Advertisement

Combining Graph Transformation and Algebraic Specification into Model Transformation

  • Hans-Jörg Kreowski
  • Sabine Kuske
  • Caroline von Totth
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7137)

Abstract

In this paper, we propose a new framework of model transformation that combines graph transformation with algebraic specification. While graph transformation is well-suited to describe the transformation of visual models, one can observe that models are often composite structures with visual, graphical and diagrammatic components accompanied by all kinds of data objects like strings, sets, numbers, etc. that are not adequately represented by graphs. We advocate algebraic specification to cover these parts of models and tupling to combine the graph and the data components.

Keywords

Rule Base Model Transformation Graph Transformation Conjunctive Normal Form Propositional Formula 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Astesiano, E., Kreowski, H.-J., Krieg-Brückner, B. (eds.): Algebraic Foundations of Systems Specification. Springer, Heidelberg (1999)zbMATHGoogle Scholar
  2. 2.
    Balasubramanian, D., Narayanan, A., van Buskirk, C.P., Karsai, G.: The graph rewriting and transformation language: GReAT. Electronic Comunications of the EASST 1 (2006)Google Scholar
  3. 3.
    Bisztray, D., Heckel, R.: Combining Termination Criteria by Isolating Deletion. In: Ehrig, H., Rensink, A., Rozenberg, G., Schürr, A. (eds.) ICGT 2010. LNCS, vol. 6372, pp. 203–217. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  4. 4.
    Bisztray, D., Heckel, R., Ehrig, H.: Compositionality of model transformations. Electr. Notes Theor. Comput. Sci. 236, 5–19 (2009)CrossRefGoogle Scholar
  5. 5.
    Boronat, A., Meseguer, J.: An algebraic semantics for MOF. Formal Asp. Comput. 22(3-4), 269–296 (2010)CrossRefzbMATHGoogle Scholar
  6. 6.
    Bottoni, P., Hoffmann, K., Parisi-Presicce, F., Taentzer, G.: High-level replacement units and their termination properties. J. Vis. Lang. Comput. 16(6), 485–507 (2005)CrossRefGoogle Scholar
  7. 7.
    Bottoni, P., Parisi-Presicce, F.: A termination criterion for graph transformations with negative application conditions. Electronic Communications of the EASST 30 (2010)Google Scholar
  8. 8.
    Clavel, M., Durán, F., Eker, S., Lincoln, P., Martí-Oliet, N., Bevilacqua, V., Talcott, C.: All About Maude - A High-Performance Logical Framework, How to Specify, Program and Verify Systems in Rewriting Logic. LNCS, vol. 4350. Springer, Heidelberg (2007)zbMATHGoogle Scholar
  9. 9.
    Ehrig, H., Ehrig, K., Ermel, C., Hermann, F., Taentzer, G.: Information Preserving Bidirectional Model Transformations. In: Dwyer, M.B., Lopes, A. (eds.) FASE 2007. LNCS, vol. 4422, pp. 72–86. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  10. 10.
    Ehrig, H., Ehrig, K., Hermann, F.: From model transformation to model integration based on the algebraic approach to triple graph grammars. Electronic Communications of the EASST 10 (2008)Google Scholar
  11. 11.
    Ehrig, H., Ehrig, K., de Lara, J., Taentzer, G., Varró, D., Varró-Gyapay, S.: Termination Criteria for Model Transformation. In: Cerioli, M. (ed.) FASE 2005. LNCS, vol. 3442, pp. 49–63. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  12. 12.
    Ehrig, H., Ermel, C.: Semantical Correctness and Completeness of Model Transformations Using Graph and Rule Transformation. In: Ehrig, H., Heckel, R., Rozenberg, G., Taentzer, G. (eds.) ICGT 2008. LNCS, vol. 5214, pp. 194–210. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  13. 13.
    Frankel, D.S.: Model Driven Architecture. Applying MDA to Enterprise Computing. Wiley, Indianapolis (2003)Google Scholar
  14. 14.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman (1979)Google Scholar
  15. 15.
    Heckel, R., Küster, J.M., Taentzer, G.: Confluence of Typed Attributed Graph Transformation Systems. In: Corradini, A., Ehrig, H., Kreowski, H.-J., Rozenberg, G. (eds.) ICGT 2002. LNCS, vol. 2505, pp. 161–176. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  16. 16.
    Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to automata theory, languages, and computation, 3rd edn. Addison-Wesley Longman (2007)Google Scholar
  17. 17.
    Königs, A., Schürr, A.: Tool integration with triple graph grammars - a survey. Electr. Notes Theor. Comput. Sci. 148(1), 113–150 (2006)CrossRefGoogle Scholar
  18. 18.
    Kreowski, H.-J., Kuske, S.: Graph transformation units with interleaving semantics. Formal Aspects of Computing 11(6), 690–723 (1999)CrossRefzbMATHGoogle Scholar
  19. 19.
    Kreowski, H.-J., Kuske, S., von Totth, C.: Stepping from graph transformation units to model transformation units. Electronic Communications of the EASST 30 (2010)Google Scholar
  20. 20.
    Küster, J.M.: Definition and validation of model transformations. Software and System Modeling 5(3), 233–259 (2006)CrossRefGoogle Scholar
  21. 21.
    de Lara, J., Taentzer, G.: Automated Model Transformation and Its Validation Using AToM3 and AGG. In: Blackwell, A.F., Marriott, K., Shimojima, A. (eds.) Diagrams 2004. LNCS (LNAI), vol. 2980, pp. 182–198. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  22. 22.
    de Lara, J., Vangheluwe, H., Alfonseca, M.: Meta-modelling and graph grammars for multi-paradigm modelling in AToM3. Software and System Modeling 3(3), 194–209 (2004)CrossRefGoogle Scholar
  23. 23.
    Plump, D.: Hypergraph rewriting: Critical pairs and undecidability of confluence. In: Sleep, M.R., Plasmeijer, R., van Eekelen, M. (eds.) Term Graph Rewriting. Theory and Practice, pp. 201–213. Wiley & Sons (1993)Google Scholar
  24. 24.
    Plump, D.: Termination of graph rewriting is undecidable. Fundamenta Informaticae 33(2), 201–209 (1998)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Plump, D.: Checking graph-transformation systems for confluence. Electronic Communications of the EASST 26 (2010)Google Scholar
  26. 26.
    Rozenberg, G. (ed.): Handbook of Graph Grammars and Computing by Graph Transformation. Foundations, vol. 1. World Scientific, Singapore (1997)zbMATHGoogle Scholar
  27. 27.
    Schürr, A.: Specification of Graph Translators with Triple Graph Grammars. In: Mayr, E.W., Schmidt, G., Tinhofer, G. (eds.) WG 1994. LNCS, vol. 903, pp. 151–163. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  28. 28.
    Schürr, A., Klar, F.: 15 years of Triple Graph Grammars. In: Ehrig, H., Heckel, R., Rozenberg, G., Taentzer, G. (eds.) ICGT 2008. LNCS, vol. 5214, pp. 411–425. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  29. 29.
    Varró, D., Balogh, A.: The model transformation language of the VIATRA2 framework. Sci. Comput. Program. 68(3), 214–234 (2007)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2012

Authors and Affiliations

  • Hans-Jörg Kreowski
    • 1
  • Sabine Kuske
    • 1
  • Caroline von Totth
    • 1
  1. 1.Department of Computer ScienceUniversity of BremenBremenGermany

Personalised recommendations