cellulosic carbohydrates into liquid fuels: how far have we come? Biotechnol Bioeng 23:27Google Scholar
  47. 47.
    Florenzano G, Poulain M (1984) A study of acetate production from cellulose using Clostridium thermocellum. Biomass 4:295–303CrossRefGoogle Scholar
  48. 48.
    Garrote G, Dominguez H, Parajo JC (2002) Autohydrolysis of corncob: study of non-isothermal operation for xylooligosaccharide production. J Food Eng 52:211–218CrossRefGoogle Scholar
  49. 49.
    Genthner BRS, Bryant MP (1987) Additional characteristics of one-carbon compound utilization by Eubacterium limosum and Acetobacterium woodii. Appl Environ Microbiol 53:471–476Google Scholar
  50. 50.
    Gera IB, Kramr A (1969) The utilization of food industries wastes. In: Chichester CO, Mkak EM, Stewart GF (eds) Advances in food research. Academic Press, New York, p 28Google Scholar
  51. 51.
    Glaumlich TR (1983) Potential fermentation products from citrus processing waste. Food Technol 37:94Google Scholar
  52. 52.
    Goggin B, Thorsson G (1982) Operating experience with Biostill in a commercial distillery. Alfo-Laval, Tumpa, SwedenGoogle Scholar
  53. 53.
    Gong CS, Chen LF, Tsao GI, Flickinger MG (1981) Conversion of hemicellulose carbohydrates. Adv Biochem Eng 20:93Google Scholar
  54. 54.
    Gorgens JF, van Zyl WH, Knoetze JH, Hahn-Hägerdal B (2001) The metabolic burden of the PGK1 and ADH2 promoter systems for heterologous xylanase production by Saccharomyces cerevisiae in defined medium. Biotechnol Bioeng 73(3):238–245CrossRefGoogle Scholar
  55. 55.
    Govinda Rao VM (1980) Rice husk, a raw material for industrial chemicals. In: Achaya KT et al (eds) Proceedings of the symposium on wastes from food industries. Utilization and Disposal. Association of Food Scientists and Technologists (India), CFTRI, Mysore, IndiaGoogle Scholar
  56. 56.
    Gray WD, Stark WH, Kolachov P (1942) J Bacteriol 43:270Google Scholar
  57. 57.
    Grohmann K, Cameron RG, Buslig BS (1995) Fermentation of sugars in orange peel hydrolysates to ethanol by recombinant Escherichia coil KOII. Appl Biochem Biotechnol Part A Enzyme Eng Biotechnol 51–52:423Google Scholar
  58. 58.
    Grohmann K, Baldwin EA, Buslig BS (1994) Production of ethanol from enzymatic hydrolysed orangr peel by the yeast Saccharomyces cerevisiae. Appl Biochem Biotechnol 45(46):315CrossRefGoogle Scholar
  59. 59.
    Gu Bi, Ye Guozhen (2000) Commercial scale production of ethanol from cassava pulp. In: Howeler RH, Oates CG, Brien GMO (eds) Cassava starch and starch derivatives, Proceedings of the international symposium held in Nannking Guangxi, China, 11–15 Novemb 1996, pp 11–15Google Scholar
  60. 60.
    Guo GL, Hsu DC, Chen WH, Chen WH, Hwang WS (2009) Characterization of enzymatic saccharification for acid-pretreated lignocellulosic materials with different lignin composition. Enzyme Microb Technol 45:80–87CrossRefGoogle Scholar
  61. 61.
    Gupta LK, Pathak G, Tiwari RP (1990) Effect of nutrition variables on solid state alcoholic fermentation of apple pomace by yeast. J Food Sci Agric 50:55–2CrossRefGoogle Scholar
  62. 62.
    Guzman-Maldonado H, Paredes-Lopez O (1995) Amylolytic enzymes and products derived from starch: a review. Crit Rev Food Sci Nutrition 35:373CrossRefGoogle Scholar
  63. 63.
    Hammond J, Brent ER, Diggins D, Coble CG (1996) Alcohol from bananas. Bioresour Technol 56(1):125CrossRefGoogle Scholar
  64. 64.
    Hanai T, Atsumi S, Liao JC (2007) Engineered synthetic pathway for isopropanol production in Escherichia coli. Appl Environ Microbiol 73:7814–7818CrossRefGoogle Scholar
  65. 65.
    Hang YD, Walter RH (1989) Treatment and utilization of apple processing wastes. In: Downing DL (ed) Processed apple products. Van Nostrand Reinhold, New York, pp 365–377Google Scholar
  66. 66.
    Hang YD, Lee CY, Woodams EF (1982) A solid state system for production of ethanol from apple pomace. J Food Sci 47:1851–1852CrossRefGoogle Scholar
  67. 67.
    Hang YD, Lee CY, Woodams E, Cooley HJ (1981) Production of alcohol from apple pomace. App Environ Microb 42:1128–1129Google Scholar
  68. 68.
    Hatakka AI (1983) Pretreatment of wheat straw by white-rot fungi for enzymic saccharification of cellulose. Appl Microb Biotechnol 18:350–357CrossRefGoogle Scholar
  69. 69.
    Haukeli AD, Lie S (1971) Controlled supply of trace amounts of oxygen in laboratory scale fermentations. Biotechnol Bioeng 13:619CrossRefGoogle Scholar
  70. 70.
    Hayashida S, Ohta S (1981) Formation of high concentrations of alcohol by various yeasts. J Inst Brew 68:478Google Scholar
  71. 71.
    Hodge HM, Hildebrandt FM (1954) Alcoholic fermentation of molasses. In: Underkolfer LA, Hickey RJ (eds) Industrial fermentation, vol 1. Chemical Pub Co., New York, p 73Google Scholar
  72. 72.
    Holzer H (1968) Biochemistry of adaptation of yeast. In: Mills A, Krebids S (eds) Aspects of yeast metabolism. Blackwell, Oxford, p. 155Google Scholar
  73. 73.
    Ingram LO, Conway T, Clark DP, Sewell GW, Preston JF (1987) Genetic engineering of ethanol production in Escherichia coli. Appl Environ Microbiol 53:2420–2425Google Scholar
  74. 74.
    Ingram LO, Gomez PF, Lai X, Moniruzzaman M, Wood BE, Yomano LP, York SW (1998) Metabolic engineering of bacteria for ethanol production. Biotechnol Bioeng 58:204–214CrossRefGoogle Scholar
  75. 75.
    Ingram LO, Doran JB (1995) Conversion of cellulosic materials to ethanol. FEMS Microbiol Rev 16:235–241CrossRefGoogle Scholar
  76. 76.
    Ingram LO, Conway T (1988) Expression of different levels of ethanologenic enzymes from Zymomonas mobilis in recombinant strains of Escherichia coli. Appl Environ Microbiol 54(2):397–404Google Scholar
  77. 77.
    Jarosz K (1988) Solid state alcoholic fermentation of apple pomace. Acta Alimentaria Polonica 14(3/4):139–144Google Scholar
  78. 78.
    Jeffries TW (2008) Engineering the Pichia stipitis genome for fermentation of hemicellulose hydrolysates. In: Wall JD, Hardwood CS, Demain A (eds) Bioenergy. ASM Press, Washington, DC, pp 37–47Google Scholar
  79. 79.
    Jeffries TW, Grigoriev IV, Grimwood J, Laplaza JM, Aerts A, Salamov A, Schmutz J, Lindquist E, Dehal P, Shapiro H, Jin YS, Passoth V, Richardson PM (2007) Genome sequence of the lignocellulose-bioconverting and xylose fermenting yeast Pichia stipitis. Nat Biotechnol 25(3):319–326CrossRefGoogle Scholar
  80. 80.
    Jeffries TW, Van Vleet JR (2009) Pichia stipitis genomics, transcriptomics, and gene clusters. FEMS Yeast Res 9(6):793–807CrossRefGoogle Scholar
  81. 81.
    Jones TD, Harvard JM, Dauguilis AJ (1993) Ethanol production from lactose by extractive fermentation. Biotechnol Lett 15(8):871CrossRefGoogle Scholar
  82. 82.
    Jones RP, Pamment N, Greenfield PF (1981) Alcohol fermentation by yeasts. Process Biochem 16:42Google Scholar
  83. 83.
    Joshi VK, Sandhu DK (1996) Effect on type of alcohols in the distillates from the solid state fermentation of apple pomace by different yeasts. Natl Acad Sci Letters 49(11–12):219–224Google Scholar
  84. 84.
    Joshi VK, Sandhu DK (1996) Preparation and evaluation of animal feed using solid state fermentation of apple pomace. Bioresour Technol 56:251–255CrossRefGoogle Scholar
  85. 85.
    Joshi VK, Jaswal S, Lal B (1998) Apple pomace: effect of sulphur dioxide and temperature on its preservation and medium optimization for yeast biomass production. J Sci Ind Res 57(10&11):692–697Google Scholar
  86. 86.
    Joshi VK (1998) Apple pomace utilization—present status and future strategies. In: Pandey Ashok (ed) Advances in biotechnology. Educational Publishers & Distributors, New Delhi, pp 141–155Google Scholar
  87. 87.
    Joshi VK, Sandhu DK (1994) Solid state fermentation of apple pomace for production of ethanol and animal feed. In: Pandey A (ed) Solid state fermentation. Wiley, New Delhi, pp 93–98Google Scholar
  88. 88.
    Joshi VK, Sandhu DK, Jaiswal S (1995) Effect of addition of SO2 on solid state fermentation of apple pomace. Curr Sci 69(3):263–264Google Scholar
  89. 89.
    Kalscheuer R, Stolting T, Steinbuchel A (2006) Micro-diesel: Escherichia coli engineered for fuel production. Microbiology 152:2529–2536CrossRefGoogle Scholar
  90. 90.
    Karhumaa K, Pahlman AK, Hahn-Hägerdal B, Levander F, Gorwa-Grauslund MF (2009) Proteome analysis of the xylose-fermenting mutant yeast strain TMB 3400. Yeast 26(7):371–382CrossRefGoogle Scholar
  91. 91.
    Katzen R, Fowler DE (1994) Ethanol from lignocellulosic waste with utilization of recombinant bacteria. Appl Biochem Biotechnol 45(46):697CrossRefGoogle Scholar
  92. 92.
    Kennedy MJ (1994) Apple pomace and Kiwi fruit: processing options. Australas Biotechno 4:43–49zbMATHGoogle Scholar
  93. 93.
    Kerstetter JD, Lyons JK (2001) Wheat straw for ethanol production in Washington: a resource, technical, and economic assessment. Washington State University Cooperative Extension, OlympiaGoogle Scholar
  94. 94.
    Khanna V, Gupta KG (1986) Effect of dithiocarbomates on citric acid production by Aspergillus niger. Folio Microbiologica 31:288–292CrossRefGoogle Scholar
  95. 95.
    Kim S, Dale BE (2004) Global potential bioethanol production from wasted crops and crop residues. Biomass Bioenergy 26:361–375CrossRefGoogle Scholar
  96. 96.
    Kim S, Holtzapple MT (2006) Delignification kinetics of corn stover in lime pretreatment. Bioresour Technol 97:778–785CrossRefGoogle Scholar
  97. 97.
    Klinke HB, Ahring BK, Schmidt AS, Thomsen AB (2002) Characterization of degradation products from alkaline wet oxidation of wheat straw. Bioresour Technol 82:15–26CrossRefGoogle Scholar
  98. 98.
    Kochar K (1982) Vast new horizons opening for ethanol. J Commerce:1cGoogle Scholar
  99. 99.
    Kotter P, Ciriacy M (1993) Xylose fermentation by Saccharomyces cerevisiae. Appl Microbiol Biotechnol 38(6):776–783CrossRefGoogle Scholar
  100. 100.
    Kumar P, Barrett DM, Delwiche MJ, Stroeve P (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 48:3713–3729CrossRefGoogle Scholar
  101. 101.
    Kumar R, Wyman CE (2009) Effects of cellulase and xylanase enzymes on the deconstruction of solids from pretreatment of poplar by leading technologies. Biotechnol Prog 25:302–314CrossRefGoogle Scholar
  102. 102.
    Kumar S, Singh SP, Mishra IM, Adhikari DP (2009) Recent advances in production of bioethanol from lignocellulosic biomass, review. Chem Eng Technol 32(4):517–526CrossRefGoogle Scholar
  103. 103.
    Lamprecht I, Migger L (1969) Microcalorimetric study on the effect of stirring on the growth of yeast. Z Naturforsch Teel B 24:1205Google Scholar
  104. 104.
    Laureano-Perez L, Teymouri F, Alizadeh H, Dale BE (2005) Understanding factors that limit enzymatic hydrolysis of biomass. In: Twenty-sixth symposium on biotechnology for fuels and chemicals, pp 1081–1099Google Scholar
  105. 105.
    Lavenspiel O (1980) The monad equation: a revise! and a generalization to product inhibition situations. Biotechnol Bioeng 3:1671CrossRefGoogle Scholar
  106. 106.
    Lawford HG, Rousseau JD, Mohagheghi A, McMillan JD (1999) Fermentation performance characteristics of a prehydrolyzate-adapted xylose-fermenting recombinant Zymomonas in batch and continuous fermentations. Appl Biochem Biotechnol 77–79:191–204CrossRefGoogle Scholar
  107. 107.
    Laymon RA, Adney WS, Mohagheghi A, Himmel ME, Thomas SR (1996) Cloning and expression of fulllength Trichoderma reesei cellobiohydrolase I cDNAs in Escherichia coli. Appl Biochem Biotechnol 57(58):389–397CrossRefGoogle Scholar
  108. 108.
    Lee YY, Iyer P, Torget R (1999) Dilute-acid hydrolysis of lignocellulosic biomass. Adv Biochem Eng/Biotechnol 65:93–115Google Scholar
  109. 109.
    Lee JH, Skotnick ML, Roger PL (1982) Kinetic study of flocculent strain of Zymomonas mobilis. Biotechnol Lett 4:615CrossRefGoogle Scholar
  110. 110.
    Li L, Wang Y, Zhang Q, Li J, Yang X, Jin J (2008) Wheat straw burning and its associated impacts on Beijing air quality. Sci China Ser D Earth Sci 51:403–414CrossRefGoogle Scholar
  111. 111.
    Li X, Kondo R, Sakai K (2002) Biodegradation of sugarcane bagasse with marine fungus Phlebia sp. MG-60. J Wood Sci 48:159–162CrossRefGoogle Scholar
  112. 112.
    Lindberg B, Rosell KG, Svensson S (1973) Position of the O-acetyl groups in birch xylan. Svensk Papperstidning 76:30Google Scholar
  113. 113.
    Liou JSC, Balkwill DL, Drake GR, Tanner RS (2005) Clostridium carboxidivorans sp. nov., a solvent-producing Clostridium isolated from an agricultural settling lagoon, and reclassification of the acetogen Clostridium scatologenes strain SL1 as Clostridium drakei sp. nov. Int J Syst Evol Microbiol 55:2085–2091CrossRefGoogle Scholar
  114. 114.
    Magnuson K, Jackowski S, Rock CO, Cronan JE Jr (1993) Regulation of fatty acid biosynthesis in Escherichia coli. Microbiol Rev 57:522–542Google Scholar
  115. 115.
    Mahmood AU, Greenman J, Scragg AH (1998) Orange and potato peel extracts: analysis and use as Bacillus substrates for the production of extracellular enzymes in continuous culture. Enzyme Microbiol Technol 22:130–137CrossRefGoogle Scholar
  116. 116.
    Maiorella BI (1983) Ethanol industrial chemicals. Biochem Fuels. Pergamon Press, Oxford, pp 861–914Google Scholar
  117. 117.
    Maiorella BL, Castillo FJ (1984) Ethanol biomass and enzyme production for whey taste abatemeno. Process Biochem 19(4):157Google Scholar
  118. 118.
    Martín C, Klinke HB, Thomsen AB (2007) Wet oxidation as a pretreatment method for enhancing the enzymatic convertibility of sugarcane bagasse. Enzyme Microb Technol 40:426–432CrossRefGoogle Scholar
  119. 119.
    Martín C, Marcet M, Almazán O, Jönsson LJ (2007) Adaptation of a recombinant xylose-utilizing Saccharomyces cerevisiae strain to a sugarcane bagasse hydrolysate with high content of fermentation inhibitors. Bioresour Technol 98:1767–1773CrossRefGoogle Scholar
  120. 120.
    McKendry P (2002) Overview of biomass. Energy production from biomass (Part 1). Bioresour Technol 83(1):37–46Google Scholar
  121. 121.
    Merino ST, Cherry J (2007) Progress and challenges in enzyme development for biomass utilization. Adv Biochem Eng Bio-technol 108:95–120Google Scholar
  122. 122.
    Mielenz JR (2001) Ethanol production from biomass: technology and commercialization status. Curr Opin Microbiol 4:324–329CrossRefGoogle Scholar
  123. 123.
    Miller DG, Gnffiths Smith K, Algar E, Scoopes RK (1982) Activity and stability of glycolytic enzymes in the presence of ethanol. Biotechnol Lett 4:601CrossRefGoogle Scholar
  124. 124.
    Mohagheghi A, Evans K, Chou YC, Zhang M (2002) Cofermentation of glucose, xylose, and arabinose by genomic DNA-integrated xylose/arabinose fermenting strain of Zymomonas mobilis AX101. Appl Biochem Biotechnol 98–100:885–898CrossRefGoogle Scholar
  125. 125.
    Morella B (1982) Fermentation alcohol: better to convert to fuel. Hydrocarbon Process 61(8):95Google Scholar
  126. 126.
    Mosier N, Wyman CE, Dale BD, Elander RT, Lee YY, Holtzapple M, Ladisch CM (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96:673–686CrossRefGoogle Scholar
  127. 127.
    Moss FJ, Richard PAD, Bush FE, Caiger P (1971) The response by microorganism to steady state growth in controlled concentration of oxygen and glucose. Biotechnol Bioeng 13:63CrossRefGoogle Scholar
  128. 128.
    Moulin G, Boze H, Galzy P (1989) Inhibition of alcoholic fermentation. In: Russell GE (ed) Yeast Biotechnol. Intercept Ltd., DorsetGoogle Scholar
  129. 129.
    Nambudiri ES, Lewis YS (1980) Cocoa waste and its utilization. In: KT Achaya et al. (eds.) Proceedings of the symposium on wastes from food industries: utilization and disposal. Association of Food Scientists and Technologists (India), CFTRI, Mysore, India, p 24Google Scholar
  130. 130.
    Ngadi MD, Correia LR (1992) Solid state ethanol fermentation of apple pomace as affected by moisture and bioreactor mixing speed. J Food Sci 57(3):667CrossRefGoogle Scholar
  131. 131.
    Nigam JN (2001) Development of xylose-fermenting yeast Pichia stipitis for ethanol production through adaptation on hardwood hemicellulose acid prehydrolysate. J Appl Microbiol 90(2):208–215MathSciNetCrossRefGoogle Scholar
  132. 132.
    Nirmala B, Somayaji D, Khanna S (1996) Biomethanation of banana peel and pineapple wastes. Biores Technol 58:73–76CrossRefGoogle Scholar
  133. 133.
    Nishio N, Oku Y, Kawamura D, Nagai S (1979) Liquifaction and saccharification of mandarine orange waste. J Ferment Technol 57:354Google Scholar
  134. 134.
    Ohta K, Beall DS, Mejia JP, Shanmugam KT, Ingram LO (1991) Genetic improvement of Escherichia coli for ethanol production: chromosomal integration of Zymomonas mobilis genes encoding pyruvate decarboxylase and alcohol dehydrogenase II. Appl Environ Microbiol 57(4):893–900Google Scholar
  135. 135.
    Ohta K, Beall DS, Mejia JP, Shanmugam KT, Ingram LO (1991) Metabolic engineering of Klebsiella oxytoca M5A1 for ethanol production from xylose and glucose. Appl Environ Microbiol 57(10):2810–2815Google Scholar
  136. 136.
    Okano K, Kitagawa M, Sasaki Y, Watanabe T (2005) Conversion of Japanese red cedar (Cryptomeria japonica) into a feed for ruminants by white-rot basidiomycetes. Animal Feed Sci Technol 120:235–243CrossRefGoogle Scholar
  137. 137.
    Olearry US, Green R, Sullivan BC, Holsinger UH (1977) Alcohol production by selected yeast strains in lactose hydrolysed whey. Biotech Bioeng 19:1019CrossRefGoogle Scholar
  138. 138.
    Oura E, Haarasilta S, Londesborough S (1980) Carbon dioxide fixation by baker’s yeast under a variety of growth conditions. J Gen Microb 119:51Google Scholar
  139. 139.
    Paturau JM (1982) By-products of the cane sugar industry, 2nd edn. Elsevier, New YorkGoogle Scholar
  140. 140.
    Peng F, Ren JL, Xu F, Bian J, Peng P, Sun RC (2009) Comparative study of hemicelluloses obtained by graded ethanol precipitation from sugarcane bagasse. J Agric Food Chem. doi: 10.1021/jf900986b Google Scholar
  141. 141.
    Peterson JD, Ingram LO (2008) Anaerobic respiration in engineering Escherichia coli with an internal electron acceptor to produce fuel ethanol. Ann N Y Acad Sci 1125:363–372CrossRefGoogle Scholar
  142. 142.
    Philippidis GP, Smith TK (1995) Limiting factors in the simultaneous saccharification and fermentation process for conversion of cellulosic biomass to fuel ethanol. Appl Biochem Biotechnol 51(52):117–124CrossRefGoogle Scholar
  143. 143.
    Picataggio S, Zhang M (1996) Microorganism development for bioethanol production from hydrolysates. In: Wyman CE (ed) Handbook on bioethanol: production and utilization. Taylor and Francis, Washington, D.C., pp 163–178Google Scholar
  144. 144.
    Prasad S, Singh A, Joshi HC (2007) Ethanol as an alternative fuel from agricultural, industrial and urban residues. Resour Conserv Recycl 50:1–39CrossRefGoogle Scholar
  145. 145.
    Qian Y, Yomano LP, Preston JF, Aldrich HC, Ingram LO (2003) Cloning, characterization, and functional expression of the Klebsiella oxytoca xylodextrin utilization operon (xynTB) in Escherichia coli. Appl Environ Microbiol 69(10):5957–5967CrossRefGoogle Scholar
  146. 146.
    Ravinder T, Swamy MV, Seenayya G, Reddy G (2001) Clostridium lentocellum SG6-a potential organism for fermentation of cellulose to acetic acid. Bioresour Technol 80:171–177CrossRefGoogle Scholar
  147. 147.
    Reesen L (1978) Dairy Ind Int 43(1):9Google Scholar
  148. 148.
    Riendeau D, Meighen E (1985) Enzymatic reduction of fatty acids and acyl-CoAs to long chain aldehydes and alcohols. Experientia 41:707–713CrossRefGoogle Scholar
  149. 149.
    Roberto IC, Mussatto SI, Rodrigues RCLB (2003) Dilute-acid hydrolysis for optimization of xylose recovery from rice straw in a semi-pilot reactor. Ind Crops Prod 7:171–176CrossRefGoogle Scholar
  150. 150.
    Rogers PL, Lee KJ, Skotnicki ML, Tribe DE (1982) Ethanol production by Zymomonas mobilis. Adv Biochem Eng 23:37Google Scholar
  151. 151.
    Rogers PL, Phil D, Leg KJ, Tribe DE, Tribe ME (1980) High productivity of fermentations with Zymomonas mobilis. Process Biochem 15(6):7Google Scholar
  152. 152.
    Rose AH (1967) Alcoholic fermentation. In: William RJ , Lansford EM (ed) The encyclopedia of biochemistry. Reinhold, New York, p 25Google Scholar
  153. 153.
    Rose AH, Beaven MJ (1981) End product tolerance of ethanol. In: Holleander A (ed) Trends in biology of fermentations for fuels and chemicals. Plenum, New York, p 513Google Scholar
  154. 154.
    Rosenberg S (1980) Fermentation of pentose sugars to ethanol and other neutral producing microorganism. Enzyme Microb Technol 2:185CrossRefGoogle Scholar
  155. 155.
    Sacchettini JC, Poulter CD (1997) Creating isoprenoid diversity. Science 277:1788–1789CrossRefGoogle Scholar
  156. 156.
    Saddler JN, Chan MKH (1984) Conversion of pretreated lignocellulosic substrate to ethanol Clostridium thermocellum in mono and coculture with Clostridium thermosaccharolyticum C. thermohydrosulphuricum. Can J Microbiol 30:212CrossRefGoogle Scholar
  157. 157.
    Saha BC (2000) Alpha-L-Arabinofuranosidases, biochemistry, molecular biology and application in biotechnology. Biotechnol Adv 18(5):403–423MathSciNetCrossRefGoogle Scholar
  158. 158.
    Saha BC, Bothast RJ (1966) Production, purification and characterization of a highly glucose tolerant novel β-glucosidase from Candida peltata. Appl Environ Microbiol 62:3165Google Scholar
  159. 159.
    Saha BC (2003) Hemicellulose bioconversion. Ind Microbiol Biotechnol 30:279–291CrossRefGoogle Scholar
  160. 160.
    Sandhu DK, Joshi VK (1997) Solid state fermentation of apple pomace for concomitant production of ethanol and animal feed. J Sci Ind Res (CSIR) 56:86–90Google Scholar
  161. 161.
    Sandhu DK, Joshi VK (1984) Comparative fermentation behaviour and chemical characteristics of Saccharomyces and Zymomonas fermented culled apple juice. Indian J Exp Biol 32:873Google Scholar
  162. 162.
    Sargent SA, Steffe JF, Pierson TR (1986) The economic feasibility of in-plant combustion of apple processing wastes. Agric Wastes 15(2):85–96CrossRefGoogle Scholar
  163. 163.
    Sasson A (1984) Biotechnologies: challenges and promises. Oxford & IBH, New Delhi, p 207Google Scholar
  164. 164.
    Savage MD, Wu ZG, Daniel SL, Lundie LL, Drake HL (1987) Carbon monoxide-dependent chemolithotrophic growth of Clostridium thermoautotrophicum. Appl Environ Microbiol 53:1902–1906Google Scholar
  165. 165.
    Schlesinger WH (1991) Biogeochemistry: an analysis of global Change. Academic, San Diego, p 443Google Scholar
  166. 166.
    Sendelius J (2005) Steam pretreatment optimization for sugarcane bagasse in bioethanol production. Master of Science thesis, Lund University, SwedenGoogle Scholar
  167. 167.
    Sharma N, Bhalla TC, Agarwal HO, Bhatt AK (1996) Saccharification of physico-chemical pretreated lignoocellulosics by partially purified cellulase of Trichoderma viride. Sci Lett 19:141Google Scholar
  168. 168.
    Shen GJ, Shieh JS, Grethlein AJ, Jain MK, Zeikus JH (1999) Biochemical basis for carbon monoxide tolerance and butanol production by Butyribacterium methylotrophicum. Appl Microb Biotechnol 51:827–832CrossRefGoogle Scholar
  169. 169.
    Shi NQ, Davis B, Sherman F, Cruz J, Jeffries TW (1999) Disruption of the cytochrome c gene in xylose-utilizing yeast Pichia stipitis leads to higher ethanol production. Yeast 15(11):1021–1030CrossRefGoogle Scholar
  170. 170.
    Shi NQ, Jeffries TW (1998) Anaerobic growth and improved fermentation of Pichia stipitis bearing a URA1 gene from Saccharomyces cerevisiae. Appl Microbiol Biotechnol 50(3):339–345CrossRefGoogle Scholar
  171. 171.
    Sim JH, Kamaruddin AH, Long WS, Najafpour G (2007) Clostridium aceticum—a potential organism in catalyzing carbon monoxide to acetic acid: application of response surface methodology. Enzyme Microb Technol 40:1234–1243CrossRefGoogle Scholar
  172. 172.
    Sims R, Taylor M, Saddler J, Mabee W (2008) From 1st to 2nd generation biofuels technologies-full report—an overview of current industry and R&D activities. International Energy Agency, Nov 2008Google Scholar
  173. 173.
    Slepova TV, Sokolova TG, Lysenko AM, Tourova TP, Kolganova TV, Kamzolkina OV, Karpov G.A, Bonch-Osmolovskaya, EA (2006) Carboxydocella sporoproducens sp. nov., a novel anaerobic CO-utilizing/H2- producing thermophilic bacterium from a Kamchatka hot spring. Int J Syst Evol Microbiol 56:797Google Scholar
  174. 174.
    Smock RM, Neubert AM (1950) Apples and apple products. Interscience Publ, New YorkGoogle Scholar
  175. 175.
    Sreekumar O, Basappa SC (1992) Effect of calcium and sodium salt on ethanol production in high sugar fermentation by free cells of Zymomonas mobilis. Biotechnol Lett 16(6):511CrossRefGoogle Scholar
  176. 176.
    Sreekumar O, Basappa SC (1995) Effect of different nitrogen sources on ethanolic fermentation of glucose by Zymomonas mobilis. J Food Sci Technol 32:252Google Scholar
  177. 177.
    Staff (1981) Chementator. Chem Eng (N Y) 88(16):7Google Scholar
  178. 178.
    Stark WH (1954) Alcoholic fermentation of grain. In: Under LA, Hickey RJ (eds) Industrial fermentation, vol 1. Chem Pub. Co., New York, p. 17Google Scholar
  179. 179.
    Sun X-F, Sun R-C, Su Y, Sun J-X (2004) Comparative study of crude and purified cellulose from wheat straw. J Agric Food Chem 52:839–847CrossRefGoogle Scholar
  180. 180.
    Szczodrak J, Fiedurek J (1996) Technology for conversion of lignocellulosic biomass to ethanol. Biomass Bioenergy 10(6):367–375CrossRefGoogle Scholar
  181. 181.
    Taherzadeh MJ, Karimi K (2007) Enzyme-based hydrolysis processes for ethanol from lignocellulosic materials: a review. BioResources 24:707–738Google Scholar
  182. 182.
    Taherzadeh MJ, Karimi K (2008) Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. Int J Mol Sci 9:1621–1651CrossRefGoogle Scholar
  183. 183.
    Tan TC, Lauc M (1975) J Singap Natl Acad Sci 4:152Google Scholar
  184. 184.
    Tanner RS, Miller LM, Yang D (1993) Clostridium ljungdahlii sp. nov., an acetogenic species in clostridial ribosomal-RNA homology group-I. Int J Syst Bacteriol 43:232–236CrossRefGoogle Scholar
  185. 185.
    Tantirungkij M, Nakashima N, Seki T, Yoshida T (1993) Construction of xylose assimilating Saccharomyces cerevisiae. J Ferment Bioeng 75(2):83–88CrossRefGoogle Scholar
  186. 186.
    Teramoto Y, Ueki T, Kimura K, Ueda S, Shiota S (1993) Complete utilization of Shochu distillery waste, 2. Semi-continuous ethanol fermentation with Shochu distillery waste. J Inst Brewing 99(2):139Google Scholar
  187. 187.
    Tomas-Pejo E, Oliva JM, Ballesteros M (2008) Realistic approach for full-scale bioethanol production from lignocellulose: a review. J Sci Ind Res 67:874–884Google Scholar
  188. 188.
    Tyner W (2008) The US ethanol and biofuels boom: its origins, current status and future prospects. Bioscience 587:646–653CrossRefGoogle Scholar
  189. 189.
    Van Vleet JH, Jeffries TW (2009) Yeast metabolic engineering for hemicellulosic ethanol production. Curr Opin Biotechnol 20(3):300–306CrossRefGoogle Scholar
  190. 190.
    Van Walsum GP, Shi H (2004) Carbonic acid enhancement of hydrolysis in aqueous pretreatment of corn stover. Bioresour Technol 93(3):217–226CrossRefGoogle Scholar
  191. 191.
    Wang Y, Shi WL, Liu XY, Shen Y, Bao XM, Bai FW, Qu YB (2004) Establishment of a xylose metabolic pathway in an industrial strain of Saccharomyces cerevisiae. Biotechnol Lett 26:885–890CrossRefGoogle Scholar
  192. 192.
    Wang DIC, Cooney CI, Demain AL, Donnil P, Humphrey AE, Lilly MD (1979) Ferment and enzyme technology. Willy, New YorkGoogle Scholar
  193. 193.
    Watson GT (1970) Effect of sodium chloride on steady-state growth and metabolism Sacharomyces cerevisiae. J Gen Microbiol 64:91CrossRefGoogle Scholar
  194. 194.
    Wingren A, Galbe M, Roslander C et al (2005) Effect of reduction in yeast and enzyme concentrations in a simultaneous-saccharification and fermentation based bioethanol process. Appl Biochem Biotechnol 122:485–499CrossRefGoogle Scholar
  195. 195.
    Withers ST, Gottlieb SS, Lieu B, Newman JD, Keasling JD (2007) Identification of isopentenol biosynthetic genes from Bacillus subtillis by a screening method based on isoprenoid precursor toxicity. Appl Environ Microbiol 73:6277–6283CrossRefGoogle Scholar
  196. 196.
    Wyman CE (2003) Potential synergies and challenges in refining cellulosic biomass to fuels, chemicals, and power. Biotechnol Prog March-April 19(2):254–262CrossRefGoogle Scholar
  197. 197.
    Wyman CE (1999) Biomass ethanol: technical progress, opportunities, and commercial challenges. Ann Rev Energy Environ 24:189–226CrossRefGoogle Scholar
  198. 198.
    Wyman CE (2007) What is (and is not) vital to advancing cellulosic ethanol. Trends Biotechnol 25:153–157CrossRefGoogle Scholar
  199. 199.
    Yomano LP, York SW, Ingram LO (1998) Isolation and characterization of ethanol-tolerant mutants of Escherichia coli KO11 for fuel ethanol production. J Ind Microbiol Biotechnol 20(2):132–138CrossRefGoogle Scholar
  200. 200.
    Yomano LP, York SW, Zhou S, Shanmugam KT, Ingram LO (2008) Reengineering Escherichia coli for ethanol production. Biotechnol Lett 30(12):2097–2103CrossRefGoogle Scholar
  201. 201.
    Zaldivar J, Ingram LO (1999) Effect of organic acids on the growth and fermentation of ethanologenic Escherichia coli LY01. Biotechnol Bioeng 66(4):203–210CrossRefGoogle Scholar
  202. 202.
    Zaldivar J, Martinez A, Ingram LO (1999) Effect of selected aldehydes on the growth and fermentation of ethanologenic Escherichia coli. Biotechnol Bioeng 65(1):24–33CrossRefGoogle Scholar
  203. 203.
    Zaldivar J, Martinez A, Ingram LO (2000) Effect of alcohol compounds found in hemicellulose hydrolysate on the growth and fermentation of ethanologenic Escherichia coli. Biotechnol Bioeng 68(5):524–530CrossRefGoogle Scholar
  204. 204.
    Zamora R, Crispin JAS (1995) Production of an acid extract of rice straw. Acta Cient Venez 46:135–139Google Scholar
  205. 205.
    Zevenhoven M (2000) The prediction of deposit formation in combustion and gasification of biomass fuels—fractionation and thermodynamic multi-phase multi-component equilibrium (TPCE) calculations. In: Haefele S (ed) Combustion and materials chemistry. Lemminkäinengatan, Finland, p.38Google Scholar
  206. 206.
    Zhang M, Eddy C, Deanda K, Finkelstein M, Picataggio S (1995) Metabolic engineering of a pentose metabolism pathway in ethanologenic Zymomonas mobilis. Science 267(5195):240–243CrossRefGoogle Scholar
  207. 207.
    Zhang Y, Lin H-M, Tsao GT (1998) Pretreatment for cellulose hydrolysis by carbon dioxide explosion. Biotechnol Prog 14:890–896CrossRefGoogle Scholar
  208. 208.
    Zhang Y, Zhu Y, Zhu Y, Li Y (2009) The importance of engineering physiological functionality into microbe. Trends Biotechnol. doi: 10.1016/jtibtech2009.08.006 Google Scholar
  209. 209.
    Zhang YHP, Ding SY, Mielenz JR, Cui JB, Elander R, Laser M, Himmel ME, McMillan JR, Lynd LR (2007) Fractionating recalcitrant lignocellulose at modest reaction conditions. Biotechnol Bioeng 97:214–223CrossRefGoogle Scholar
  210. 210.
    Zhao XQ, Bai FW (2009) Mechanisms of yeast stress tolerance and its manipulation for efficient fuel ethanol production. J Biotechnol. doi: 10.1016/jjbiotec.2009.05.001 Google Scholar
  211. 211.
    Zhou S, Yomano LP, Shanmugam KT, Ingram LO (2005) Fermentation of 10% (w/v) sugar to d-lactate by engineered Escherichia coli B. Biotechnol Lett 27(23):1891–1896CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of Food Science and TechnologyDr. Y.S. Parmar University of Horticulture and ForestrySolanIndia
  2. 2.Department of Basic SciencesDr. Y.S. Parmar University of Horticulture and ForestrySolanIndia

Personalised recommendations