Advertisement

Towards Bialgebraic Semantics for the Linear Time – Branching Time Spectrum

  • Ana Paula Maldonado
  • Luís Monteiro
  • Markus Roggenbach
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7137)

Abstract

Process algebra, e.g. CSP, offers different semantical observations (e.g. traces, failures, divergences) on a single syntactical system description. These observations are either computed algebraically from the process syntax, or “extracted” from a single operational model. Bialgebras capture both approaches in one framework and characterize their equivalence; however, due to use of finality, lack the capability to simultaneously cater for various semantics. We suggest to relax finality to quasi-finality. This allows for several semantics, which also can be coarser than bisimulation. As a case study, we show that our approach works out in the case of the CSP failures model.

Keywords

Transition System Operational Semantic Full Subcategory Label Transition System Forgetful Functor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Plotkin, G.D.: A structural approach to operational semantics. Technical Report DAIMI FN-19, University of Aarhus (1981)Google Scholar
  2. 2.
    Rutten, J., Turi, D.: Initial Algebra and Final Coalgebra Semantics for Concurrency. In: de Bakker, J.W., de Roever, W.-P., Rozenberg, G. (eds.) REX 1993. LNCS, vol. 803, pp. 530–582. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  3. 3.
    Turi, D., Plotkin, G.: Towards a mathematical operational semantics. In: Proc. 12th LICS Conference, pp. 280–291. IEEE, Computer Society Press (1997)Google Scholar
  4. 4.
    Hoare, C.A.R.: Communicating Sequencial Processes. Series in Computer Science. Prentice-Hall International (1985)Google Scholar
  5. 5.
    Roscoe, A.: The Theory and Practice of Concurrency. Prentice-Hall, Englewood Cliffs (1998)Google Scholar
  6. 6.
    van Glabbeek, R.: The linear time–branching time spectrum I: the semantics of concrete, sequential processes. In: Bergstra, J., Ponse, A., Smolka, S. (eds.) Handbook of Process Algebra, pp. 3–99. Elsevier (2001)Google Scholar
  7. 7.
    Monteiro, L.: A Coalgebraic Characterization of Behaviours in the Linear Time – Branching Time Spectrum. In: Corradini, A., Montanari, U. (eds.) WADT 2008. LNCS, vol. 5486, pp. 251–265. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  8. 8.
    Freire, E., Monteiro, L.: Defining Behaviours by Quasi-finality. In: Oliveira, M.V.M., Woodcock, J. (eds.) SBMF 2009. LNCS, vol. 5902, pp. 290–305. Springer, Heidelberg (2009)Google Scholar
  9. 9.
    Aczel, P.: Final Universes of Processes. In: Brookes, S., Main, M., Melton, A., Mislove, M., Schmidt, D. (eds.) MFPS 1993. LNCS, vol. 802, pp. 1–28. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  10. 10.
    Wolter, U.: CSP, partial automata, and coalgebras. Theoretical Computer Science 280, 3–34 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Boreale, M., Gadducci, F.: Processes as formal power series: A coinductive approach to denotational semantics. Theoretical Computer Science 360, 440–458 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Power, J., Turi, D.: A coalgebraic foundation for linear time semantics. In: Hofmann, M., Rosolini, G., Pavlovic, D. (eds.) Conference on Category Theory and Computer Science, CTCS 1999. Electronic Notes in Theoretical Computer Science, vol. 29, pp. 259–274. Elsevier (1999)Google Scholar
  13. 13.
    Jacobs, B.: Trace semantics for coalgebras. In: Adamek, J., Milius, S. (eds.) Coalgebraic Methods in Computer Science. Electronic Notes in Theoretical Computer Science, vol. 106, pp. 167–184. Elsevier (2004)Google Scholar
  14. 14.
    Hasuo, I., Jacobs, B., Sokolova, A.: Generic trace semantics via coinduction. Logical Methods in Computer Science 3(4:11), 1–36 (2007)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Jacobs, B., Sokolova, A.: Exemplaric expressivity of modal logic. Journal of Logica and Computation 5(20), 1041–1068 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Klin, B.: Bialgebraic methods and modal logic in structural operational semantics. Inf. Comput. 207(2), 237–257 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Klin, B.: Structural operational semantics and modal logic, revisited. In: Jacobs, B., Niqui, M., Rutten, J., Silva, A. (eds.) Coalgebraic Methods in Computer Science. Electronic Notes in Theoretical Computer Science, vol. 264, pp. 155–175. Elsevier (2010)Google Scholar
  18. 18.
    Groote, J.F., Vaandrager, F.W.: Structural operational semantics and bisimulations as a congruence. Information and Computation 100(2), 202–260 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Bloom, B., Istrail, S., Meyer, A.R.: Bisimulation can’t be traced. J. ACM 42(1), 232–268 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Monteiro, L., Maldonado, A.P.: Towards bialgebraic semantics based on quasi-final coalgebras. Technical Report FCT/UNL-DI 1-2011, CITI and DI, Faculdade de Ciências e Tecnologia, UNL (2011), http://ctp.di.fct.unl.pt/~lm/publications/MM-TR-1-2011.pdf
  21. 21.
    Maldonado, A.P., Monteiro, L., Roggenbach, M.: Towards bialgebraic semantics for CSP. Technical Report FCT/UNL-DI 3-2010, CITI and DI, Faculdade de Ciências e Tecnologia, UNL (2010), http://ctp.di.fct.unl.pt/~apm/publications/MMR-TR-3-2010.pdf
  22. 22.
    Roggenbach, M.: CSP-CASL—A new integration of process algebra and algebraic specification. Theoretical Computer Science 354, 42–71 (2006)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2012

Authors and Affiliations

  • Ana Paula Maldonado
    • 1
  • Luís Monteiro
    • 1
  • Markus Roggenbach
    • 2
  1. 1.CITI, Departamento de Informática, Faculdade de Ciências e TecnologiaUniversidade Nova de LisboaCaparicaPortugal
  2. 2.Swansea UniversityWalesUK

Personalised recommendations