Towards Logical Frameworks in the Heterogeneous Tool Set Hets

  • Mihai Codescu
  • Fulya Horozal
  • Michael Kohlhase
  • Till Mossakowski
  • Florian Rabe
  • Kristina Sojakova
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7137)

Abstract

LF is a meta-logical framework that has become a standard tool for representing logics and studying their properties. Its focus is proof theoretic, employing the Curry-Howard isomorphism: propositions are represented as types, and proofs as terms.

Hets is an integration tool for logics, logic translations and provers, with a model theoretic focus, based on the meta-framework of institutions, a formalisation of the notion of logical system.

In this work, we combine these two worlds. The benefit for LF is that logics represented in LF can be (via Hets) easily connected to various interactive and automated theorem provers, model finders, model checkers, and conservativity checkers - thus providing much more efficient proof support than mere proof checking as is done by systems like Twelf. The benefit for Hets is that (via LF) logics become represented formally, and hence trustworthiness of the implementation of logics is increased, and correctness of logic translations can be mechanically verified. Moreover, since logics and logic translations are now represented declaratively, the effort of adding new logics or translations to Hets is greatly reduced.

This work is part of a larger effort of building an atlas of logics and translations used in computer science and mathematics.

Keywords

Proof Theory Logical Framework Automate Theorem Prover Object Logic Signature Morphism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [ABK+02]
    Astesiano, E., Bidoit, M., Kirchner, H., Krieg-Brückner, B., Mosses, P., Sannella, D., Tarlecki, A.: CASL: The Common Algebraic Specification Language. Theoretical Computer Science 286(2), 153–196 (2002)MathSciNetCrossRefMATHGoogle Scholar
  2. [AHMP98]
    Avron, A., Honsell, F., Miculan, M., Paravano, C.: Encoding modal logics in logical frameworks. Studia Logica 60(1), 161–208 (1998)MathSciNetCrossRefMATHGoogle Scholar
  3. [AHMS99]
    Autexier, S., Hutter, D., Mantel, H., Schairer, A.: Towards an Evolutionary Formal Software-Development Using CASL. In: Bert, D., Choppy, C., Mosses, P.D. (eds.) WADT 1999. LNCS, vol. 1827, pp. 73–88. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  4. [BC04]
    Bertot, Y., Castéran, P.: Coq’Art: The Calculus of Inductive Constructions. Springer, Heidelberg (2004)MATHGoogle Scholar
  5. [BJL06]
    Bortin, M., Broch Johnsen, E., Lüth, C.: Structured formal development in Isabelle. Nordic Journal of Computing 12, 1–20 (2006)MathSciNetMATHGoogle Scholar
  6. [CAB+86]
    Constable, R., Allen, S., Bromley, H., Cleaveland, W., Cremer, J., Harper, R., Howe, D., Knoblock, T., Mendler, N., Panangaden, P., Sasaki, J., Smith, S.: Implementing Mathematics with the Nuprl Development System. Prentice-Hall (1986)Google Scholar
  7. [CELM96]
    Clavel, M., Eker, S., Lincoln, P., Meseguer, J.: Principles of Maude. In: Meseguer, J. (ed.) Proceedings of the First International Workshop on Rewriting Logic, vol. 4, pp. 65–89 (1996)Google Scholar
  8. [Chu40]
    Church, A.: A Formulation of the Simple Theory of Types. Journal of Symbolic Logic 5(1), 56–68 (1940)MathSciNetCrossRefMATHGoogle Scholar
  9. [Dia08]
    Diaconescu, R.: Institution-independent Model Theory. Birkhäuser (2008)Google Scholar
  10. [GB92]
    Goguen, J., Burstall, R.: Institutions: Abstract model theory for specification and programming. Journal of the Association for Computing Machinery 39(1), 95–146 (1992)MathSciNetCrossRefMATHGoogle Scholar
  11. [HHP93]
    Harper, R., Honsell, F., Plotkin, G.: A framework for defining logics. Journal of the Association for Computing Machinery 40(1), 143–184 (1993)MathSciNetCrossRefMATHGoogle Scholar
  12. [HR11]
    Horozal, F., Rabe, F.: Representing Model Theory in a Type-Theoretical Logical Framework. Theoretical Computer Science (to appear, 2011), http://kwarc.info/frabe/Research/HR_folsound_10.pdf
  13. [HST94]
    Harper, R., Sannella, D., Tarlecki, A.: Structured presentations and logic representations. Annals of Pure and Applied Logic 67, 113–160 (1994)MathSciNetCrossRefMATHGoogle Scholar
  14. [IR11]
    Iancu, M., Rabe, F.: Formalizing Foundations of Mathematics. Mathematical Structures in Computer Science (to appear, 2011), http://kwarc.info/frabe/Research/IR_foundations_10.pdf
  15. [KMR09]
    Kohlhase, M., Mossakowski, T., Rabe, F.: The LATIN Project (2009), https://trac.omdoc.org/LATIN/
  16. [MAH06]
    Mossakowski, T., Autexier, S., Hutter, D.: Development Graphs - Proof Management for Structured Specifications. Journal of Logic and Algebraic Programming 67(1-2), 114–145 (2006)MathSciNetCrossRefMATHGoogle Scholar
  17. [Mes89]
    Meseguer, J.: General logics. In: Ebbinghaus, H.-D., et al. (eds.) Proceedings of Logic Colloquium, 1987, pp. 275–329. North-Holland (1989)Google Scholar
  18. [ML74]
    Martin-Löf, P.: An Intuitionistic Theory of Types: Predicative Part. In: Proceedings of the 1973 Logic Colloquium, pp. 73–118. North-Holland (1974)Google Scholar
  19. [MML07]
    Mossakowski, T., Maeder, C., Lüttich, K.: The Heterogeneous Tool Set, Hets. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 519–522. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  20. [MOM94]
    Martí-Oliet, N., Meseguer, J.: General logics and logical frameworks. In: What is a Logical System?, pp. 355–391. Oxford University Press, Inc., New York (1994)Google Scholar
  21. [Mos05]
    Mossakowski, T.: Heterogeneous Specification and the Heterogeneous Tool Set. Habilitation thesis (2005), http://www.informatik.uni-bremen.de/~till/
  22. [Nor05]
    Norell, U.: The Agda WiKi (2005), http://wiki.portal.chalmers.se/agda
  23. [NPW02]
    Nipkow, T., Paulson, L., Wenzel, M.: Isabelle/HOL — A Proof Assistant for Higher-Order Logic. Springer, Heidelberg (2002)MATHGoogle Scholar
  24. [Pau94]
    Paulson, L.C.: Isabelle: A Generic Theorem Prover. LNCS, vol. 828. Springer, Heidelberg (1994)CrossRefMATHGoogle Scholar
  25. [PC93]
    Paulson, L.C., Coen, M.: Zermelo-Fraenkel Set Theory. Isabelle distribution, ZF/ZF.thy (1993)Google Scholar
  26. [Pfe00]
    Pfenning, F.: Structural cut elimination: I. intuitionistic and classical logic. Information and Computation 157(1-2), 84–141 (2000)MathSciNetCrossRefMATHGoogle Scholar
  27. [PS99]
    Pfenning, F., Schürmann, C.: System Description: Twelf - A Meta-Logical Framework for Deductive Systems. In: Ganzinger, H. (ed.) CADE 1999. LNCS (LNAI), vol. 1632, pp. 202–206. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  28. [PS08]
    Poswolsky, A., Schürmann, C.: System Description: Delphin - A Functional Programming Language for Deductive Systems. In: Abel, A., Urban, C. (eds.) International Workshop on Logical Frameworks and Metalanguages: Theory and Practice. ENTCS, pp. 135–141 (2008)Google Scholar
  29. [PSK+03]
    Pfenning, F., Schürmann, C., Kohlhase, M., Shankar, N., Owre, S.: The Logosphere Project (2003), http://www.logosphere.org/
  30. [Rab08]
    Rabe, F.: Representing Logics and Logic Translations. PhD thesis, Jacobs University Bremen (2008), http://kwarc.info/frabe/Research/phdthesis.pdf
  31. [Rab10]
    Rabe, F.: A Logical Framework Combining Model and Proof Theory. Submitted to Mathematical Structures in Computer Science (2010), http://kwarc.info/frabe/Research/rabe_combining_09.pdf
  32. [RS09]
    Rabe, F., Schürmann, C.: A Practical Module System for LF. In: Cheney, J., Felty, A. (eds.) Proceedings of the Workshop on Logical Frameworks: Meta-Theory and Practice (LFMTP), pp. 40–48. ACM Press (2009)Google Scholar
  33. [Soj10]
    Sojakova, K.: Mechanically Verifying Logic Translations. Master’s thesis, Jacobs University Bremen (2010)Google Scholar
  34. [SS04]
    Schürmann, C., Stehr, M.: An Executable Formalization of the HOL/Nuprl Connection in the Metalogical Framework Twelf. In: 11th International Conference on Logic for Programming Artificial Intelligence and Reasoning (2004)Google Scholar
  35. [TB85]
    Trybulec, A., Blair, H.: Computer Assisted Reasoning with MIZAR. In: Joshi, A. (ed.) Proceedings of the 9th International Joint Conference on Artificial Intelligence, pp. 26–28 (1985)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2012

Authors and Affiliations

  • Mihai Codescu
    • 1
  • Fulya Horozal
    • 2
  • Michael Kohlhase
    • 2
  • Till Mossakowski
    • 1
  • Florian Rabe
    • 2
  • Kristina Sojakova
    • 3
  1. 1.DFKI GmbHBremenGermany
  2. 2.Computer ScienceJacobs UniversityBremenGermany
  3. 3.Carnegie Mellon UniversityPittsburghUSA

Personalised recommendations