Lignin as Source of Fine Chemicals: Vanillin and Syringaldehyde

  • Paula C. Rodrigues Pinto
  • Eduardo A. Borges da Silva
  • Alírio E. Rodrigues


The sustainability of processes to integrate in biochemical and thermochemical platforms is a key factor for the success of lignocellulose-based biorefineries. Production and separation of high added-value compounds from renewable resources are emergent areas of science and technology with relevance to both scientific and industrial communities. Lignin is one of the raw materials with high potential due to its chemistry and proprieties. One of the routes is the production of aromatic aldehydes, vanillin, and syringaldehyde, toward environmental friendly processes as oxidation with O2, including separation of products by membrane and ion exchange processes. In this chapter, the types, availability, and characteristics of lignins are described, as well as the current trends of some industrial producers and processors. A concise yet comprehensive revision of the literature on lignin oxidation research focusing vanillin and syringaldehyde is provided. Separation processes for recovery of the aldehydes are included closing with a design of reaction and separation integrated process for aldehydes production from lignin.


Black Liquor Kraft Lignin Bubble Column Reactor Veratric Acid Sulfite Pulp 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Authors are grateful to Dr. Detlef Schmiedl, Fraunhofer Institute for Chemical Technology, Germany and Dr. Daniel Araújo, Faculty of Engineering, University of Porto, Portugal, for kindly providing figures and data.


  1. 1.
    Sjöström E (ed) (1993) Wood chemistry, fundamentals and applications. Academic Press, New YorkGoogle Scholar
  2. 2.
    Boerjan W, Ralph J, Baucher M (2003) Lignin Biosynthesis. Annu Rev Plant Biol 54(1):519–546CrossRefGoogle Scholar
  3. 3.
    Adler E (1977) Lignin chemistry-past, present and future. Wood Sci Technol 11(3):169–218CrossRefGoogle Scholar
  4. 4.
    Davin LB, Patten AM, Jourdes M, Lewis NG (2009) Lignins: a twenty-first century challenge. Biomass recalcitrance. Blackwell Publishing Ltd, LondonGoogle Scholar
  5. 5.
    Ek M, Gellerstedt G, Henriksson G (eds) (2009) Pulp and paper chemistry and technology. Wood chemistry and wood biotechnology, vol 1. Walter de Gruyter, BerlinGoogle Scholar
  6. 6.
    Yr Chen, Sarkanen S (2010) Macromolecular replication during lignin biosynthesis. Phytochemistry 71(4):453–462CrossRefGoogle Scholar
  7. 7.
    Lewin M, Goldstein IS (eds) (1991) Wood structure and composition. Marcel Dekker, New YorkGoogle Scholar
  8. 8.
    Lawoko M, Henriksson G, Gellerstedt G (2005) Structural differences between the lignin—carbohydrate complexes present in wood and in chemical pulps. Biomacromolecules 6(6):3467–3473CrossRefGoogle Scholar
  9. 9.
    Evtuguin DV, Neto CP, Silva AMS, Domingues PM, Amado FML, Robert D, Faix O (2001) Comprehensive study on the chemical structure of dioxane lignin from plantation Eucalyptus globulus wood. J Agric Food Chem 49(9):4252–4261CrossRefGoogle Scholar
  10. 10.
    Pinto PC, Evtuguin DV, Neto CP (2005) Effect of structural features of wood biopolymers on hardwood pulping and bleaching performance. Ind Eng Chem Res 44(26):9777–9784CrossRefGoogle Scholar
  11. 11.
    Boudet AM, Grima-Pettenati J (1996) Lignin genetic engineering. Mol Breeding 2(1):25–39CrossRefGoogle Scholar
  12. 12.
    Baucher M, Halpin C, Petit-Conil MWB (2003) Lignin: genetic engineering and impact on pulping. Crit Rev Biochem Mol Biol 38(4):305–350CrossRefGoogle Scholar
  13. 13.
    Gellerstedt G, Lindfors E-L (1984) Structural changes in lignin during kraft cooking part 4. Phenolic hydroxyl groups in wood and kraft pulps. Svensk Papperstidn 15:115–118Google Scholar
  14. 14.
    Gellerstedt G, Gustafsson K (1987) Structural changes in lignin during kraft cooking. Part 5. Analysis of dissolved lignin by oxidative degradation. J Wood Chem Technol 7(1):65–80Google Scholar
  15. 15.
    Marques AP, Evtuguin DV, Magina S, Amado FML, Prates A (2009) Structure of Lignosulphonates from Acidic Magnesium-Based Sulphite Pulping of Eucalyptus globulus. J Wood ChemTechnol 29(4):337–357CrossRefGoogle Scholar
  16. 16.
    Robert DR, Bardet M, Gellerstedt Gr, Lindfors EL (1984) Structural changes in lignin during kraft cooking part 3. On the structure of dissolved lignins. J Wood Chem Technol 4(3):239–263Google Scholar
  17. 17.
    Vázquez G, Antorrena G, González J, Freire S (1997) The Influence of pulping conditions on the structure of acetosolv eucalyptus lignins. J Wood Chem Technol 17(1):147–162CrossRefGoogle Scholar
  18. 18.
    Gierer J (1985) Chemistry of delignification. Wood Sci Technol 19(4):289–312. doi: 10.1007/bf00350807 Google Scholar
  19. 19.
    Tarabanko VE, Koropatchinskaya NV, Kudryashev AV, Kuznetsov BN (1995) Influence of lignin origin on the efficiency of the catalytic oxidation of lignin vanillin and syringaldehyde. Russ Chem Bull 2:367–371Google Scholar
  20. 20.
    Pinto PR, Borges da Silva EA, Rodrigues AE (2011) Insights into oxidative conversion of lignin to high-added-value phenolic aldehydes. Ind Eng Chem Res 50(2):741–748CrossRefGoogle Scholar
  21. 21.
    Clayton D, Einspahr D, Easty D, Lonsky W, Malcolm E, McDonough T, Shroeder L, Thompson N (1987) Pulp and paper manufacture, vol 5. Alkaline pulping. Tappi and CPPA, AtlantaGoogle Scholar
  22. 22.
    Gierer J (1980) Chemical aspects of kraft pulping. Wood Sci Technol 14(4):241–266CrossRefGoogle Scholar
  23. 23.
    Lebo SE, Gargulak JD, McNally TJ (2000) Lignin. Kirk-Othmer encyclopedia of chemical technology. John Wiley & Sons, LondonGoogle Scholar
  24. 24.
    Gierer J, Wännström S (1984) Formation of alkali-stahle c–c-bonds between lignin and carbohydrate fragments during kraft pulping. Holzforschung 38(4):181–184CrossRefGoogle Scholar
  25. 25.
    Ragnar M, Lindgren CT, Nilvebrant N-O (2000) pKa-values of guaiacyl and syringyl phenols related to lignin. J Wood Chem Technol 20(3):277–305CrossRefGoogle Scholar
  26. 26.
    Öhman F (2006) Precipitation and separation of lignin from kraft black liquor. Chalmers University of Technology, Gottenburg, SwedenGoogle Scholar
  27. 27.
    Tomani P, Axegard P (2007) Development and demonstration of the LignoBoost process. In: The ILI umbrella programme and other existing and new approaches in lignin research, ILI 8th forum, Rome, 10–12 May. The International Lignin Institute, pp 109–113Google Scholar
  28. 28.
    Tomani P (2008) Large scale lignin removal experiences. In: STFI-Packforsk (ed) 1st Nordic wood biorefinery conference (NWBC 2008), Stockholm, 11–13 March, pp 168–174Google Scholar
  29. 29.
    Lindgren K, Alvarado F, Olander K, Öhman F Potential lignin products from the wood biorefinery (2011) In: INNVENTIA (ed) The 3rd Nordic wood biorefinery conference (NWBC 2011), Stockholm, 22–24 March, pp 153–155Google Scholar
  30. 30.
    Nordström Y, Sjöholm E, Brodin I, Drougge R, Gellerstedt G, Lindfors E-L (2011) Lignin for carbon fibres In: INNVENTIA (ed) 3rd Nordic wood biorefinery conference (NWBC 2011), Stockholm, 22–24 March INNVENTIA, pp 156–160Google Scholar
  31. 31.
    Jönsson A-S, Nordin A-K, Wallberg O (2008) Concentration and purification of lignin in hardwood kraft pulping liquor by ultrafiltration and nanofiltration. Chem Eng Res Des 86(11):1271–1280CrossRefGoogle Scholar
  32. 32.
    Wallberg O, Jönsson A-S (2006) Separation of lignin in kraft cooking liquor from a continuous digester by ultrafiltration at temperatures above 100°C. Desalination 195(1–3):187–200CrossRefGoogle Scholar
  33. 33.
    Toledano A, García A, Mondragon I, Labidi J (2010) Lignin separation and fractionation by ultrafiltration. Sep Purif Technol 71(1):38–43CrossRefGoogle Scholar
  34. 34.
    Toledano A, Serrano L, Garcia A, Mondragon I, Labidi J (2010) Comparative study of lignin fractionation by ultrafiltration and selective precipitation. Chem Eng J 157(1):93–99CrossRefGoogle Scholar
  35. 35.
    Gosselink RJA, de Jong E, Guran B, Abächerli A (2004) Co-ordination network for lignin–standardisation, production and applications adapted to market requirements (EUROLIGNIN). Ind Crop Prod 20(2):121–129CrossRefGoogle Scholar
  36. 36.
    Mathias AL (1993) Produção de vanilina a partir da lenhina: estudo cinético e do processo (in Portuguese language). PhD, University of PortoGoogle Scholar
  37. 37.
    Adler E, Hägglund EKM (1954) Method of producing water-soluble products from black liquor lignin. United States patent 2680113Google Scholar
  38. 38.
    JE Holladay JE, Bozell JJ, White JF, Johnson D (2007) Results of screening for potential candidates from biorefinery lignin. Top value-added chemicals from biomass, vol II. Pacific Northwest National Laboratory and National Renewable Energy Laboratory, RichlandGoogle Scholar
  39. 39.
    Meadwestvaco web page (2011) Accessed 21 May 2011
  40. 40.
    Pinto PC, Evtuguin DV, Neto CP, Silvestre AJD, Amado FML (2002) Behavior of Eucalyptus globulus lignin during kraft pulping. II. Analysis by NMR, ESI/MS and GPC. J Wood Chem Technol 22(2):109–125CrossRefGoogle Scholar
  41. 41.
    Pinto PC, Evtuguin DV, Neto CP, Silvestre AJD (2002) Behavior of Eucalyptus globulus lignin during kraft pulping I. Analysis by chemical degradation methods. J Wood Chem Technol 22(2):93–108CrossRefGoogle Scholar
  42. 42.
    Nagy M, Kosa M, Theliander H, Ragauskas AJ (2010) Characterization of CO2 precipitated Kraft lignin to promote its utilization. Green Chem 12(1):31–34CrossRefGoogle Scholar
  43. 43.
    Wilde FGN-D (1987) Recovery of lignosulphonate from a calcium bisulphite pulp mill effluent by ultrafiltration. Desalination 67:495–505CrossRefGoogle Scholar
  44. 44.
    Restolho JA, Prates A, de Pinho MN, Afonso MD (2009) Sugars and lignosulphonates recovery from eucalyptus spent sulphite liquor by membrane processes. Biomass Bioenergy 33(11):1558–1566CrossRefGoogle Scholar
  45. 45.
    Bhattacharya PK, Todi RK, Tiwari M, Bhattacharjee C, Bhattacharjee S, Datta S (2005) Studies on ultrafiltration of spent sulfite liquor using various membranes for the recovery of lignosulphonates. Desalination 174(3):287–297CrossRefGoogle Scholar
  46. 46.
    Mänttäri M, Kallioinen M, Pihlajamäki A, Nyström M (2010) Industrial membrane processes in the treatment of process waters and liquors. Water Sci Technol 62(7):1653–1660CrossRefGoogle Scholar
  47. 47.
    Heikkila H (1986) Production of pure sugars and lignosulfonates from sulfite spent liquor. United States patent 4631129Google Scholar
  48. 48.
    Brauns FE (1967) Recovery of lignosulfonates. United States patent 3297676Google Scholar
  49. 49.
    Hamala TSL, Koivvnen HST, Kontturi A-KK, Sarkkinen PVJ (1982) Process for recovering lignosulfates from spent sulfite liquor. Finland patentGoogle Scholar
  50. 50.
    Chakrabarty K, Saha P, Ghoshal AK (2010) Separation of lignosulfonate from its aqueous solution using emulsion liquid membrane. J Membr Sci 360(1–2):34–39CrossRefGoogle Scholar
  51. 51.
    Evju H (1979) Process for preparation of 3-methoxy-4-hydroxibenzaldeyde. Norway patentGoogle Scholar
  52. 52.
    Ringena O, Saake B, Lehnen R (2005) Isolation and fractionation of lignosulfonates by amine extraction and ultrafiltration: a comparative study. Holzforschung 59(4):405–412CrossRefGoogle Scholar
  53. 53.
  54. 54.
    Lersch M (2011) Biorefining at Borregaard—recent developments in the processing of lignocellulosics. In: The 3rd Nordic wood biorefinery conference (NWBC 2011), Stockholm, 22–24 March 2011, pp 109–113Google Scholar
  55. 55.
    Ismail F, Mulholland DA, Marsh JJ (2005) An analysis of the water soluble components of Sappi Saiccor’s effluent streams. Water SA 31(4):569–574Google Scholar
  56. 56.
    Moodley B, Mulholland DA, Brookes HC (2011) The electro-oxidation of lignin in Sappi Saiccor dissolving pulp mill effluent. Water SA 37(1):33–40Google Scholar
  57. 57.
    Sjöde A, Frölander A, Lersh M, Rødsrud G (2009) Lignocellulosic biomass conversion by sulfite pretreatment. International patent WO2010/078930Google Scholar
  58. 58.
    Pye EK (2008) Industrial lignin production and applications. Biorefineries-industrial processes and products. Wiley-VCH Verlag GmbH, GermanyGoogle Scholar
  59. 59.
    Marwedel T (2009) Vanillin from Borregaard gives small CO2 footprints—Aroma Chemicals, available at web page,4975:1:0:0:::0:0&MainLeft_12937=12539:25998::1:12939:6:::0:0. Borregaard website. Accessed 20 Feb 2011
  60. 60.
    Ekeberg D, Gretland KS, Gustafsson J, Bråten SM, Fredheim GE (2006) Characterisation of lignosulphonates and kraft lignin by hydrophobic interaction chromatography. Anal Chim Acta 565(1):121–128CrossRefGoogle Scholar
  61. 61.
    Fredheim GE, Braaten SM, Christensen BE (2003) Comparison of molecular weight and molecular weight distributions of softwood and hardwood lignosulfonates. J Wood Chem Technol 23(2):197–215CrossRefGoogle Scholar
  62. 62.
    Gellerstedt G, Henriksson G (2008) Lignins: major sources, structure and properties. In: Belgacem MN, Gandini A (eds) Monomers, polymers and composites from renewable resources, 1st edn. Elsevier, OxfordGoogle Scholar
  63. 63.
    Marques AP, Evtuguin DV, Magina S, Amado FML, Prates A (2009) Chemical composition of spent liquors from acidic magnesium-based sulphite pulping of Eucalyptus globulus. J Wood Chem Technol 29(4):322–336CrossRefGoogle Scholar
  64. 64.
    Marques AP, Evtuguin DV, Magina S, Amado FML, Prates A (2009) Structure of lignosulphonates from acidic magnesium-based sulphite pulping of Eucalyptus globulus. J Wood Chem Technol 29(4):337–357CrossRefGoogle Scholar
  65. 65.
    Moodley B, Mulholland DA, Marsh JJ (2003) The characterisation of organic components in the calcium and magnesium effluent streams at Sappi Saiccor. Water SA 29(3):237–240Google Scholar
  66. 66.
    McDonough J (1992) The chemistry of organosolv delignification. Technical paper series, vol 455. Institute of paper science and technology, AtlantaGoogle Scholar
  67. 67.
    El Hage R, Brosse N, Chrusciel L, Sanchez C, Sannigrahi P, Ragauskas A (2009) Characterization of milled wood lignin and ethanol organosolv lignin from Miscanthus. Polym Degrad Stab 94(10):1632–1638CrossRefGoogle Scholar
  68. 68.
    Arato C, Pye E, Gjennestad G (2005) The lignol approach to biorefining of woody biomass to produce ethanol and chemicals. Appl Biochem Biotechnol 123(1):871–882CrossRefGoogle Scholar
  69. 69.
    Schmiedl D, Unkelbach G, Graf J, Schweppe R (2009) Studies in catalyzed hydrothermal degradation processes on sulphur-free lignin and extractive separation of aromatic SYNTHONs. In: Nordic wood and biorefinery conference (NWBC 2009), Helsinky, Finland, 2–4 Sept, pp 189–196Google Scholar
  70. 70.
    Kim D-E, Pan X (2010) Preliminary study on converting hybrid poplar to high-value chemicals and lignin using organosolv ethanol process. Ind Eng Chem Res 49(23):12156–12163CrossRefGoogle Scholar
  71. 71.
    Kleinert TN (1971) Organosolv pulping and recovery process. United States patent 3585104Google Scholar
  72. 72.
    Pye EK, Lora JH (1991) The Alcell process a proven alternative to kraft pulping. Tappi J 74(3):113–118Google Scholar
  73. 73.
    Lignol web page (2011) Accessed 20 May 2011
  74. 74.
    Pan X, Arato C, Gilkes N, Gregg D, Mabee W, Pye K, Xiao Z, Zhang X, Saddler J (2005) Biorefining of softwoods using ethanol organosolv pulping: preliminary evaluation of process streams for manufacture of fuel-grade ethanol and co-products. Biotechnol Bioeng 90(4):473–481CrossRefGoogle Scholar
  75. 75.
    Michels J, Wagemann K (2011) The German lignocellulose feedstock biorefinery project. In: The 3rd Nordic wood biorefinery conference (NWBC 2011), Stockholm, 22–24 March 2011, pp 70–75Google Scholar
  76. 76.
    Lignovalue project web page (2011), Accessed May 2011
  77. 77.
    Lehnen R, Heitmann M, Flötotto A (2011) Organosolv lignin in phenol formaldehyde resins—evaluation of curing behaviour and wood bonding effectiveness. In: The 3rd Nordic wood biorefinery conference (NWBC 2011), Stockholm, 22–24 March, pp 187–192Google Scholar
  78. 78.
    Schweppe R, Unkelbach G, Fehrenbacher U (2009) Transformation of lignocellulose into aromatic building blocks. Paper presented at the Biorefinica 2009, Biobased products and biorefineries, Osnabrück, 27-28 JanGoogle Scholar
  79. 79.
    Thring RW, Vanderlaan MN, Griffin SL (1997) Polyurethanes from Alcell® lignin. Biomass Bioenergy 13(3):125–132CrossRefGoogle Scholar
  80. 80.
    Cateto CA, Barreiro MF, Rodrigues AE, Belgacem MN (2011) Lignin-based polyurethane elastomers. In: The 3rd Nordic wood biorefinery conference (NWBC 2011), Stockholm, 22–24 March, pp 334–335Google Scholar
  81. 81.
    Kadla JF, Kubo S, Venditti RA, Gilbert RD, Compere AL, Griffith W (2002) Lignin-based carbon fibers for composite fiber applications. Carbon 40(15):2913–2920CrossRefGoogle Scholar
  82. 82.
    Satheesh Kumar MN, Mohanty AK, Erickson L, Misra M (2009) Lignin and its applications with polymers. Journal Biobased Mater Bioenergy 3(1):1–24CrossRefGoogle Scholar
  83. 83.
    Cateto CA, Barreiro MF, Rodrigues AE, Brochier-Salon MC, Thielemans W, Belgacem MN (2008) Lignins as macromonomers for polyurethane synthesis: a comparative study on hydroxyl group determination. J Appl Polym Sci 109(5):3008–3017CrossRefGoogle Scholar
  84. 84.
    Thring RW, Breau J (1996) Hydrocracking of solvolysis lignin in a batch reactor. Fuel 75(7):795–800CrossRefGoogle Scholar
  85. 85.
    Sridach W (2010) The environmentally benign pulping process of non-wood fibers. Suranaree J Sci Technol 17(2):105–123Google Scholar
  86. 86.
    Clark JH, Deswarte FEI (2008) The biorefinery concept–an integrated approach. Introduction to chemicals from biomass. John Wiley & Sons, New DelhiGoogle Scholar
  87. 87.
    Kleinert M, Barth T (2008) Towards a lignincellulosic biorefinery: direct one-step conversion of lignin to hydrogen-enriched biofuel. Energy & Fuels 22(2):1371–1379CrossRefGoogle Scholar
  88. 88.
    Pandey MP, Kim CS (2011) Lignin depolymerization and conversion: a review of thermochemical methods. Chem Eng Technol 34(1):29–41CrossRefGoogle Scholar
  89. 89.
    Yan N, Zhao C, Dyson PJ, Wang C, Liu L-t, Kou Y (2008) Selective degradation of wood lignin over noble-metal catalysts in a two-step process. Chemsuschem 1(7):626–629CrossRefGoogle Scholar
  90. 90.
    Zakzeski J, Bruijnincx PCA, Jongerius AL, Weckhuysen BM (2010) The catalytic valorization of lignin for the production of renewable chemicals. Chem Rev 110(6):3552–3599CrossRefGoogle Scholar
  91. 91.
    Hocking MB (1997) Vanillin: synthetic flavoring from spent sulfite liquor. J Chem Educ 74(9):1055Google Scholar
  92. 92.
    Bjørsvik H-R, Liguori L (2002) Organic processes to pharmaceutical chemicals based on fine chemicals from lignosulfonates. Org Process Res Dev 6(3):279–290CrossRefGoogle Scholar
  93. 93.
    Vanillin squeezed by cost pressures (2006) Reed Business Information Limited. Accessed 20 May 2011
  94. 94.
    Ramachandra Rao S, Ravishankar GA (2000) Vanilla flavour: production by conventional and biotechnological routes. J Sci Food Agric 80(3):289–304CrossRefGoogle Scholar
  95. 95.
    Walton NJ, Mayer MJ, Narbad A (2003) Vanillin. Phytochemistry 63(5):505–515CrossRefGoogle Scholar
  96. 96.
    Sandborn LR, Salvesen JR, Howard GC (1936) Process of making vanillin. United States patent 2057117Google Scholar
  97. 97.
    Pearl IA (1958) Lignin as a raw material for the production of pure chemicals. J Chem Educ 35(10):502Google Scholar
  98. 98.
    Hibbert H, Tomlinson GJ (1937) Manufacture of vanillin from waste sulphite pulp liquor. United States patent 2069185Google Scholar
  99. 99.
    Thiel L, Hendricks F (2004) Study into the establishment of an aroma and fragrance fine chemicals value chain in South Africa, Part III: Aroma Chemicals derived from petrochemical feedstocks, tender number T79/07/03. Government tender bulletins. National Economic Development and Labor Council, Available from:
  100. 100.
    Priefert H, Rabenhorst J, Steinbuchel A (2001) Biotechnological production of vanillin. Appl Microbiol Biotechnol 56(3–4):296–314CrossRefGoogle Scholar
  101. 101.
    Schrader J, Etschmann MMW, Sell D, Hilmer JM, Rabenhorst J (2004) Applied biocatalysis for the synthesis of natural flavour compounds—current industrial processes and future prospects. Biotechnol Lett 26(6):463–472CrossRefGoogle Scholar
  102. 102.
  103. 103.
    Manchand PS, Rosen P, Belica PS, Oliva GV, Perrotta AV, Wong HS (1992) Syntheses of antibacterial 2,4-diamino-5-benzylpyrimidines. Ormetoprim and trimethoprim. J Org Chem 57(13):3531–3535CrossRefGoogle Scholar
  104. 104.
    Manchand P (1978) Process for preparing 2,4-diamino-5-(substituted benzyl)-pyrimidinesGoogle Scholar
  105. 105.
    Erofeev YV, Afanas’eva VL, Glushkov RG (1990) Synthetic routes to 3,4,5-trimethoxybenzaldehyde. Pharm Chem J 24(7):501–510 reviewCrossRefGoogle Scholar
  106. 106.
    Pepper JM, MacDonald JA (1953) The synthesis of syringaldehyde from vanillin. Can J Chem 31:476–483CrossRefGoogle Scholar
  107. 107.
    Pearl IA (1948) Synthesis of syringaldehyde. J Am Chem Soc 70(5):1746–1748CrossRefGoogle Scholar
  108. 108.
    Tripathi AK, Sama JK, Taneja SC (2010) An expeditious synthesis of syringaldehyde from para-cresol. Indian J Chem 49:379–381 Section BGoogle Scholar
  109. 109.
    Marshall HB, Vincent DL (1978) Production of syringaldehyde from hardwood waste pulping liquors. United States patent 4075248Google Scholar
  110. 110.
    Wu G, Heitz M, Chornet E (1994) Improved alkaline oxidation process for the production of aldehydes (vanillin and syringaldehyde) from steam-explosion hardwood lignin. Ind Eng Chem Res 33(3):718–723CrossRefGoogle Scholar
  111. 111.
    Sales FG, Maranhão LCA, Lima Filho NM, Abreu CAM (2006) Kinetic evaluation and modeling of lignin catalytic wet oxidation to selective production of aromatic aldehydes. Ind Eng Chem Res 45(20):6627–6631CrossRefGoogle Scholar
  112. 112.
    Sales FG, Abreu CAM, Pereira JAFR (2004) Catalytic wet-air oxidation of lignin in a three-phase reactor with aromatic aldehyde production. Brazilian J Chem Eng 21:211–218CrossRefGoogle Scholar
  113. 113.
    Santos SG, Marques AP, Lima DLD, Evtuguin DV, Esteves VI (2011) Kinetics of Eucalypt lignosulfonate oxidation to aromatic aldehydes by oxygen in alkaline medium. Ind Eng Chem Res 50(1):291–298CrossRefGoogle Scholar
  114. 114.
    Lee CY, Sharma A, Cheong JE, Nelson JL (2009) Synthesis and antioxidant properties of dendritic polyphenols. Bioorg Med Chem Lett 19(22):6326–6330CrossRefGoogle Scholar
  115. 115.
    Sales FG, Maranhão LCA, Filho NML, Abreu CAM (2007) Experimental evaluation and continuous catalytic process for fine aldehyde production from lignin. Chem Eng Sci 62(18–20):5386–5391Google Scholar
  116. 116.
    Fargues C, Mathias A, Rodrigues A (1996) Kinetics of vanillin production from kraft lignin oxidation. Ind Eng Chem Res 35(1):28–36CrossRefGoogle Scholar
  117. 117.
    Mathias AL, Lopretti MI, Rodrigues AE (1995) Chemical and biological oxidation of Pinus-Pinaster lignin for the production of vanillin. J Chem Technol Biotechnol 64(3):225–234CrossRefGoogle Scholar
  118. 118.
    Mathias AL, Rodrigues AE (1995) Production of vanillin by oxidation of pine kraft lignins with oxygen. Holzforschung 49(3):273–278CrossRefGoogle Scholar
  119. 119.
    Araújo JD (2008) Production of vanillin from lignin present in the Kraft black liquor of the pulp and paper industry, PhD thesis. University of PortoGoogle Scholar
  120. 120.
    Araújo JDP, Grande CA, Rodrigues AE (2009) Structured packed bubble column reactor for continuous production of vanillin from kraft lignin oxidation. Catal Today 147:S330–S335CrossRefGoogle Scholar
  121. 121.
    Araújo JDP, Grande CA, Rodrigues AE (2010) Vanillin production from lignin oxidation in a batch reactor. Chem Eng Res Des 88(8A):1024–1032Google Scholar
  122. 122.
    Sridhar P, Araujo JD, Rodrigues AE (2005) Modeling of vanillin production in a structured bubble column reactor. Catal Today 105(3–4):574–581CrossRefGoogle Scholar
  123. 123.
    Villar JC, Caperos A, Garcia-Ochoa F (2001) Oxidation of hardwood kraft-lignin to phenolic derivatives with oxygen as oxidant. Wood Sci Technol 35(3):245–255CrossRefGoogle Scholar
  124. 124.
    Zhang J, Deng H, Lin L (2009) Wet Aerobic Oxidation of Lignin into aromatic aldehydes catalysed by a Perovskite-type oxide: LaFe1-xCuxO3 (x = 0, 0.1, 0.2). Molecules 14(8):2747–2757CrossRefGoogle Scholar
  125. 125.
    Xiang Q, Lee YY (2001) Production of oxychemicals from precipitated hardwood lignin. Appl Biochem Biotechnol 91–3:71–80CrossRefGoogle Scholar
  126. 126.
    Voill T, von Rohr PR (2010) Demonstration of a process for the conversion of kraft lignin into vanillin and methyl vanillate by acidic oxidation in aqueous methanol. Ind Eng Chem Res 49(2):520–525CrossRefGoogle Scholar
  127. 127.
    Labat G, Gonçalves A (2008) Oxidation in acidic medium of lignins from agricultural residues. Appl Biochem Biotechnol 148(1):151–161CrossRefGoogle Scholar
  128. 128.
    Partenheimer W (2009) The aerobic oxidative cleavage of lignin to produce hydroxyaromatic benzaldehydes and carboxylic acids via metal/bromide catalysts in acetic acid/water mixtures. Adv Synth Catal 351(3):456–466CrossRefGoogle Scholar
  129. 129.
    Stark K, Taccardi N, Bosmann A, Wasserscheid P (2010) Oxidative depolymerization of lignin in ionic liquids. Chemsuschem 3(6):719–723CrossRefGoogle Scholar
  130. 130.
    Zakzeski J, Jongerius AL, Weckhuysen BM (2010) Transition metal catalyzed oxidation of Alcell lignin, soda lignin, and lignin model compounds in ionic liquids. Green Chem 12(7):1225–1236CrossRefGoogle Scholar
  131. 131.
    Clark JH, Budarin V, Deswarte FEI, Hardy JJE, Kerton FM, Hunt AJ, Luque R, Macquarrie DJ, Milkowski K, Rodriguez A, Samuel O, Tavener SJ, White RJ, Wilson AJ (2006) Green chemistry and the biorefinery: a partnership for a sustainable future. Green Chem 8(10):853–860CrossRefGoogle Scholar
  132. 132.
    Tarabanko VE, Pervishina EP, Hendogina YV (2001) Kinetics of aspen wood oxidation by oxygen in alkaline media. React Kinet Catal Lett 72(1):153–162CrossRefGoogle Scholar
  133. 133.
    Borges da Silva EA, Zabkova M, Araujo JD, Cateto CA, Barreiro MF, Belgacem MN, Rodriques AE (2009) An integrated process to produce vanillin and lignin-based polyurethanes from kraft lignin. Chem Eng Res Des 87(9A):1276–1292Google Scholar
  134. 134.
    Zabkova M, Borges da Silva EA, Rodrigues AE (2007) Recovery of vanillin from kraft lignin oxidation by ion-exchange with neutralization. Sep Purif Technol 55(1):56–68CrossRefGoogle Scholar
  135. 135.
    Zabkova M, Borges da Silva EA, Rodrigues AE (2007) Recovery of vanillin from lignin/vanillin mixture by using tubular ceramic ultrafiltration membranes. J Membr Sci 301(1–2):221–237CrossRefGoogle Scholar
  136. 136.
    Ibrahim MNM, Sipaut CS, Yusof NNM (2009) Purification of vanillin by a molecular imprinting polymer technique. Sep Purif Technol 66(3):450–456CrossRefGoogle Scholar
  137. 137.
    Wang ZJ, Chen KF, Li J, Wang QQ, Guo J (2010) Separation of vanillin and syringaldehyde from oxygen delignification spent liquor by macroporous resin adsorption. Clean-Soil Air Water 38(11):1074–1079CrossRefGoogle Scholar
  138. 138.
    Zabkova M, Otero M, Minceva M, Zabka M, Rodrigues AE (2006) Separation of synthetic vanillin at different pH onto polymeric adsorbent Sephabeads SP206. Chem Eng Process 45(7):598–607CrossRefGoogle Scholar
  139. 139.
    Tarabanko VE, Fomova NA, Kuznetsov BN, Ivanchenko NM, Kudryashev AV (1995) On the mechanism of vanillin formation in the catalytic oxidation of lignin with oxygen. React Kinet Catal Lett 55(1):161–170CrossRefGoogle Scholar
  140. 140.
    Tarabanko VE, Petukhov DV, Selyutin GE (2004) New mechanism for the catalytic oxidation of lignin to vanillin. Kinet Catal 45(4):569–577CrossRefGoogle Scholar
  141. 141.
    Tarabanko VE, Hendogina YV, Petuhov DV, Pervishina EP (2000) On the role of retroaldol reaction in the process of lignin oxidation into vanillin. Kinetics of the vanillideneacetone cleavage in alkaline media. React Kinet Catal Lett 69(2):361–368CrossRefGoogle Scholar
  142. 142.
    Tarabanko VE, Kudryashev AV, Kuznetsov BN, Gulbis GR, Koropachinskaya NV, Ivanchenko NM (1996) Catalytic oxidation of lignosulfonates into vanillin and syringaldehyde in a flow-type setup. Russ J Appl Chem 69(4):559–563Google Scholar
  143. 143.
    Gierer J, Imsgard F (1977) The reactions of lignins with oxygen and hydrogen peroxide in alkaline media. Svensk Papperstidn 80:510–518Google Scholar
  144. 144.
    Kratzl K, Claus P, Lonsky W, Gratzl JS (1974) Model studies on reactions occurring in oxidations of lignin with molecular oxygen in alkaline media. Wood Sci Technol 8(1):35–49Google Scholar
  145. 145.
    Gierer J (1982) The chemistry of delignification—a general concept—part II. Holzforschung 36(2):55–64CrossRefGoogle Scholar
  146. 146.
    Gierer J, Imsgard F, Norén I (1977) Studies on the degradation of phenolic lignin units of the β-aryl ether type with oxygen in alkaline media. Acta Chem Scand B 31:561–572CrossRefGoogle Scholar
  147. 147.
    Tromans D (1998) Oxygen solubility modeling in inorganic solutions: concentration, temperature and pressure effects. Hydrometallurgy 50(3):279–296CrossRefGoogle Scholar
  148. 148.
    Marshall HB, Sankey AC (1951) Method of producing vanillin. United States patent 2544999Google Scholar
  149. 149.
    Fargues C, Mathias A, Silva J, Rodrigues A (1996) Kinetics of vanillin oxidation. Chem Eng Technol 19(2):127–136CrossRefGoogle Scholar
  150. 150.
    Collis BC (1954) Manufacture of vanillin from lignin. United States patent 2692291Google Scholar
  151. 151.
    Ji Y (2007) Kinetics and mechanism of oxygen delignification PhD, The University of MaineGoogle Scholar
  152. 152.
    Marshall HB, Sankey AC (1950) Method of producing vanillin. United States patent 2516827Google Scholar
  153. 153.
    Rodrigues AE, Araujo JDP (2002) Production of vanillin from lignin. Actualite Chimique 11–12:62–63Google Scholar
  154. 154.
    Pinto PC, Borges da Silva EA, Rodrigues AE (2010) Comparative study of solid-phase extraction and liquid–liquid extraction of lignin oxidation products for HPLC-UV quantification. Ind Eng Chem Res 49(23):12311–12318CrossRefGoogle Scholar
  155. 155.
    Bjørsvik H-R, Minisci F (1999) Fine chemicals from lignosulfonates. 1. Synthesis of vanillin by oxidation of lignosulfonates. Org Process Res Dev 3(5):330–340Google Scholar
  156. 156.
    Tsutsumi Y, Kondo R, Sakai K, Imamura H (1995) The difference of reactivity between syringyl lignin and guaiacyl lignin in alkaline systems. Holzforschung 49(5):423–428CrossRefGoogle Scholar
  157. 157.
    Sultanov VS, Wallis AFA (1991) Reactivities of guaiacyl and syringyl lignin model phenols towards oxidation with oxygen-alkali. J Wood Chem Technol 11(3):291–305CrossRefGoogle Scholar
  158. 158.
    Bjørsvik H-R, Norman K (1999) Fine chemicals from lignosulfonates. 2. Synthesis of veratric acid from acetovanillon. Org Process Res Dev 3(5):341–346Google Scholar
  159. 159.
    Kuznetsov BN, Kuznetsova SA, Danilov VG, Kozlov IA, Tarabanko VE, Ivanchenko NM, Alexandrova NB (2002) New catalytic processes for a sustainable chemistry of cellulose production from wood biomass. Catal Today 75(1–4):211–217CrossRefGoogle Scholar
  160. 160.
    Wong Z, Chen K, Li J (2010) Formation of vanillin and syringaldehyde in an oxygen delignification process. Bioresour Technol 5(3):1509–1516Google Scholar
  161. 161.
    Gierer J (1986) Chemistry of delignification. Wood Sci Technol 20(1):1–33CrossRefGoogle Scholar
  162. 162.
    Sandborn L, Howard GC (1938) Process of making vanillin. United States patent 2104701Google Scholar
  163. 163.
    Bryan CC (1955) Propanol extraction of sodium vanillinate. United States patent 2721221Google Scholar
  164. 164.
    Bauer K, Brandt H-W, Schroter J (1978) Carrier-vapor distillation. United States patent 4090922Google Scholar
  165. 165.
    Kaygorodov KL, Chelbina YV, Tarabanko VE, Tarabanko NV (2010) Extraction of vanillin by aliphatic alcohols. J Siberian Fed Univ-Chem 3:228–233Google Scholar
  166. 166.
    Forss KG, Talka ET, Fremer KE (1986) Isolation of vanillin from alkaline oxidized spent sulfite liquor. Ind Eng Chem Product Res Dev 25(1):103–108CrossRefGoogle Scholar
  167. 167.
    Forss KG, Talka ET, Fremer K-E (1981) Method for the isolation of vanillin from lignin in alkaline solutions. United States patent 4277626Google Scholar
  168. 168.
    Logan CD (1965) Cyclic process for recovering vanillin and sodium values from lignosulphonic waste liquors by ion exchange. United States patent 3197359Google Scholar
  169. 169.
    Evju H (1979) Process for preparation of 3-methoxy-4-hydroxybenzaldehyde. United States patent 4151207Google Scholar
  170. 170.
    Klemola A, Tuovinen J (1989) Method for the production of vanillin. United States patent 4847422Google Scholar
  171. 171.
    Coenen H, Konrad R (1990) Process for the extraction of vanillin. United States patent 4898990Google Scholar
  172. 172.
    Schoeffel EW (1962) Vanillin purification. United States patent 3049566Google Scholar
  173. 173.
    Makin EC (1984) Purification of vanillin. United States patent 4474994Google Scholar
  174. 174.
    Major FW, Nicolle FMA (1977) Vanillin recovery process. United States patent 4021493Google Scholar
  175. 175.
    Cateto CA, Barreiro MF, Rodrigues AE, Belgacem MN (2009) Optimization study of lignin oxypropylation in view of the preparation of polyurethane rigid foams. Ind Eng Chem Res 48(5):2583–2589CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Paula C. Rodrigues Pinto
    • 1
  • Eduardo A. Borges da Silva
    • 1
  • Alírio E. Rodrigues
    • 1
  1. 1.Laboratory of Separation and Reaction Engineering—LSRE, Associate Laboratory LSRE/LCM, Department of Chemical EngineeringFaculty of Engineering, University of PortoPortoPortugal

Personalised recommendations