Compositional Modelling and Reasoning in an Institution for Processes and Data

  • Liam O’Reilly
  • Till Mossakowski
  • Markus Roggenbach
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7137)


The language Csp-Casl combines specifications of data and processes. We give an institution based semantics to Csp-Casl that allows us to re-use the institution independent structuring mechanisms of Casl. Furthermore, we extend Csp-Casl with a notion of refinement that reconciles the differing philosophies behind the refinement notions for Csp and Casl. We develop a compositional proof calculus for refinement along the Casl structuring mechanisms, and demonstrate that compositional proof techniques along parallel process composition from the context of Csp lifts to structured Csp-Casl specifications.


Compositional Modelling Proof Obligation Process Term Trace Model Amalgamation Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    eft/pos 2000 Specification, version 1.0.1. EP2 Consortium (2002)Google Scholar
  2. 2.
    Allen, R., Garlan, D.: A formal basis for architectural connection. ACM Trans. Softw. Eng. Methodol. 6(3), 213–249 (1997)CrossRefGoogle Scholar
  3. 3.
    Bidoit, M., Cengarle, V.V., Hennicker, R.: Proof systems for structured specifications and their refinements. In: Astesiano, E., Kreowski, H.-J., Krieg-Brückner, B. (eds.) Algebraic Fondations of System Specification, pp. 385–434. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  4. 4.
    Bidoit, M., Mosses, P.D. (eds.): CASL User Manual. LNCS, vol. 2900. Springer, Heidelberg (2004)zbMATHGoogle Scholar
  5. 5.
    Cerioli, M., Meseguer, J.: May I borrow your logic (Transporting logical structures along maps). Theoretical Computer Science 173, 311–347 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Diaconescu, R., Goguen, J., Stefaneas, P.: Logical support for modularisation. In: Logical Environments, Cambridge, pp. 83–130 (1993)Google Scholar
  7. 7.
    Fischer, C.: How to Combine Z with a Process Algebra. In: Bowen, J.P., Fett, A., Hinchey, M.G. (eds.) ZUM 1998. LNCS, vol. 1493, pp. 5–25. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  8. 8.
    Gimblett, A., Roggenbach, M., Schlingloff, B.-H.: Towards a Formal Specification of an Electronic Payment System in CSP-CASL. In: Fiadeiro, J.L., Mosses, P.D., Yu, Y. (eds.) WADT 2004. LNCS, vol. 3423, pp. 61–78. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Goguen, J.A., Burstall, R.M.: Institutions: Abstract model theory for specification and programming. J. ACM 39(1), 95–146 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Hoare, C.A.R.: Communicating Sequential Processes. Prentice Hall (1985)Google Scholar
  11. 11.
    Kahsai, T., Roggenbach, M.: Property Preserving Refinement for Csp-Casl. In: Corradini, A., Montanari, U. (eds.) WADT 2008. LNCS, vol. 5486, pp. 206–220. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  12. 12.
    Mossakowski, T.: ModalCASL. Language Summary (2004),
  13. 13.
    Mossakowski, T., Maeder, C., Lüttich, K.: The Heterogeneous Tool Set, Hets. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 519–522. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  14. 14.
    Mossakowski, T., Roggenbach, M.: Structured CSP – A Process Algebra as an Institution. In: Fiadeiro, J.L., Schobbens, P.-Y. (eds.) WADT 2006. LNCS, vol. 4409, pp. 92–110. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  15. 15.
    Mosses, P.D. (ed.): CASL Reference Manual. LNCS, vol. 2960. Springer, Heidelberg (2004)zbMATHGoogle Scholar
  16. 16.
    O’Reilly, L., Kahsai, T., Mossakowski, T., Roggenbach, M.: The CSP-CASL institution. Technical Report CSR-1-2011, Swansea University (2011)Google Scholar
  17. 17.
    O’Reilly, L., Roggenbach, M., Isobe, Y.: CSP-CASL-Prover: A generic tool for process and data refinement. ENTCS 250(2), 69–84 (2009)zbMATHGoogle Scholar
  18. 18.
    Reed, J.N., Sinclair, J.E., Roscoe, A.W.: Responsiveness of interoperating components. Formal Asp. Comput. 16(4), 394–411 (2004)CrossRefzbMATHGoogle Scholar
  19. 19.
    Reggio, G., Astesiano, E., Choppy, C.: Casl-LTL. Technical Report DISI-TR-99-34, Università di Genova (2000)Google Scholar
  20. 20.
    Roggenbach, M.: CSP-CASL: A new integration of process algebra and algebraic specification. Theoretical Computer Science 354(1), 42–71 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Roscoe, A.W.: Understanding Concurrent Systems. Springer, Heidelberg (2010)CrossRefzbMATHGoogle Scholar
  22. 22.
    Sannella, D., Tarlecki, A.: Specifications in an arbitrary institution. Information and Computation 76, 165–210 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Scattergood, B.: The semantics and implementation of machine-readable CSP. PhD thesis, Oxford University (1998)Google Scholar
  24. 24.
    Wehrheim, H.: Behavioural subtyping in object-oriented specification formalisms, Habilitation thesis, Carl-von-Ossietzky-Universität Oldenburg (2002)Google Scholar
  25. 25.
    Zawłocki, A.: Architectural Specifications for Reactive Systems. In: Fiadeiro, J.L., Mosses, P.D., Yu, Y. (eds.) WADT 2004. LNCS, vol. 3423, pp. 252–269. Springer, Heidelberg (2005)CrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2012

Authors and Affiliations

  • Liam O’Reilly
    • 1
  • Till Mossakowski
    • 2
  • Markus Roggenbach
    • 1
  1. 1.Swansea UniversityWalesUK
  2. 2.DFKI GmbH BremenBremenGermany

Personalised recommendations