Lignocellulose Pretreatment by Ionic Liquids: A Promising Start Point for Bio-energy Production

  • Haibo Xie
  • Wujun Liu
  • Zongbao K. Zhao


Lignocellulosic biomass, primarily being a complex mixture of cellulose, hemicellulose, and lignin, is naturally resistant to breakdown by pests, disease, and weather. This inherent recalcitrance makes the production of monosugars or other valuable chemicals from lignocellulose expensive and inefficient. The fractionation and activation of lignocellulosic biomass is regarded as an entry point challenge toward an establishment of cost competitive bio-economy. Ionic liquids have shown good solubility of biomass, and a lot of efforts have been devoted into preparing new sustainable materials, chemicals from biomass with ionic liquids, which have been regarded as one of top emerging technologies for biomass processing and conversion. In this chapter, up-to-date progress of monosugars production with the ionic liquids-based pretreatment technology has been reviewed, aiming to address the opportunities and challenges of this technology for bio-energy and biochemicals production.


Ionic Liquid Rice Straw Corn Stover Lignocellulosic Material Biomass Pretreatment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Greiler Y (2007) Biofuels, opportunity or threat to the poor? Swiss Agency for Development and Cooperation, Berne.
  2. 2.
    Zhbankov R (1992) Hydrogen bonds and structure of carbohydrates. J Mol Struct 270:523–539CrossRefGoogle Scholar
  3. 3.
    Fridley D (2010) Nine challenges of alternative energy, The Post Carbon Reader Series: Energy. August 10Google Scholar
  4. 4.
    Mansfield BK, Alton AJ, Andrews SH, Bownas JL, Casey D, Martin SA, Mills M, Nylander K, Wyrick JM (2005) Breaking the biological barriers to cellulosic ethanol: a joint research agenda, Oak Ridge National Laboratory (ORNL)Google Scholar
  5. 5.
    da Costa Sousa L, Chundawat SPS, Balan V, Dale BE (2009) ‘Cradle-to-grave’ assessment of existing lignocellulose pretreatment technologies. Curr Opin Biotechnol 20:339–347CrossRefGoogle Scholar
  6. 6.
    Swatloski RP, Spear SK, Holbrey JD, Rogers RD (2002) Dissolution of cellose with ionic liquids. J Am Chem Soc 124:4974–4975CrossRefGoogle Scholar
  7. 7.
    Maki-Arvela P, Anugwom I, Virtanen P, Sjoholm R, Mikkola J (2010) Dissolution of lignocellulosic materials and its constituents using ionic liquids—a review. Ind Crop Prod 32:175–201CrossRefGoogle Scholar
  8. 8.
    Xie H, Zhang S, Li S (2006) Chitin and chitosan dissolved in ionic liquids as reversible sorbents of CO2. Green Chem 8:630–633CrossRefGoogle Scholar
  9. 9.
    Wang WT, Zhu J, Wang XL, Huang Y, Wang YZ (2010) Dissolution behavior of chitin in ionic liquids. J Macromol Sci Part B 49:528–541CrossRefGoogle Scholar
  10. 10.
    Pu Y, Jiang N, Ragauskas AJ (2007) Ionic liquid as a green solvent for lignin. J Wood Chem Technol 27:23–33CrossRefGoogle Scholar
  11. 11.
    Phillips DM, Drummy LF, Conrady DG, Fox DM, Naik RR, Stone MO, Trulove PC, Hugh C, Mantz RA (2004) Dissolution and regeneration of Bombyx mori silk fibroin using ionic liquids. J Am Chem Soc 126:14350–14351CrossRefGoogle Scholar
  12. 12.
    Xie H, Li S, Zhang S (2005) Ionic liquids as novel solvents for the dissolution and blending of wool keratin fibers. Green Chem 7:606–608CrossRefGoogle Scholar
  13. 13.
    Tan S, MacFarlane D (2010) Ionic liquids in biomass processing. Top Curr Chem 290:311–339CrossRefGoogle Scholar
  14. 14.
    Liu CF, Zhang AP, Li WY, Sun RC (2009) Dissolution of cellulose in novel green solvent ionic liquids and its application. Prog Chem 21:1800–1806Google Scholar
  15. 15.
    Graenacher C (1934) Cellulose solution. US 1(943):176Google Scholar
  16. 16.
    Zavrel M, Bross D, Funke M, Buchs J, Spiess AC (2009) High-throughput screening for ionic liquids dissolving (ligno-)cellulose. Bioresour Technol 100:2580–2587CrossRefGoogle Scholar
  17. 17.
    Zhang H, Wu J, Zhang J, He JS (2005) 1-Allyl-3-methylimidazolium chloride room temperature ionic liquid: a new and powerful nonderivatizing solvent for cellulose. Macromolecules 38:8272–8277CrossRefGoogle Scholar
  18. 18.
    Fukaya Y, Sugimoto A, Ohno H (2006) Superior solubility of polysaccharides in low viscosity, polar, and halogen-free 1, 3-dialkylimidazolium formates. Biomacromolecules 7:3295–3297CrossRefGoogle Scholar
  19. 19.
    Fukaya Y, Hayashi K, Wada M, Ohno H (2008) Cellulose dissolution with polar ionic liquids under mild conditions: required factors for anions. Green Chem 10:44–46CrossRefGoogle Scholar
  20. 20.
    Abe M, Fukaya Y, Ohno H (2010) Extraction of polysaccharides from bran with phosphonate or phosphinate-derived ionic liquids under short mixing time and low temperature. Green Chem 12:1274–1280CrossRefGoogle Scholar
  21. 21.
    Kilpelainen I, Xie H, King A, Granstrom M, Heikkinen S, Argyropoulos DS (2007) Dissolution of wood in ionic liquids. J Agric Food Chem 55:9142–9148CrossRefGoogle Scholar
  22. 22.
    Li B, Asikkala J, Filpponen I, Argyropoulos DS (2010) Factors affecting wood dissolution and regeneration of ionic liquids. Ind Eng Chem Res 49:2477–2484CrossRefGoogle Scholar
  23. 23.
    Hardacre C, Holbrey JD, Nieuwenhuyzen M, Youngs TGA (2007) Structure and solvation in ionic liquids. Acc Chem Res 40:1146–1155CrossRefGoogle Scholar
  24. 24.
    Doherty TV, Mora-Pale M, Foley SE, Linhardt RJ, Dordick JS (2010) Ionic liquid solvent properties as predictors of lignocellulose pretreatment efficacy. Green Chem 12:1967–1975CrossRefGoogle Scholar
  25. 25.
    Brandt A, Hallett JP, Leak DJ, Murphy RJ, Welton T (2010) The effect of the ionic liquid anion in the pretreatment of pine wood chips. Green Chem 12:672–679CrossRefGoogle Scholar
  26. 26.
    Xu A, Wang J, Wang H (2010) Effects of anionic structure and lithium salts addition on the dissolution of cellulose in 1-butyl-3-methylimidazolium-based ionic liquid solvent systems. Green Chem 12:268–275CrossRefGoogle Scholar
  27. 27.
    Remsing RC, Wildin JL, Rapp AL, Moyna G (2007) Hydrogen bonds in ionic liquids revisited: Cl-35/37 NMR studies of deuterium isotope effects in 1-n-butyl-3-methylimidazolium chloride. J Phys Chem B 111:11619–11621CrossRefGoogle Scholar
  28. 28.
    Remsing RC, Hernandez G, Swatloski RP, Massefski WW, Rogers RD, Moyna G (2008) Solvation of carbohydrates in N,N’-dialkylimidazolium ionic liquids: a multinuclear NMR spectroscopy study. J Phys Chem B 112:11071–11078CrossRefGoogle Scholar
  29. 29.
    Zhang JM, Zhang H, Wu J, Zhang J, He JS, Xiang JF (2010) NMR spectroscopic studies of cellobiose solvation in EmimAc aimed to understand the dissolution mechanism of cellulose in ionic liquids. Phys Chem Chem Phys 12:1941–1947CrossRefGoogle Scholar
  30. 30.
    Youngs TGA, Holbrey JD, Deetlefs M, Nieuwenhuyzen M, Gomes MFC, Hardacre C (2006) A molecular dynamics study of glucose solvation in the ionic liquid 1,3-dimethylimidazolium chloride. Chemphyschem 7:2279–2281CrossRefGoogle Scholar
  31. 31.
    Youngs TGA, Hardacre C, Holbrey JD (2007) Glucose solvation by the ionic liquid 1,3-dimethylimidazolium chloride: a simulation study. J Phys Chem B 111:13765–13774CrossRefGoogle Scholar
  32. 32.
    Lindman B, Karlstrom G, Stigsson L (2010) On the mechanism of dissolution of cellulose. J Mol Liquids 156:76–81CrossRefGoogle Scholar
  33. 33.
    Liu HB, Sale KL, Holmes BM, Simmons BA, Singh S (2010) Understanding the interactions of cellulose with ionic liquids: a molecular dynamics study. J Phys Chem B 114:4293–4301CrossRefGoogle Scholar
  34. 34.
    Guo JX, Zhang DJ, Duan CG, Liu CB (2010) Probing anion-cellulose interactions in imidazolium-based room temperature ionic liquids: a density functional study. Carbohydr Res 345:2201–2205CrossRefGoogle Scholar
  35. 35.
    Singh S, Simmons BA, Vogel KP (2009) Visualization of biomass solubilization and cellulose regeneration during ionic liquid pretreatment of switchgrass. Biotechnol Bioeng 104:68–75CrossRefGoogle Scholar
  36. 36.
    Pu YQ, Jiang N, Ragauskas AJ (2007) Ionic liquid as a green solvent for lignin. J Wood Chem Technol 27:23–33CrossRefGoogle Scholar
  37. 37.
    Xie H, King A, Kilpelainen I, Granstrom M, Argyropoulos DS (2007) Thorough chemical modification of wood-based lignocellulosic materials in ionic liquids. Biomacromolecules 8:3740–3748CrossRefGoogle Scholar
  38. 38.
    King AWT, Zoia L, Filpponen I, Olszewska A, Xie HB, Kilpelainen I, Argyropoulos DS (2009) In situ determination of lignin phenolics and wood solubility in imidazolium chlorides using P-31 NMR. J Agric Food Chem 57:8236–8243CrossRefGoogle Scholar
  39. 39.
    Xie H, Kilpeläinen I, King A, Leskinen T, Järvi P, Argyropoulos DS (2010) Opportunities with dissolved wood, cellulose solvents for analysis, shaping and chemical modification. ACS symposium series, vol 1033. ISBN13: 9780841200067; eISBN: 9780841200074. Publication date (Web): 23 Feb 2010Google Scholar
  40. 40.
    Jiang N, Pu YQ, Samuel R, Ragauskas AJ (2009) Perdeuterated pyridinium molten salt (ionic liquid) for direct dissolution and NMR analysis of plant cell walls. Green Chem 11:1762–1766CrossRefGoogle Scholar
  41. 41.
    Jiang N, Pu YQ, Ragauskas AJ (2010) Rapid determination of lignin content via direct dissolution and H-1 NMR analysis of plant cell walls. Chemsuschem 3:1285–1289CrossRefGoogle Scholar
  42. 42.
    Zhu JY, Pan X, Zalesny RS (2010) Pretreatment of woody biomass for biofuel production: energy efficiency, technologies, and recalcitrance. Appl Microb Biotechnol 87:847–857CrossRefGoogle Scholar
  43. 43.
    Kuo C-H, Lee C-K (2009) Enhancement of enzymatic saccharification of cellulose by cellulose dissolution pretreatments. Carbohydr Polym 77:41–46CrossRefGoogle Scholar
  44. 44.
    Taherzadeh MJ, Karimi K (2008) Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. Int J Mol Sci 9:1621–1651CrossRefGoogle Scholar
  45. 45.
    Yamashita Y, Sasaki C, Nakamura Y (2010) Effective enzyme saccharification and ethanol production from Japanese cedar using various pretreatment methods. J Biosci Bioeng 110:79–86CrossRefGoogle Scholar
  46. 46.
    Dadi AP, Schall CA, Varanasi S (2007) Mitigation of cellulose recalcitrance to enzymatic hydrolysis by ionic liquid pretreatment. Appl Biochem Biotecnol 137:407–421CrossRefGoogle Scholar
  47. 47.
    Dadi AP, Varanasi S, Schall CA (2006) Enhancement of cellulose saccharification kinetics using an ionic liquid pretreatment step. Biotechnol Bioeng 95:904–910CrossRefGoogle Scholar
  48. 48.
    Liu L, Chen H (2006) Enzymatic hydrolysis of cellulose materials treated with ionic liquid [BMIM] Cl. Chin Sci Bull 51:2432–2436CrossRefGoogle Scholar
  49. 49.
    Zhao H, Jones CIL, Baker GA, Xia S, Olubajo O, Person VN (2009) Regenerating cellulose from ionic liquids for an accelerated enzymatic hydrolysis. J Biotechnol 139:47–54CrossRefGoogle Scholar
  50. 50.
    Li Q, He YC, Xian M, Jun G, Xu X, Yang JM, Li LZ (2009) Improving enzymatic hydrolysis of wheat straw using ionic liquid 1-ethyl-3-methyl imidazolium diethyl phosphate pretreatment. Bioresour Technol 100:3570–3575CrossRefGoogle Scholar
  51. 51.
    Nguyen TAD, Kim KR, Han SJ, Cho HY, Kim JW, Park SM, Park JC, Sim SJ (2010) Pretreatment of rice straw with ammonia and ionic liquid for lignocellulose conversion to fermentable sugars. Bioresour Technol 101:7432–7438CrossRefGoogle Scholar
  52. 52.
    Yang F, Li LZ, Li Q, Tan WG, Liu W, Xian M (2010) Enhancement of enzymatic in situ saccharification of cellulose in aqueous-ionic liquid media by ultrasonic intensification. Carbohydr Polym 81:311–316CrossRefGoogle Scholar
  53. 53.
    Ha SH, Ngoc LM, An GM, Koo YM (2011) Microwave-assisted pretreatment of cellulose in ionic liquid for accelerated enzymatic hydrolysis. Bioresour Technol 102:1214–1219CrossRefGoogle Scholar
  54. 54.
    Alvira P, Tomás-Pejó E, Ballesteros M, Negro MJ (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 101:4851–4861CrossRefGoogle Scholar
  55. 55.
    Zhao H, Baker GA, Cowins JV (2010) Fast enzymatic saccharification of switchgrass after pretreatment with ionic liquids. Biotechnol Prog 26:127–133Google Scholar
  56. 56.
    Tan SSY, MacFarlane DR, Upfal J, Edye LA, Doherty WOS, Patti AF, Pringle JM, Scott JL (2009) Extraction of lignin from lignocellulose at atmospheric pressure using alkylbenzenesulfonate ionic liquid. Green Chem 11:339–345CrossRefGoogle Scholar
  57. 57.
    Shill K, Padmanabhan S, Xin Q, Prausnitz JM, Clark DS, Blanch HW (2011) Ionic liquid pretreatment of cellulosic biomass: enzymatic hydrolysis and ionic liquid recycle. Biotechnol Bioeng 108:511–520CrossRefGoogle Scholar
  58. 58.
    Li C, Zhao ZK (2007) Efficient acid-catalyzed hydrolysis of cellulose in ionic liquid. Adv Synth Catal 349:1847–1850CrossRefGoogle Scholar
  59. 59.
    Li CZ, Wang Q, Zhao ZK (2008) Acid in ionic liquid: an efficient system for hydrolysis of lignocellulose. Green Chem 10:177–182CrossRefGoogle Scholar
  60. 60.
    Li B, Filpponen I, Argyropoulos DS (2010) Acidolysis of wood in ionic liquids. Ind Eng Chem Res 49:3126–3136CrossRefGoogle Scholar
  61. 61.
    Sievers C, Valenzuela-Olarte MB, Marzialetti T, Musin I, Agrawal PK, Jones CW (2009) Ionic-liquid-phase hydrolysis of pine wood. Ind Eng Chem Res 48:1277–1286CrossRefGoogle Scholar
  62. 62.
    Vanoye L, Fanselow M, Holbrey JD, Atkins MP, Seddon KR (2009) Kinetic model for the hydrolysis of lignocellulosic biomass in the ionic liquid, 1-ethyl-3-methyl-imidazolium chloride. Green Chem 11:390–396CrossRefGoogle Scholar
  63. 63.
    Nakamura A, Miyafuji H, Saka S (2010) Influence of reaction atmosphere on the liquefaction and depolymerization of wood in an ionic liquid, 1-ethyl-3-methylimidazolium chloride. J Wood Sci 56:256–261CrossRefGoogle Scholar
  64. 64.
    Tao FR, Song HL, Chou LJ (2010) Hydrolysis of cellulose by using catalytic amounts of FeCl2 in ionic liquids. Chemsuschem 3:1298–1303CrossRefGoogle Scholar
  65. 65.
    Binder JB, Raines RT (2010) Fermentable sugars by chemical hydrolysis of biomass. Proc Natl Acad Sci USA 107:4516–4521CrossRefGoogle Scholar
  66. 66.
    Shimizu K, Furukawa H, Kobayashi N, Itaya Y, Satsuma A (2009) Effects of Bronsted and Lewis acidities on activity and selectivity of heteropolyacid-based catalysts for hydrolysis of cellobiose and cellulose. Green Chem 11:1627–1632CrossRefGoogle Scholar
  67. 67.
    Kim SJ, Dwiatmoko AA, Choi JW, Suh YW, Suh DJ, Oh M (2010) Cellulose pretreatment with 1-n-butyl-3-methylimidazolium chloride for solid acid-catalyzed hydrolysis. Bioresour Technol 101:8273–8279CrossRefGoogle Scholar
  68. 68.
    Zhang ZH, Zhao ZBK (2009) Solid acid and microwave-assisted hydrolysis of cellulose in ionic liquid. Carbohydr Res 344:2069–2072CrossRefGoogle Scholar
  69. 69.
    Van de Vyver S, Peng L, Geboers J, Schepers H, de Clippel F, Gommes CJ, Goderis B, Jacobs PA, Sels BF (2010) Sulfonated silica/carbon nanocomposites as novel catalysts for hydrolysis of cellulose to glucose. Green Chem 12:1560–1563CrossRefGoogle Scholar
  70. 70.
    Zhang YT, Du HB, Qian XH, Chen EYX (2010) Ionic liquid-water mixtures: enhanced K-w for efficient cellulosic biomass conversion. Energy Fuels 24:2410–2417CrossRefGoogle Scholar
  71. 71.
    Brennan TCR, Datta S, Blanch HW, Simmons BA, Holmes BM (2010) Recovery of sugars from ionic liquid biomass liquor by solvent extraction. Bioenergy Res 3:123–133CrossRefGoogle Scholar
  72. 72.
    King CJ (2000) Separation processes, introduction. Wiley-VCH Verlag GmbH & Co. KGaA, WeinheimGoogle Scholar
  73. 73.
    Rinaldi R, Palkovits R, Schüth F (2008) Depolymerization of cellulose using solid catalysts in ionic liquids. Angew Chem Int Ed 47:8047–8050CrossRefGoogle Scholar
  74. 74.
    Rinaldi R, Schuth F (2009) Acid hydrolysis of cellulose as the entry point into biorefinery schemes. Chemsuschem 2:1096–1107CrossRefGoogle Scholar
  75. 75.
    Rinaldi R, Schuth F (2009) Design of solid catalysts for the conversion of biomass. Energy Environ Sci 2:610–626CrossRefGoogle Scholar
  76. 76.
    Zhao H (2010) Methods for stabilizing and activating enzymes in ionic liquids—a review. J Chem Technol Biotechnol 85:891–907CrossRefGoogle Scholar
  77. 77.
    Moniruzzaman M, Nakashima K, Kamiya N, Goto M (2010) Recent advances of enzymatic reactions in ionic liquids. Biochem Eng J 48:295–314CrossRefGoogle Scholar
  78. 78.
    Kamiya N, Matsushita Y, Hanaki M, Nakashima K, Narita M, Goto M, Takahashi H (2008) Enzymatic in situ saccharification of cellulose in aqueous-ionic liquid media. Biotechnol Lett 30:1037–1040CrossRefGoogle Scholar
  79. 79.
    Yang F, Li L, Li Q, Tan W, Liu W, Xian M (2010) Enhancement of enzymatic in situ saccharification of cellulose in aqueous-ionic liquid media by ultrasonic intensification. Carbohydr Polym 81:311–316CrossRefGoogle Scholar
  80. 80.
    Li Q, Jiang XL, He YC, Li LZ, Xian M, Yang JM (2010) Evaluation of the biocompatibile ionic liquid 1-methyl-3-methylimidazolium dimethylphosphite pretreatment of corn cob for improved saccharification. Appl Microb Biotechnol 87:117–126CrossRefGoogle Scholar
  81. 81.
    Zhao H, Baker GA, Song ZY, Olubajo O, Crittle T, Peters D (2008) Designing enzyme-compatible ionic liquids that can dissolve carbohydrates. Green Chem 10:696–705CrossRefGoogle Scholar
  82. 82.
    Garcia H, Ferreira R, Petkovic M, Ferguson JL, Leitao MC, Gunaratne HQN, Seddon KR, Rebelo LPN, Pereira CS (2010) Dissolution of cork biopolymers in biocompatible ionic liquids. Green Chem 12:367–369CrossRefGoogle Scholar
  83. 83.
    Bose S, Armstrong DW, Petrich JW (2010) Enzyme-catalyzed hydrolysis of cellulose in ionic liquids: a green approach toward the production of biofuels. J Phys Chem B 114:8221–8227CrossRefGoogle Scholar
  84. 84.
    Pottkamper J, Barthen P, Ilmberger N, Schwaneberg U, Schenk A, Schulte M, Ignatiev N, Streit WR (2009) Applying metagenomics for the identification of bacterial cellulases that are stable in ionic liquids. Green Chem 11:957–965CrossRefGoogle Scholar
  85. 85.
    Datta S, Holmes B, Park JI, Chen ZW, Dibble DC, Hadi M, Blanch HW, Simmons BA, Sapra R (2010) Ionic liquid tolerant hyperthermophilic cellulases for biomass pretreatment and hydrolysis. Green Chem 12:338–345CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Dalian National Laboratory for Clean EnergyDalian Institute of Chemical Physics, CASDalianPeople’s Republic of China

Personalised recommendations