Advertisement

Organosolv Fractionation of Lignocelluloses for Fuels, Chemicals and Materials: A Biorefinery Processing Perspective

  • Ming-Fei Li
  • Shao-Ni Sun
  • Feng Xu
  • Run-Cang Sun
Chapter

Abstract

Fractionation of lignocellulosic materials into their major macromolecular fractions for high value applications is a challenging work that attracted increased attention in recent years. Organosolv fractionation, one of the most promising fractionation approaches, has been performed to separate lignocellulosic feedstocks into cellulose, hemicelluloses and lignin via organic solvent under mild conditions in a biorefinery manner. The present chapter focuses particularly on new research on the process of organosolv fractionation and utilization of the prepared products in the field of fuels, chemicals and materials. Ethanol-based fractionation, the main organosolv fractionation process aiming at obtaining bioethanol production presently, is discussed extensively. Formic acid and acetic acid fractionations, two useful processes mainly applied for the extraction of lignin, are also discussed in detail. The chemical mechanism and technical flow involved in the fractionation processes aforementioned are elaborated, and the potential applications of the fractionated products (mainly cellulose rich fraction, degraded sugars and soluble lignin) are covered. Other types of organic solvents for fractionations attracted current attention are also mentioned.

Keywords

Sugarcane Bagasse Lignocellulosic Material Black Liquor Kappa Number Pulp Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors wish to express their gratitude for the financial support from the State Forestry Administration (200804015/2010-0400706), the National Natural Science Foundation of China (30930073 and 31070526), Major State Basic Research Projects of China (973-2010CB732204), Ministry of Education (111), and Hei Long Jiang Province for Distinguished Young Scholars (JC200907).

References

  1. 1.
    Sundquist J, Poppius-Levlin K (1998) Milox pulping and bleaching. In: Young R, Akhtar M (eds) Environmentally friendly technologies for the pulp and paper industry. John Willey and Sons, New York, pp 157–190Google Scholar
  2. 2.
    Muurinen E (2000) Organosolv pulping: a review and distillation study related to peroxyacid pulping. Oulun yliopisto, OulunGoogle Scholar
  3. 3.
    Rodriguez A, Jimenez L (2008) Pulping with organic solvents other than alcohols. Afinidad 65(535):188–196Google Scholar
  4. 4.
    Johansson A, Aaltonen O, Ylinen P (1987) Organosolv pulping: methods and pulp properties. Biomass 13(1):45–65. doi: 10.1016/0144-4565(87)90071-0 CrossRefGoogle Scholar
  5. 5.
    Jiménez L, Rodríguez A (2010) Valorization of agricultural residues by fractionation of their components. Open Agric J 4:125–134Google Scholar
  6. 6.
    Leponiemi A (2008) Non-wood pulping possibilities: a challenge for the chemical pulping industry. Appita J 61(3):234–243Google Scholar
  7. 7.
    Stewart D (2008) Lignin as a base material for materials applications: chemistry, application and economics. Ind Crop Prod 27(2):202–207. doi: 10.1016/j.indcrop.2007.07.008 CrossRefGoogle Scholar
  8. 8.
    Zhao XB, Cheng KK, Liu DH (2009) Organosolv pretreatment of lignocellulosic biomass for enzymatic hydrolysis. Appl Microbiol Biot 82(5):815–827. doi: 10.1007/s00253-009-1883-1 CrossRefGoogle Scholar
  9. 9.
    Klason P (1893) Bidrag till kannedomen om sammansattningen af granens ved samt de kemiska processerna vid framstallning af cellulosa darur. Teknisk Tidskrift, Afdelningen for Kemi och Metallurgi 23(2):17–22Google Scholar
  10. 10.
    Klason P (1893) Framstallning af rent lignin ur granved och denna sednares kemiska sammansattning. Teknisk Tidskrift, Afdelningen for Kemi och Metallurgi 23(2):55–56Google Scholar
  11. 11.
    Pauly H (1918) Aktiengesellschaft fur Zellstoff- und Papierfabrikation in Aschaffenburg, assignee.Verfahren zur gewinnung der das sogenannte lignin bildenten stoffe aus holzarten. German Patent 309551Google Scholar
  12. 12.
    Pauly H (1918) Aktiengesellschaft fur Zellstoff- und Papierfabrikation, assignee. Satt att utvinna lignin ur cellulosahaltigt material. Swedish Patent 45010Google Scholar
  13. 13.
    Aziz S, Sarkanen K (1989) Organosolv pulping: a review. Tappi J 72(3):169–175Google Scholar
  14. 14.
    Teder A, Olm L (1992) Alternative cooking processes: modified sulfate cooking and alkaline sulfite process. Svensk Papperstidning-Nordisk Cellulosa 95(7):26–32Google Scholar
  15. 15.
    Pan XJ, Arato C, Gilkes N, Gregg D, Mabee W, Pye K, Xiao ZZ, Zhang X, Saddler J (2005) Biorefining of softwoods using ethanol organosolv pulping: preliminary evaluation of process streams for manufacture of fuel-grade ethanol and co-products. Biotechnol Bioeng 90(4):473–481. doi: 10.1002/bit.20453 CrossRefGoogle Scholar
  16. 16.
    Brosse N, El Hage R, Sannigrahi P, Ragauskas A (2010) Dilute sulphuric acid and ethanol organosolv pretreatment of Miscanthus x giganteus. Cell Chem Technol 44(1–3):71–78Google Scholar
  17. 17.
    Monrroy M, Ibanez J, Melin V, Baeza J, Mendonca RT, Contreras D, Freer J (2010) Bioorganosolv pretreatments of P.radiata by a brown rot fungus (Gloephyllum trabeum) and ethanolysis. Enzyme Microb Technol 47(1–2):11–16. doi: 10.1016/j.enzmictec.2010.01.009 CrossRefGoogle Scholar
  18. 18.
    Brosse N, Sannigrahi P, Ragauskas A (2009) Pretreatment of Miscanthus x giganteus using the ethanol organosolv process for ethanol production. Ind Eng Chem Res 48(18):8328–8334CrossRefGoogle Scholar
  19. 19.
    Pan XJ, Xie D, Yu RW, Saddler JN (2008) The bioconversion of mountain pine beetle-killed lodgepole pine to fuel ethanol using the organosolv process. Biotechnol Bioeng 101(1):39–48. doi: 10.1002/Bit.21883 CrossRefGoogle Scholar
  20. 20.
    Pan XJ, Gilkes N, Kadla J, Pye K, Saka S, Gregg D, Ehara K, Xie D, Lam D, Saddler J (2006) Bioconversion of hybrid poplar to ethanol and co-products using an organosolv fractionation process: optimization of process yields. Biotechnol Bioeng 94(5):851–861. doi: 10.1002/Bit.20905 CrossRefGoogle Scholar
  21. 21.
    Mesa L, Gonzalez E, Ruiz E, Romero I, Cara C, Felissia F, Castro E (2010) Preliminary evaluation of organosolv pre-treatment of sugar cane bagasse for glucose production: application of 23 experimental design. Appl Energ 87(1):109–114. doi: 10.1016/j.apenergy.2009.07.016 CrossRefGoogle Scholar
  22. 22.
    Teramoto Y, Lee SH, Endo T (2008) Pretreatment of woody and herbaceous biomass for enzymatic saccharification using sulfuric acid-free ethanol cooking. Bioresour Technol 99(18):8856–8863. doi: 10.1016/j.biortech.2008.04.049 CrossRefGoogle Scholar
  23. 23.
    Lopez F, Garcia JC, Perez A, Garcia MM, Feria MJ, Tapias R (2010) Leucaena diversifolia a new raw material for paper production by soda-ethanol pulping process. Chem Eng Res Des 88 (1A):1–9. doi: 10.1016/j.cherd.2009.06.016 Google Scholar
  24. 24.
    Ogunsile BO, Quintana GC (2010) Modeling of soda: ethanol pulps from Carpolobia lutea. Bioresources 5(4):2417–2430Google Scholar
  25. 25.
    Lopez F, Perez A, Garcia JC, Feria MJ, Garcia MM, Fernandez M (2011) Cellulosic pulp from Leucaena diversifolia by soda-ethanol pulping process. Chem Eng J 166(1):22–29. doi: 10.1016/j.cej.2010.08.039 CrossRefGoogle Scholar
  26. 26.
    Kirci H, Bostanci S, Yalinkilic MK (1994) A new modified pulping process alternative to sulfate method alkali-sulfite-antraquinone-ethanol (ASAE). Wood Sci Technol 28(2):89–99. doi: 10.1007/BF00192688 CrossRefGoogle Scholar
  27. 27.
    El Hage R, Brosse N, Sannigrahi P, Ragauskas A (2010) Effects of process severity on the chemical structure of Miscanthus ethanol organosolv lignin. Polym Degrad Stabil 95(6):997–1003. doi: 10.1016/j.polymdegradstab.2010.03.012 CrossRefGoogle Scholar
  28. 28.
    Kishimoto T, Sano Y (2003) Delignification mechanism during high-boiling solvent pulping. V. Reaction of nonphenolic β-O-4 model compounds in the presence and absence of glucose. J Wood Chem Technol 23(3–4):279–292. doi: 10.1081/Wct-120026993 Google Scholar
  29. 29.
    Sarkanen KV, Tillman DA (1980) Progress in biomass conversion, vol 2. Academic Press, New YorkGoogle Scholar
  30. 30.
    Kubo S, Kadla JF (2004) Poly(ethylene oxide)/organosolv lignin blends: relationship between thermal properties, chemical structure, and blend behavior. Macromolecules 37(18):6904–6911. doi: 10.1021/Ma0490552 CrossRefGoogle Scholar
  31. 31.
    West E, MacInnes AS, Hibbert H (1943) Studies on lignin and related compounds. LXIX. Isolation of 1-(4-hydroxy-3-methoxyphenyl)-2-propanone and 1-ethoxy-1-(4-hydroxy-3-methoxyphenyl)-2-propanone from the ethanolysis products of spruce wood. J Am Chem Soc 65:1187–1192. doi: 10.1021/ja01246a047 CrossRefGoogle Scholar
  32. 32.
    Hallac BB, Pu YQ, Ragauskas AJ (2010) Chemical transformations of Buddleja davidii lignin during ethanol organosolv pretreatment. Energ Fuel 24:2723–2732. doi: 10.1021/Ef901556u CrossRefGoogle Scholar
  33. 33.
    Li S, Lundquist K (1999) Acid reactions of lignin models of β-5 type. Holzforschung 53(1):39–42. doi: 10.1515/HF.1999.007 CrossRefGoogle Scholar
  34. 34.
    El Hage R, Brosse N, Chrusciel L, Sanchez C, Sannigrahi P, Ragauskas A (2009) Characterization of milled wood lignin and ethanol organosolv lignin from miscanthus. Polym Degrad Stabil 94(10):1632–1638. doi: 10.1016/j.polymdegradstab.2009.07.007 CrossRefGoogle Scholar
  35. 35.
    Meshgini M, Sarkanen KV (1989) Synthesis and kinetics of acid-catalyzed hydrolysis of some α-aryl ether lignin model compounds. Holzforschung 43(4):239–243. doi: 10.1515/hfsg.1989.43.4.239 CrossRefGoogle Scholar
  36. 36.
    Vazquez G, Antorrena G, Gonzalez J, Freire S, Lopez S (1997) Acetosolv pulping of pine wood: kinetic modelling of lignin solubilization and condensation. Bioresour Technol 59(2–3):121–127. doi: 10.1016/S0960-8524(96)00168-X CrossRefGoogle Scholar
  37. 37.
    Mcdonough TJ (1993) The chemistry of organosolv delignification. Tappi J 76(8):186–193Google Scholar
  38. 38.
    Baeza J, Fernandez AM, Freer J, Pedreros A, Schmidt E, Duran N (1991) Organosolv-pulping III: the influence of formic acid delignification of the enzymatic-hydrolysis of Pinus radiata D. Don sawdus. Appl Biochem Biotech 31(3):273–282. doi: 10.1007/BF02921754 CrossRefGoogle Scholar
  39. 39.
    Hallac BB, Sannigrahi P, Pu YQ, Ray M, Murphy RJ, Ragauskas AJ (2010) Effect of ethanol organosolv pretreatment on enzymatic hydrolysis of Buddleja davidii stem biomass. Ind Eng Chem Res 49(4):1467–1472CrossRefGoogle Scholar
  40. 40.
    Kim DE, Pan XJ (2010) Preliminary study on converting hybrid poplar to high-value chemicals and lignin using organosolv ethanol process. Ind Eng Chem Res 49(23):12156–12163. doi: 10.1021/Ie101671r CrossRefGoogle Scholar
  41. 41.
    Bobleter O (1994) Hydrothermal degradation of polymers derived from plants. Prog Polym Sci 19(5):797–841CrossRefGoogle Scholar
  42. 42.
    Arato C, Pye EK, Gjennestad G (2005) The lignol approach to biorefining of woody biomass to produce ethanol and chemicals. Appl Biochem Biotech 121:871–882. doi: 10.1385/ABAB:123:1-3:0871 CrossRefGoogle Scholar
  43. 43.
    Garcia A, Alriols MG, Llano-Ponte R, Labidi J (2011) Energy and economic assessment of soda and organosolv biorefinery processes. Biomass Bioenerg 35(1):516–525. doi: 10.1016/j.biombioe.2010.10.002 CrossRefGoogle Scholar
  44. 44.
    Liu ZH, Fatehi P, Jahan MS, Ni YH (2011) Separation of lignocellulosic materials by combined processes of pre-hydrolysis and ethanol extraction. Bioresour Technol 102(2):1264–1269. doi: 10.1016/j.biortech.2010.08.049 CrossRefGoogle Scholar
  45. 45.
    Pan XJ, Xie D, Yu RW, Lam D, Saddler JN (2007) Pretreatment of lodgepole pine killed by mountain pine beetle using the ethanol organosolv process: Fractionation and process optimization. Ind Eng Chem Res 46(8):2609–2617. doi: 10.1021/Ie061576l CrossRefGoogle Scholar
  46. 46.
    Katzen R, Fredrickson R, Brush B (1980) Alcohol pulping appears feasible for small incremental capacity. Pulp and Paper 54(8):144–149Google Scholar
  47. 47.
    Pye EK, Lora JH (1991) The Alcell process: a proven alternative to kraft pulping. Tappi J 74(3):113–118Google Scholar
  48. 48.
    Fernando EF, Vallejos EM, Area MC (2010) Lignin recovery from spent liquors from ethanol-water fractionation of sugar cane bagasse. Cell Chem Technol 44(9):311–318Google Scholar
  49. 49.
    Gonzalez M, Garcia A, Toledano A, Llano-Ponte R, de Andres MA, Labidi J (2009) Lignocellulosic feedstock biorefinery processes: Analysis and design. Chem Eng Trans 17:1107–1112Google Scholar
  50. 50.
    Garcia A, Egues I, Toledano A, Gonzalez M, Serrano L, Labidi J (2009) Biorefining of lignocellulosic residues using ethanol organosolv process. Chem Eng Trans 18:911–916Google Scholar
  51. 51.
    Alriols MG, Garcia A, Llano-ponte R, Labidi J (2010) Combined organosolv and ultrafiltration lignocellulosic biorefinery process. Chem Eng J 157(1):113–120. doi: 10.1016/j.cej.2009.10.058 CrossRefGoogle Scholar
  52. 52.
    Zhang YHP, Lynd LR (2004) Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulase systems. Biotechnol Bioeng 88(7):797–824. doi: 10.1002/bit.20282 CrossRefGoogle Scholar
  53. 53.
    Puri VP (1984) Effect of crystallinity and degree of polymerization of cellulose on enzymatic saccharification. Biotechnol Bioeng 26(10):1219–1222. doi: 10.1002/bit.260261010 CrossRefGoogle Scholar
  54. 54.
    Yoshida M, Liu Y, Uchida S, Kawarada K, Ukagami Y, Ichinose H, Kaneko S, Fukuda K (2008) Effects of cellulose crystallinity, hemicellulose, and lignin on the enzymatic hydrolysis of Miscanthus sinensis to monosaccharides. Biosci Biotech Biochem 72(3):805–810. doi: 10.1271/Bbb.70689 CrossRefGoogle Scholar
  55. 55.
    Zhu L, O’Dwyer JP, Chang VS, Granda CB, Holtzapple MT (2008) Structural features affecting biomass enzymatic digestibility. Bioresour Technol 99(9):3817–3828. doi: 10.1016/j.biortech.2007.07.033 CrossRefGoogle Scholar
  56. 56.
    Ohgren K, Bura R, Saddler J, Zacchi G (2007) Effect of hemicellulose and lignin removal on enzymatic hydrolysis of steam pretreated corn stover. Bioresour Technol 98(13):2503–2510. doi: 10.1016/j.biortech.2006.09.003 CrossRefGoogle Scholar
  57. 57.
    Yang B, Wyman CE (2006) BSA treatment to enhance enzymatic hydrolysis of cellulose in lignin containing substrates. Biotechnol Bioeng 94:4611–4617. doi: 10.1002/Bit.20750 Google Scholar
  58. 58.
    Jeoh T, Ishizawa CI, Davis MF, Himmel ME, Adney WS, Johnson DK (2007) Cellulase digestibility of pretreated biomass is limited by cellulose accessibility. Biotechnol Bioeng 98(1):112–122. doi: 10.1002/Bit.21408 CrossRefGoogle Scholar
  59. 59.
    Akgul M, Kirci H (2009) An environmentally friendly organosolv (ethanol-water) pulping of poplar wood. J Environ Biol 30(5):735–740Google Scholar
  60. 60.
    Lora JH, Aziz S (1985) Organosolv pulping: a versatile approach to wood refining. Tappi J 68(8):94–97Google Scholar
  61. 61.
    Cronlund M, Powers J (1992) Bleaching of Alcell (R) organosolv pulps using conventional and nonchlorine bleaching sequences. Tappi J 75(6):189–194Google Scholar
  62. 62.
    Zhang MY, Xu YJ, Li KC (2007) Removal of residual lignin of ethanol-based organosolv pulp by an alkali extraction process. J Appl Polym Sci 106(1):630–636. doi: 10.1002/App.26622 CrossRefGoogle Scholar
  63. 63.
    Ruzene DS, Goncalves AR, Teixeira JA, De Amorim MTP (2007) Carboxymethyl cellulose obtained by ethanol/water organosolv process under acid conditions. Appl Biochem Biotech 137:573–582. doi:10.1007/978-1-60327-181-3_47CrossRefGoogle Scholar
  64. 64.
    Pasquini D, Belgacem MN, Gandini A, Curvelo AAD (2006) Surface esterification of cellulose fibers: characterization by DRIFT and contact angle measurements. J Colloid Interf Sci 295(1):79–83. doi: 10.1016/j.jcis.2005.07.074 CrossRefGoogle Scholar
  65. 65.
    Joaquim AP, Tonoli GHD, Dos Santos SF, Savastano H (2009) Sisal organosolv pulp as reinforcement for cement based composites. Mater Res-Ibero-Am J Mater 12(3):305–314Google Scholar
  66. 66.
    de Paiva JMF, Frollini E (2006) Unmodified and modified surface sisal fibers as reinforcement of phenolic and lignophenolic matrices composites: thermal analyses of fibers and composites. Macromol Mater Eng 291(4):405–417. doi: 10.1002/mame.200500334 CrossRefGoogle Scholar
  67. 67.
    Hoareau W, Oliveira FB, Grelier S, Siegmund B, Frollini E, Castellan A (2006) Fiberboards based on sugarcane bagasse lignin and fibers. Macromol Mater Eng 291(7):829–839. doi: 10.1002/mame.200600004 CrossRefGoogle Scholar
  68. 68.
    Wang MC, Leitch M, Xu CB (2009) Synthesis of phenol-formaldehyde resol resins using organosolv pine lignins. Eur Polym J 45(12):3380–3388. doi: 10.1016/j.eurpolymj.2009.10.003 CrossRefGoogle Scholar
  69. 69.
    Park Y, Doherty W, Halley PJ (2008) Developing lignin-based resin coatings and composites. Ind Crop Prod 27(2):163–167. doi: 10.1016/j.indcrop.2007.07.021 CrossRefGoogle Scholar
  70. 70.
    Ramires EC, Megiatto JD, Gardrat C, Castellan A, Frollini E (2010) Valorization of an industrial organosolv-sugarcane bagasse lignin: characterization and use as a matrix in biobased composites reinforced with sisal fibers. Biotechnol Bioeng 107(4):612–621. doi: 10.1002/Bit.22847 CrossRefGoogle Scholar
  71. 71.
    Barclay LRC, Xi F, Norris JQ (1997) Antioxidant properties of phenolic lignin model compounds. J Wood Chem Technol 17(1–2):73–90. doi: 10.1080/02773819708003119 CrossRefGoogle Scholar
  72. 72.
    Dizhbite T, Telysheva G, Jurkjane V, Viesturs U (2004) Characterization of the radical scavenging activity of lignins—natural antioxidants. Bioresour Technol 95(3):309–317. doi: 10.1016/j.biortech.2004.02.024 CrossRefGoogle Scholar
  73. 73.
    Pan XJ, Kadla JF, Ehara K, Gilkes N, Saddler JN (2006) Organosolv ethanol lignin from hybrid poplar as a radical scavenger: relationship between lignin structure, extraction conditions, and antioxidant activity. J Agric Food Chem 54(16):5806–5813. doi: 10.1021/Jf0605392 CrossRefGoogle Scholar
  74. 74.
    Garcia A, Toledano A, Andres MA, Labidi J (2010) Study of the antioxidant capacity of Miscanthus sinensis lignins. Process Biochem 45(6):935–940. doi: 10.1016/j.procbio.2010.02.015 CrossRefGoogle Scholar
  75. 75.
    Basso MC, Cerrella EG, Cukierman AL (2004) Cadmium uptake by lignocellulosic materials: effect of lignin content. Separ Sci Technol 39(5):1163–1175. doi: 10.1081/Ss-120028577 CrossRefGoogle Scholar
  76. 76.
    Acemioglu B, Samil A, Alma MH, Gundogan R (2003) Copper(II) removal from aqueous solution by organosolv lignin and its recovery. J Appl Polym Sci 89(6):1537–1541. doi: 10.1002/App.12251 CrossRefGoogle Scholar
  77. 77.
    Harmita H, Karthikeyan KG, Pan XJ (2009) Copper and cadmium sorption onto kraft and organosolv lignins. Bioresour Technol 100(24):6183–6191. doi: 10.1016/j.biortech.2009.06.093 CrossRefGoogle Scholar
  78. 78.
    Belgacem MN, Blayo A, Gandini A (2003) Organosolv lignin as a filler in inks, varnishes and paints. Ind Crop Prod 18(2):145–153. doi: 10.1016/S0926-6690(03)00042-6 CrossRefGoogle Scholar
  79. 79.
    Furimsky E (2000) Catalytic hydrodeoxygenation. Appl Catal A-gen 199(2):147–190. doi: 10.1016/S0926-860X(99)00555-4 CrossRefGoogle Scholar
  80. 80.
    Nagy M, David K, Britovsek GJP, Ragauskas AJ (2009) Catalytic hydrogenolysis of ethanol organosolv lignin. Holzforschung 63(5):513–520. doi: 10.1515/Hf.2009.097 CrossRefGoogle Scholar
  81. 81.
    Clements LD, Van Dyne DL (2008) The lignocellulosic biorefinery: a strategy for returning to a sustainable source of fuels and industrial organic chemicals. Biorefineries-industrial processes and products. Wiley, Germany. doi: 10.1002/9783527619849.ch5
  82. 82.
    Zeitsch KJ (2000) Furfural production needs chemical innovation. Chem Innov 30(4):29–32Google Scholar
  83. 83.
    Bozell JJ, Moens L, Elliott DC, Wang Y, Neuenscwander GG, Fitzpatrick SW, Bilski RJ, Jarnefeld JL (2000) Production of levulinic acid and use as a platform chemical for derived products. Resour Conserv Recy 28(3–4):227–239. doi: 10.1016/S0921-3449(99)00047-6 CrossRefGoogle Scholar
  84. 84.
    Huber GW, Chheda JN, Barrett CJ, Dumesic JA (2005) Production of liquid alkanes by aqueous-phase processing of biomass-derived carbohydrates. Science 308(5727):1446–1450. doi: 10.1126/science.1111166 CrossRefGoogle Scholar
  85. 85.
    Roman-Leshkov Y, Chheda JN, Dumesic JA (2006) Phase modifiers promote efficient production of hydroxymethylfurfural from fructose. Science 312(5782):1933–1937. doi: 10.1126/science.1126337 CrossRefGoogle Scholar
  86. 86.
    Lam HQ, Le Bigot Y, Delmas M, Avignon G (2001) Formic acid pulping of rice straw. Ind Crop Prod 14(1):65–71CrossRefGoogle Scholar
  87. 87.
    Jahan MS (2007) Formic acid pulping of bagasse. Bangladesh J Sci Ind Res 41(3):245–250Google Scholar
  88. 88.
    Zhang M, Qi W, Liu R, Su R, Wu S, He Z (2010) Fractionating lignocellulose by formic acid: characterization of major components. Biomass Bioenerg 34(4):525–532. doi: 10.1016/j.biombioe.2009.12.018 CrossRefGoogle Scholar
  89. 89.
    Jahan MS, Chowdhury DAN, Islam MK (2007) Atmospheric formic acid pulping and TCF bleaching of dhaincha (Sesbania aculeata), kash (Saccharum spontaneum) and banana stem (Musa cavendish). Ind Crop Prod 26(3):324–331. doi: 10.1016/j.indcrop.2007.03.012 CrossRefGoogle Scholar
  90. 90.
    Ligero P, Vega A, Villaverde JJ (2010) Delignification of Miscanthus x giganteus by the Milox process. Bioresour Technol 101(9):3188–3193. doi: 10.1016/j.biortech.2009.12.021 CrossRefGoogle Scholar
  91. 91.
    Ligero P, Villaverde JJ, Vega A, Bao M (2008) Pulping cardoon (Cynara cardunculus) with peroxyformic acid (MILOX) in one single stage. Bioresour Technol 99(13):5687–5693. doi: 10.1016/j.biortech.2007.10.028 CrossRefGoogle Scholar
  92. 92.
    Abad S, Santos V, Parajo JC (2000) Formic acid-peroxyformic acid pulping of aspen wood: an optimization study. Holzforschung 54(5):544–552CrossRefGoogle Scholar
  93. 93.
    Zhao X, van der Heide E, Zhang T, Liu D (2011) Single-stage pulping of sugarcane bagasse with peracetic acid. J Wood Chem Technol 31(1):1–25CrossRefGoogle Scholar
  94. 94.
    Sahin HT, Young RA (2008) Auto-catalyzed acetic acid pulping of jute. Ind Crop Prod 28(1):24–28. doi: 10.1016/j.indcrop.2007.12.008 CrossRefGoogle Scholar
  95. 95.
    Contreras H, Nagieb ZA, Sanjuan R (1997) Delignification of bagasse with acetic acid and ozone.1. Acetic acid pulping. Polym-plast Technol 36(2):297–307CrossRefGoogle Scholar
  96. 96.
    Pan XJ, Sano Y (2005) Fractionation of wheat straw by atmospheric acetic acid process. Bioresour Technol 96(11):1256–1263. doi: 10.1016/j.biortech.2004.10.018 CrossRefGoogle Scholar
  97. 97.
    Gan DN, Xie YM, Aorigele YM, Wang P, Li SL, Yang HT (2004) Acetic acid pulping of triploid clones of Polulus tomentosa Carr at atmospheric condition. Trans China Pulp Paper 19(1):15–18Google Scholar
  98. 98.
    Villaverde JJ, Ligero P, de Vega A (2010) Formic and acetic acid as agents for a cleaner fractionation of Miscanthus x giganteus. J Clean Prod 18(4):395–401CrossRefGoogle Scholar
  99. 99.
    Ligero P, Villauerde JJ, de Vega A, Bao M (2008) Delignification of Eucalyptus globulus saplings in two organosolv systems (formic and acetic acid) preliminary analysis of dissolved lignins. Ind Crop Prod 27(1):110–117. doi: 10.1016/j.indcrop.2007.08.008 CrossRefGoogle Scholar
  100. 100.
    Vila C, Santos V, Parajo JC (2000) Optimization of beech wood pulping in catalyzed acetic acid media. Can J Chem Eng 78(5):964–973. doi: 10.1002/cjce.5450780514 CrossRefGoogle Scholar
  101. 101.
    Soudham V, Rodriguez D, Rocha G, Taherzadeh M, Martin C (2011) Acetosolv delignification of marabou (Dichrostachys cinerea) wood with and without acid prehydrolysis. For Stud China 13(1):64–70. doi: 10.1007/s11632-011-0106-x CrossRefGoogle Scholar
  102. 102.
    Lam HQ, Le Bigot Y, Delmas M, Avignon G (2001) A new procedure for the destructuring of vegetable matter at atmospheric pressure by a catalyst/solvent system of formic acid/acetic acid. Applied to the pulping of triticale straw. Ind Crop Prod 14(2):139–144. doi: 10.1016/S0926-6690(01)00077-2 CrossRefGoogle Scholar
  103. 103.
    Sixta H, Harms H, Dapia S, Parajo JC, Puls J, Saake B, Fink HP, Roder T (2004) Evaluation of new organosolv dissolving pulps. Part I: preparation, analytical characterization and viscose processability. Cellulose 11(1):73–83. doi: 10.1023/B:CELL.0000014767.47330.90 CrossRefGoogle Scholar
  104. 104.
    Hortling B, Poppius K, Sundquist J (1991) Formic-acid peroxyformic acid pulping. 4: lignins isolated from spent liquors of 3-stage peroxyformic acid pulping. Holzforschung 45(2):109–120. doi: 10.1515/hfsg.1989.43.5.317 Google Scholar
  105. 105.
    Ede R, Brunow G, Poppius K, Sundquist J, Hortling B (1988) Formic acid/peroxyformic acid pulping, part 1: reactions of β-aryl ether model compunds with formic acid. Nord Pulp Pap Res J 3(3):119–123CrossRefGoogle Scholar
  106. 106.
    Villaverde JJ, Li JB, Ek M, Ligero P, de Vega A (2009) Native lignin structure of Miscanthus x giganteus and its changes during acetic and formic acid fractionation. J Agric Food Chem 57(14):6262–6270CrossRefGoogle Scholar
  107. 107.
    De Filippis P, Scarsella M, Verdone N (2009) Peroxyformic acid formation: a kinetic study. Ind Eng Chem Res 48(3):1372–1375. doi: 10.1021/Ie801163j CrossRefGoogle Scholar
  108. 108.
    Gierer J (1982) The chemistry of delignification—a general concept 2. Holzforschung 36(2):55–64. doi: 10.1515/hfsg.1982.36.2.55 CrossRefGoogle Scholar
  109. 109.
    Sun Y, Lin L, Pang CS, Deng HB, Peng H, Li JZ, He BH, Liu SJ (2007) Hydrolysis of cotton fiber cellulose in formic acid. Energ Fuel 21(4):2386–2389. doi: 10.1021/Ef070134z CrossRefGoogle Scholar
  110. 110.
    Lehnen R, Saake B, Nimz HH (2001) Furfural and hydroxymethylfurfural as by-products of FORMACELL pulping. Holzforschung 55(2):199–204. doi: 10.1515/HF.2001.033 CrossRefGoogle Scholar
  111. 111.
    Muurinen EI, Sohlo JJK (1994) Simulation of recovery methods for pulping with peroxyformic and peroxyacetic acids. Comput Chem Eng 18:S609–S613. doi: 10.1016/0098-1354(94)80099-5 CrossRefGoogle Scholar
  112. 112.
    Vila C, Santos V, Parajo JC (2003) Simulation of an organosolv pulping process: generalized material balances and design calculations. Ind Eng Chem Res 42(2):349–356. doi: 10.1021/Ie020654b CrossRefGoogle Scholar
  113. 113.
    Vila C, Santos V, Parajo JC (2003) Recovery of lignin and furfural from acetic acid-water-HCl pulping liquors. Bioresour Technol 90(3):339–344. doi: 10.1016/S0960-8524(03)00030-0 CrossRefGoogle Scholar
  114. 114.
    Sindhu R, Binod P, Satyanagalakshmi K, Janu KU, Sajna KV, Kurien N, Sukumaran RK, Pandey A (2010) Formic acid as a potential pretreatment agent for the conversion of sugarcane bagasse to bioethanol. Appl Biochem Biotech 162(8):2313–2323. doi: 10.1007/s12010-010-9004-2 CrossRefGoogle Scholar
  115. 115.
    a González D, Campos AR, Cunha AM, Santos V, Parajó JC (2010) Utilization of fibers obtained by peroxyformic acid processing of broom as reinforcing agents for biocomposites. Bioresources 5(4):2591–2610Google Scholar
  116. 116.
    Yanez R, Alonso JL, Parajo JC (2003) Totally chlorine free bleaching of organosolv pulps. J Wood Chem Technol 23(2):161–178. doi: 10.1081/Wct-120021923 CrossRefGoogle Scholar
  117. 117.
    Fink HP, Weigel P, Ganster J, Rihm R, Puls J, Sixta H, Parajo JC (2004) Evaluation of new organosolv dissolving pulps. Part II: structure and NMMO processability of the pulps. Cellulose 11(1):85–98. doi: 10.1023/B:CELL.0000014779.93590.a0 CrossRefGoogle Scholar
  118. 118.
    Jahan MS, Saeed A, He ZB, Ni YH (2011) Jute as raw material for the preparation of microcrystalline cellulose. Cellulose 18(2):451–459. doi: 10.1007/s10570-010-9481-z CrossRefGoogle Scholar
  119. 119.
    Mathew AP, Oksman K, Sain M (2005) Mechanical properties of biodegradable composites from poly lactic acid (PLA) and microcrystalline cellulose (MCC). J Appl Polym Sci 97(5):2014–2025. doi: 10.1002/App.21779 CrossRefGoogle Scholar
  120. 120.
    Vila C, Santos V, Parajo JC (2004) Dissolving pulp from TCF bleached acetosolv beech pulp. J Chem Technol Biot 79(10):1098–1104. doi: 10.1002/Jctb.1090 CrossRefGoogle Scholar
  121. 121.
    Perttunen J, Myllykoski L, Keiski R (2002) Lactic acid fermentation of hemicellulose liquors and their activated carbon pretreatments. In: Hofman M, Thonart P (eds) Engineering and manufacturing for biotechnology, vol 4. Focus on biotechnology. Springer, Netherlands, pp 29–38. doi: 10.1007/978-3-642-28418-2_2
  122. 122.
    Wu Z, Lin L, Deng HB, Sun Y, Pan CS, Li JZ (2007) Process technology for the production of xylose via hydrolysis of straw in a mixture of formic acid and hydrochloric acid. Mod Food Sci Technol 23(11):34–36zbMATHGoogle Scholar
  123. 123.
    Goncalves AR, Urbano MP, Cotrim AR, da Silva FT (1997) Oxidation of lignin-containing liquor from acetosolv pulping of sugar-cane bagasse. In: Proceedings of the 1997 9th international symposium on wood and piping chemistry, ISWPC. Part 1 (of 2), 9–12 June, Montreal. In: Proceedings of the ACM workshop on role-based access control. ACM, pp I4.1–I4.3Google Scholar
  124. 124.
    Goncalves AR, Benar P (2001) Hydroxymethylation and oxidation of organosolv lignins and utilization of the products. Bioresour Technol 79(2):103–111CrossRefGoogle Scholar
  125. 125.
    Calabria GMM, Goncalves AR (2006) Obtainment of chelating agents through the enzymatic oxidation of lignins by phenol oxidase. Appl Biochem Biotech 129(1–3):320–325. doi: 10.1385/ABAB:129:1:320 CrossRefGoogle Scholar
  126. 126.
    Benar P, Goncalves AR, Mandelli D, Ferreira MMC, Schuchardt U (1999) Principal component analysis of the hydroxymethylation of sugarcane lignin: a time-depending study by FTIR. J Wood Chem Technol 19(1–2):151–165. doi: 10.1080/02773819909349605 CrossRefGoogle Scholar
  127. 127.
    Vazquez G, Freire S, Rodriguez-Bona C, Gonzalez J, Antorrena G (1999) Structures, and reactivities with formaldehyde, of some acetosolv pine lignins. J Wood Chem Technol 19(4):357–378. doi: 10.1080/02773819909349617 CrossRefGoogle Scholar
  128. 128.
    Vazquez G, Rodriguez-Bona C, Freire S, Gonzalez-Alvarez J, Antorrena G (1999) Acetosolv pine lignin as copolymer in resins for manufacture of exterior grade plywoods. Bioresour Technol 70(2):209–214. doi: 10.1016/S0960-8524(99)00020-6 CrossRefGoogle Scholar
  129. 129.
    Luo J, Tang Z, Zhou J (2006) Preparation and properties of HDPE/lignin composite. China Synt Resin Plast 23(2):39–42Google Scholar
  130. 130.
    Silva MF, da Silva CA, Fogo FC, Pineda EAG, Hechenleitner AAW (2005) Thermal and FTIR study of polyvinylpyrrolidone/lignin blends. J Therm Anal Calorim 79(2):367–370. doi: 10.1007/s10973-005-0066-2 CrossRefGoogle Scholar
  131. 131.
    Uraki Y, Ishikawa N, Nishida M, Sano Y (2001) Preparation of amphiphilic lignin derivative as a cellulase stabilizer. J Wood Sci 47(4):301–307. doi: 10.1007/BF00766717 CrossRefGoogle Scholar
  132. 132.
    Uraki Y, Taniwatashi R, Kubo S, Sano Y (2000) Activated carbon sheet prepared from softwood acetic acid lignin. J Wood Sci 46(1):52–58. doi: 10.1007/BF00779553 CrossRefGoogle Scholar
  133. 133.
    Kubo S, Uraki Y, Sano Y (1998) Preparation of carbon fibers from softwood lignin by atmospheric acetic acid pulping. Carbon 36(7–8):1119–1124. doi: 10.1080/02773811003637494 CrossRefGoogle Scholar
  134. 134.
    Oliet M, Garcia J, Rodriguez F, Gilarrranz MA (2002) Solvent effects in autocatalyzed alcohol-water pulping comparative study between ethanol and methanol as delignifying agents. Chem Eng J 87(2):157–162. doi: 10.1016/S1385-8947(01)00213-3 CrossRefGoogle Scholar
  135. 135.
    Gilarranz MA, Oliet M, Rodriguez F, Tijero J (1999) Methanol-based pulping of Eucalyptus globulus. Can J Chem Eng 77(3):515–521. doi: 10.1002/cjce.5450770312 CrossRefGoogle Scholar
  136. 136.
    Lundquist L, Arpin G, Leterrier Y, Berthold F, Lindstrom M, Manson JAE (2004) Alkali-methanol-anthraquinone pulping of Miscanthus x giganteus for thermoplastic composite reinforcement. J Appl Polym Sci 92(4):2132–2143. doi: 10.1002/App.20179 CrossRefGoogle Scholar
  137. 137.
    Gurboy KB, Elmas GM (2007) ASAM pulping of hybrid poplar samsun clone grown in Turkey. Cell Chem Technol 41(4–6):271–275Google Scholar
  138. 138.
    Araque E, Parra C, Freer J, Contreras D, Rodriguez J, Mendonca R, Baeza J (2008) Evaluation of organosolv pretreatment for the conversion of Pinus radiata D. Don to ethanol. Enzyme Microb Technol 43(2):214–219. doi: 10.1016/j.enzmictec.2007.08.006 CrossRefGoogle Scholar
  139. 139.
    Huijgen WJJ, Reith JH, den Uil H (2010) Pretreatment and fractionation of wheat straw by an acetone-based organosolv process. Ind Eng Chem Res 49(20):10132–10140. doi: 10.1021/Ie101247w CrossRefGoogle Scholar
  140. 140.
    Gonzalez Alriols M, Tejado A, Blanco M, Mondragon I, Labidi J (2009) Agricultural palm oil tree residues as raw material for cellulose, lignin and hemicelluloses production by ethylene glycol pulping process. Chem Eng J 148(1):106–114CrossRefGoogle Scholar
  141. 141.
    Jimenez L, Rodriguez A, Diaz MJ, Lopez F, Ariza J (2004) Organosolv pulping of olive tree trimmings by use of ethylene glycol/soda/water mixtures. Holzforschung 58(2):122–128. doi: 10.1515/HF.2004.017 CrossRefGoogle Scholar
  142. 142.
    Aziz S, McDonough TJ (1986) Solvent pulping—dissolution or disillusion? IPC technical 1268 paper series, No.182, http://hdl.handle.net/1853/2663
  143. 143.
    Ziaie-Shirkolaee Y, Mohammadi-Rovshandeh J, Rezayati-Charani P, Khajehelan MB (2008) Influence of dimethyl formamide pulping of wheat straw on cellulose degradation and comparison with Kraft process. Bioresour Technol 99(9):3568–3578. doi: 10.1016/j.biortech.2007.07.066 CrossRefGoogle Scholar
  144. 144.
    Rezayati-Charani P, Mohammadi-Rovshandeh J, HasheMi SJ, Kazemi-Najafi S (2006) Influence of dimethyl formamide pulping of bagasse on pulp properties. Bioresour Technol 97(18):2435–2442. doi: 10.1016/j.biortech.2005.08.026 CrossRefGoogle Scholar
  145. 145.
    Jimenez L, Rodriguez A, Serrano L, Moral A (2008) Organosolv ethanolamine pulping of olive wood: Influence of the process variables on the strength properties. Biochem Eng J 39(2):230–235. doi: 10.1016/j.bej.2007.09.006 CrossRefGoogle Scholar
  146. 146.
    Sarkanen KV (1990) Chemistry of solvent pulping. Tappi J 73(10):215–219Google Scholar
  147. 147.
    Goyal GC, Lora JH, Pye EK (1992) Autocatalyzed organosolv pulping of hardwoods: effect of pulping conditions on pulp properties and characteristics of soluble and residual lignin. Tappi J 75(2):110–116Google Scholar
  148. 148.
    Jimenez L, Maestre F, De la Torre M, Perez I (1997) Organosolv pulping of wheat straw by use of methanol-water mixtures. Tappi J 80(12):148–154Google Scholar
  149. 149.
    Solar R, Gajdos E, Kacikova D, Sindler J (2000) A preliminary study on organosolv pulping of poplar wood (Populus tremula L.) II: medium temperature pulping. Cell Chem Technol 34(5–6):571–580Google Scholar
  150. 150.
    Tirtowidjojo S, Sarkanen KV, Pla F, Mccarthy JL (1988) Kinetics of organosolv delignification in batch-through and flow-through reactors. Holzforschung 42(3):177–183. doi: 10.1515/hfsg.1988.42.3.177 CrossRefGoogle Scholar
  151. 151.
    Chum HL, Johnson DK, Black S, Baker J, Grohmann K, Sarkanen KV, Wallace K, Schroeder HA (1988) Organosolv pretreatment for enzymatic hydrolysis of poplars: I. Enzyme hydrolysis of cellulosic residues. Biotechnol Bioeng 31(7):643–649. doi: 10.1002/bit.260310703 CrossRefGoogle Scholar
  152. 152.
    Rodriguez A, Perez A, de La Torre MJ, Ramos E, Jimenez L (2008) Neural fuzzy model applied to ethylene-glycol pulping of non-wood raw materials. Bioresour Technol 99(5):965–974. doi: 10.1016/j.biortech.2007.03.007 CrossRefGoogle Scholar
  153. 153.
    Jimenez L, Perez A, De la Torre MJ, Rodriguez AB, Angulo V (2008) Ethyleneglycol pulp from tagasaste. Bioresour Technol 99(7):2170–2176. doi: 10.1016/j.biortech.2007-05-044 CrossRefGoogle Scholar
  154. 154.
    Lee DH, Cho EY, Kim CJ, Kim SB (2010) Pretreatment of waste newspaper using ethylene glycol for bioethanol production. Biotechnol Bioprocess Eng 15(6):1094–1101. doi: 10.1007/s12257-010-0158-0 CrossRefGoogle Scholar
  155. 155.
    Usta M, Boran S, Gumuskaya E, Ondaral S, Balaban M (2007) Comparative properties of the pulp and paper obtained from kraft-ethanol and kraft-ethylene glycol processes. Cell Chem Technol 41(4–6):311–318Google Scholar
  156. 156.
    Obst JR, Sanyer N (1980) Effect of quinones and amines on the cleavage rate of beta-O-4 ethers in lignin during alkaline pulping. Tappi J 63(7):111–114Google Scholar
  157. 157.
    Jimenez L, Rodriguez A, Calero AM, Eugenio ME (2004) Use of ethanolamine-soda-water mixtures for pulping olive wood trimmings. Chem Eng Res Des 82(A8):1037–1042. doi: 10.1205/0263876041580686 Google Scholar
  158. 158.
    Rodriguez A, Serrano L, Moral A, Perez A, Jimenez L (2008) Use of high-boiling point organic solvents for pulping oil palm empty fruit bunches. Bioresour Technol 99(6):1743–1749. doi: 10.1016/j.biortech.2007.03.050 CrossRefGoogle Scholar
  159. 159.
    Rodriguez A, Serrano L, Moral A, Jimenez L (2008) Pulping of rice straw with high-boiling point organosolv solvents. Biochem Eng J 42(3):243–247. doi: 10.1016/j.bej.2008.07.001 CrossRefGoogle Scholar
  160. 160.
    Gonzalez M, Canton L, Rodriguez A, Labidi J (2008) Effect of organosolv and soda pulping processes on the metals content of non-woody pulps. Bioresour Technol 99(14):6621–6625. doi: 10.1016/j.biortech.2007.12.038 CrossRefGoogle Scholar
  161. 161.
    Sanchez R, Rodriguez A, Requejo A, Garcia A, Jimenez L (2010) Chemical and thermogravimetric analysis and soda and organosolv pulping of Hesperaloe funifera. Cell Chem Technol 44(9):327–334Google Scholar
  162. 162.
    Paszner L, Chang PC (1984) High efficiency organosolv saccharification process. U S Patent 4470851Google Scholar
  163. 163.
    Paszner L, Chang PC (1983) Organosolv delignification and saccharification process for lignocellulosic plant materials 4409032Google Scholar
  164. 164.
    Jimenez L, Garcia JC, Perez I, Ferrer JL, Chica A (2001) Influence of the operating conditions in the acetone pulping of wheat straw on the properties of the resulting paper sheets. Bioresour Technol 79(1):23–27. doi: 10.1016/S0960-8524(01)00033-5 CrossRefGoogle Scholar
  165. 165.
    Jimenez L, Garcia JC, Perez I, Ariza J, Lopez F (2001) Acetone pulping of wheat straw: Influence of the cooking and beating conditions on the resulting paper sheets. Ind Eng Chem Res 40(26):6201–6206. doi: 10.1021/Ie0010161 CrossRefGoogle Scholar
  166. 166.
    Jimenez L, de la Torre MJ, Bonilla JL, Ferrer JL (1998) Organosolv pulping of wheat straw by use of acetone-water mixtures. Process Biochem 33(4):401–408. doi: 10.1016/S0032-9592(98)00001-6 CrossRefGoogle Scholar
  167. 167.
    Perez DD, Curvelo AAD (1997) Kinetics of acetone-water organosolv delignification of Eucalyptus urograndis. In: Iswpc: 9th international symposium on wood and pulping chemistry, pp 881–884Google Scholar
  168. 168.
    Ferraz A, Rodriguez J, Freer J, Baeza J (2000) Formic acid/acetone-organosolv pulping of white-rotted Pinus radiata softwood. J Chem Technol Biot 75(12):1190–1196. doi: 10.1002/1097-4660(200012)75:12<1190:AID-JCTB342>3.0.CO;2-K CrossRefGoogle Scholar
  169. 169.
    Jimenez L, Perez I, Lopez F, Ariza J, Rodriguez A (2002) Ethanol-acetone pulping of wheat straw. Influence of the cooking and the beating of the pulps on the properties of the resulting paper sheets. Bioresour Technol 83(2):139–143. doi: 10.1016/S0960-8524(01)00196-1 CrossRefGoogle Scholar
  170. 170.
    Alcaide LJ, Dominguez JCG, Ot IP (2003) Influence of cooking variables in the organosolv pulping of wheat straw using mixtures of ethanol, acetone, and water. Tappi J 2(1):27–31Google Scholar
  171. 171.
    Pascoalneto G, Delpechbarrie F, Robert A (1993) Oxygen delignification in a water plus organic-solvent solution.2. Comparison of eucalyptus wood (Eucalyptus globulus) and poplar wood (Populus species). Cell Chem Technol 27(2):185–199Google Scholar
  172. 172.
    Delpechbarie F, Robert A (1993) Oxygen delignification in a water plus organic-solvent solution.1. Delignification of poplar chips (Populus species) in a water-acetone solution. Cell Chem Technol 27(1):87–105Google Scholar
  173. 173.
    Rezayati-Charani P, Mohammadi-Rovshandeh J (2005) Effect of pulping variables with dimethyl formamide on the characteristics of bagasse-fiber. Bioresour Technol 96(15):1658–1669. doi: 10.1016/j.biortech.2004.12.030 CrossRefGoogle Scholar
  174. 174.
    Ghozatloo A, Mohammadi-Rovshandeh J, Hashemi SJ (2007) Optimization of pulp properties by dimethyl formamide pulping of rice straw. Cell Chem Technol 40(8):659–667Google Scholar
  175. 175.
    Ekhtera MH, Azadfallah M, Bahrami M, Mohammadi-Rovshandeh J (2009) Comparative study of pulp and paper properties of canola stalks prepared by using dimethyl formamide or diethylene glycol. Bioresources 4(1):214–233Google Scholar
  176. 176.
    Ziaie-Shirkolaee Y, Mohammadi-Rovshandeh J, Charani PR, Khajehcian MB (2007) Study on cellulose degradation during organosolv delignification of wheat straw and evaluation of pulp properties. Iran Polym J 16(2):83–96Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Institute of Biomass Chemistry and TechnologyBeijing Forestry UniversityBeijingChina
  2. 2.State Key Laboratory of Pulp and Paper EngineeringSouth China University of TechnologyGuangzhouChina

Personalised recommendations