Review Study on Fuzzy Cognitive Maps and Their Applications during the Last Decade

  • Elpiniki I. Papageorgiou
Part of the Studies in Computational Intelligence book series (SCI, volume 444)


This survey work tries to review the most recent applications and trends on fuzzy cognitive maps (FCMs) at the last ten years. FCMs are inference networks, using cyclic directed graphs, for knowledge representation and reasoning. In the past decade, FCMs have gained considerable research interest and are widely used to analyze causal systems such as system control, decision making, management, risk analysis, text categorization, prediction etc. Some example application domains, such as engineering, social and political sciences, business, information technology, medicine and environment, where the FCMs emerged a considerable degree of applicability were selected Their dynamic characteristics and learning methodologies make them essential for modeling, analysis, prediction and decision making tasks as they improve the performance of these systems. A survey on FCM studies concentrated on FCM applications on diverse scientific fields is elaborated during the last decade.


fuzzy cognitive maps review applications styling insert (key words) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kosko, B.: Fuzzy cognitive maps. International Journal of Man-Machine Studies 24(1), 65–75 (1986)MATHCrossRefGoogle Scholar
  2. 2.
    Kosko, B.: Adaptive inference in fuzzy knowledge networks. In: Dubois, D., Prade, H., Yager, R.R. (eds.) Readings in Fuzzy Sets for Intelligent Systems. Morgan Kaufman, San Mateo (1993)Google Scholar
  3. 3.
    Kosko, B.: Fuzzy Thinking (1993/1995) ISBN 0-7868-8021-X, (Chapter 12: Adaptive Fuzzy Systems)Google Scholar
  4. 4.
    Codara, L.: Le mappe cognitive. Carrocci Editore, Roma (1998)Google Scholar
  5. 5.
    Miao, Y., Liu, Z.Q., Siew, C.K., Miao, C.Y.: Dynamical cognitive network - an extension of fuzzy cognitive map. IEEE Transactions on Fuzzy Systems 9, 760–770 (2001)CrossRefGoogle Scholar
  6. 6.
    Glykas, G.: Fuzzy Cognitive Maps: Theory, Methodologies, Tools and Applications. Springer (July 2010)Google Scholar
  7. 7.
    van Vliet, M., Kok, K., Veldkamp, T.: Linking stakeholders and modellers in scenario studies: The use of Fuzzy Cognitive Maps as a communication and learning tool. Futures 42(1), 1–14 (2010)CrossRefGoogle Scholar
  8. 8.
    Rodriguez-Repiso, L., Setchi, R., Salmeron, J.L.: Modelling IT Projects success with Fuzzy Cognitive Maps. Expert Systems with Applications 32(2), 543–559 (2007)CrossRefGoogle Scholar
  9. 9.
    Stach, W., Kurgan, L.A.: Expert-based and Computational Methods for Developing Fuzzy Cognitive Maps. In: Glykas, M. (ed.) Fuzzy Cognitive Maps: Advances in Theory, Methodologies, Tools and Applications. Springer (2010) ISBN-10: 36-42032-19-2Google Scholar
  10. 10.
    Papageorgiou, E.I., Papandrianos, N.I., Apostolopoulos, D., Vassilakos, P.J.: Complementary use of Fuzzy Decision Trees and Augmented FCMs for Decision Making in Medical Informatics. In: Proc. of the 1st BMEI 2008, art. no. 4548799, Sanya, China, May 28-30, pp. 888–892 (2008)Google Scholar
  11. 11.
    Papageorgiou, E.I., Stylios, C.D., Groumpos, P.P.: Novel architecture for supporting medical decision making of different data types based on Fuzzy Cognitive Map Framework. In: Proc. 28th IEEE EMBS, Conference 2007, Lyon, France, August 21-23, pp. 1192–1195 (2007)Google Scholar
  12. 12.
    Papageorgiou, E.I.: A new methodology for Decisions in Medical Informatics using Fuzzy Cognitive Maps based on Fuzzy Rule-Extraction techniques. Applied Soft Computing 11, 500–513 (2011)CrossRefGoogle Scholar
  13. 13.
    Bertolini, M., Bevilacqua, M.: Fuzzy Cognitive Maps for Human Reliability Analysis in Production Systems. In: Kahraman, C., Yavuz, M. (eds.) Production Engineering and Management under Fuzziness. STUDFUZZ, vol. 252, pp. 381–415. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  14. 14.
    Miao, Y., Miao, C., Tao, X., Shen, Z., Liu, Z.: Transformation of cognitive maps. IEEE Transactions on Fuzzy Systems 18(1), art. no. 5340662, 114–124 (2010)CrossRefGoogle Scholar
  15. 15.
    Dickerson, A., Kosko, B.: Virtual Worlds as Fuzzy Cognitive Maps. Presence 3(2), 173–189 (1994)Google Scholar
  16. 16.
    Parenthoen, M., Reignier, P., Tisseau, J.: Put Fuzzy Cognitive Maps to Work in Virtual Worlds. In: Proc. 10th IEEE Int’l Conf. Fuzzy Systems, vol. 1, p. 38. IEEE CS Press (2001)Google Scholar
  17. 17.
    Aguilar, J.: A survey about fuzzy cognitive maps papers. International Journal of Computational Cognition 3, 27–33 (2005)Google Scholar
  18. 18.
    Pedrycz, W.: The design of cognitive maps: A study in synergy of granular computing and evolutionary optimization. Expert Systems with Applications (2010) (in press)Google Scholar
  19. 19.
    Salmeron, J.: Modeling grey uncertainty with Fuzzy Grey Cognitive Maps. Expert Systems with Applications 37, 7581–7588 (2010)CrossRefGoogle Scholar
  20. 20.
    Iakovidis, D.K., Papageorgiou, E.: Intuitionistic Fuzzy Cognitive Maps for Medical Decision Making. IEEE Transactions on Information Technology in Biomedicine 15(1) (2011)Google Scholar
  21. 21.
    Carvalho, J.P., Tome, J.A.B.: Rule Based Fuzzy Cognitive Maps in Socio-Economic Systems. In: Proc. of IFSA-Eusflat (2009)Google Scholar
  22. 22.
    Carvalho, J.P., Tomé, J.A.: Rule Based Fuzzy Cognitive Maps - Expressing Time in Qualitative System Dynamics. In: Proceedings of the 2001 FUZZ-IEEE, Melbourne, Australia (2001)Google Scholar
  23. 23.
    Zhong, H., Miao, C., Feng, Z.S.Y.: Temporal Fuzzy Cognitive Maps. In: 2008 IEEE World Congress on Computational Intelligence, Hong Kong, June 1-6, pp. 1831–1840 (2008)Google Scholar
  24. 24.
    Andreou, A.S., Mateou, N.H., Zombanakis, G.A.: Evolutionary Fuzzy Cognitive Maps: A Hybrid System for Crisis Management and Political Decision-Making. In: Proc. Computational Intelligent for Modeling, Control & Automation CIMCA, Vienna, pp. 732–743 (2003)Google Scholar
  25. 25.
    Andreou, A.S., Mateou, N.H., Zombanakis, G.A.: Soft computing for crisis management and political decision making: the use of genetically evolved fuzzy cognitive maps. Soft Computing Journal 9(3), 194–210 (2005), doi:10.1007/s00500-004-0344-0CrossRefGoogle Scholar
  26. 26.
    Miao, Y., Miao, C., Tao, X., Shen, Z., Liu, Z.: Transformation of cognitive maps. IEEE Transactions on Fuzzy Systems 18(1), art. no. 5340662, 114–124 (2010)CrossRefGoogle Scholar
  27. 27.
    Kottas, T.L., Boutalis, Y.S., Christodoulou, M.A.: Fuzzy Cognitive Networks: Adaptive Network Estimation and Control Paradigms. In: Glykas, M. (ed.) Fuzzy Cognitive Maps. STUDFUZZ, vol. 247, pp. 89–134. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  28. 28.
    Song, H., Miao, C., Roel, W., Shen, Z., Catthoor, F.: Implementation of fuzzy cognitive maps based on fuzzy neural network and application in prediction of time series. IEEE Transactions on Fuzzy Systems 18(2), art. no. 5352265, 233–250 (2010)Google Scholar
  29. 29.
    Papageorgiou, E.I., Stylios, C.D., Groumpos, P.P.: Unsupervised learning techniques for fine-tuning FCM causal links. Intern. Journal of Human-Computer Studies 64, 727–743 (2006)CrossRefGoogle Scholar
  30. 30.
    Papageorgiou, E.I., Groumpos, P.P.: A new hybrid learning algorithm for Fuzzy Cognitive Maps learning. Applied Soft Computing 5, 409–431 (2005b)CrossRefGoogle Scholar
  31. 31.
    Froelich, W., Juszczuk, P.: Predictive Capabilities of Adaptive and Evolutionary Fuzzy Cognitive Maps - A Comparative Study. In: Nguyen, N.T., Szczerbicki, E. (eds.) Intelligent Systems for Knowledge Management. SCI, vol. 252, pp. 153–174. Springer, Heidelberg (2009b)CrossRefGoogle Scholar
  32. 32.
    Stach, W., Kurgan, L.A., Pedrycz, W., Reformat, M.: Genetic learning of fuzzy cognitive maps. Fuzzy Sets and Systems 153(3), 371–401 (2005)MathSciNetMATHCrossRefGoogle Scholar
  33. 33.
    Koulouriotis, D.E., Diakoulakis, I.E., Emiris, D.M., Zopounidis, C.D.: Development of dynamic cognitive networks as complex systems approximators: validation in financial time series. Applied Soft Computing 5, 157–179 (2005)CrossRefGoogle Scholar
  34. 34.
    Stach, W., Kurgan, L.A., Pedrycz, W.: A survey of fuzzy cognitive map learning methods. In: Grzegorzewski, P., Krawczak, M., Zadrozny, S. (eds.) Issues in Soft Computing: Theory and Applications (2005)Google Scholar
  35. 35.
    Andreou, A., Mateou, N.H., Zombanakis, G.: The Cyprus Puzzle and the Greek-Turkish Arms Race: Forecasting Developments Using Genetically Evolved Fuzzy Cognitive Maps. Journal of Defence and Peace Making 14, 293–310 (2003)CrossRefGoogle Scholar
  36. 36.
    Andreou, A.S., Mateou, N.H., Zombanakis, G.A.: Soft computing for crisis management and political decision making: the use of genetically evolved fuzzy cognitive maps. Soft Computing Journal 9(3), 194–210 (2006)CrossRefGoogle Scholar
  37. 37.
    Acampora, G., Loia, V.: A Dynamical Cognitive Multi-Agent System for Enhancing Ambient Intelligence Scenarios. In: IEEE International Conference on Fuzzy Systems, art. no. 5277303, pp. 770–777Google Scholar
  38. 38.
    Carvalho, J.P.: On the semantics and the use of Fuzzy Cognitive Maps in social sciences. In: Proc. 2010 IEEE World Congress on Computational Intelligence, WCCI 2010, art. no. 5584033 (2010)Google Scholar
  39. 39.
    Papageorgiou, E.I., Stylios, C.D., Groumpos, P.P.: The Soft Computing Technique of Fuzzy Cognitive Maps for Decision Making in Radiotherapy. In: Haas, O., Burnham, K. (eds.) Intelligent and Adaptive Systems in Medicine, ch. 5, Taylor & Francis, LLC (2008)Google Scholar
  40. 40.
    Georgopoulos, V.C., Malandraki, G.A., Stylios, C.D.: A fuzzy cognitive map approach to deferential diagnosis of specific language impairment. Artificial Intelligence in Medicine 29(3), 261–278 (2003)CrossRefGoogle Scholar
  41. 41.
    Papageorgiou, E.I., Spyridonos, P., Ravazoula, P., Stylios, C.D., Groumpos, P.P., Nikiforidis, G.: Advanced Soft Computing Diagnosis Method for Tumor Grading. Artificial Intelligence in Medicine 36(1), 59–70 (2006)CrossRefGoogle Scholar
  42. 42.
    Papageorgiou, E.I., Papandrianos, N.I., Karagianni, G., Kyriazopoulos, G., Sfyras, D.: A fuzzy cognitive map based tool for prediction of infectious diseases. In: Proceeding of FUZZ-IEEE 2009, World Congress, Korea, August 24-27, pp. 2094–2099 (2009b)Google Scholar
  43. 43.
    Papageorgiou, E.I., Papadimitriou, C., Karkanis, S.: Management uncomplicated urinary tract infections using fuzzy cognitive maps. In: Proc. of the 9th ITAB 2009, Larnaca, Cyprus, November 5-7 (2009a) ISBN: 978-1-4244-5379-5Google Scholar
  44. 44.
    Stylios, C.D., Georgopoulos, V.C.: Fuzzy Cognitive Maps Structure for Medical Decision Support Systems. In: Nikravesh, M., et al. (eds.) Forging the New Frontiers: Fuzzy Pioneers II. STUDFUZZ, vol. 218, pp. 151–174. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  45. 45.
    Papakostas, G.A., Boutalis, Y.S., Koulouriotis, D.E., Mertzios, B.G.: Fuzzy cognitive maps for pattern recognition applications. International Journal of Pattern Recognition and Artificial Intelligence 22(8), 1461–1486 (2008)CrossRefGoogle Scholar
  46. 46.
    Froelich, W., Wakulicz-Deja, A.: Mining temporal medical data using adaptive fuzzy cognitive maps. In: 2009 Proceedings - 2009 2nd Conference on Human System Interactions, HSI 2009, art. no. 5090946, pp. 16–23 (2009)Google Scholar
  47. 47.
    Rodin, V., Querrec, G., Ballet, P., Bataille, F., Desmeulles, G., Abgrall, J.–F.: Multi-Agents System to model cell signaling by using Fuzzy Cognitive Maps. Application to computer simulation of Multiple Myeloma. In: Proc. 2009 Ninth IEEE International Conference on Bioinformatics and Bioengineering, pp. 236–241 (2009)Google Scholar
  48. 48.
    Stylios, C.D., Groumpos, P.P.: Modeling Complex Systems using Fuzzy Cognitive Maps. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans 34, 155–162 (2004)CrossRefGoogle Scholar
  49. 49.
    Gonzalez, J.L., Aguilar, L.T., Castillo, O.: A cognitive map and fuzzy inference engine model for online design and self fine-tuning of fuzzy logic controllers. International Journal of Intelligent Systems 24(11), 1134–1173 (2009)MATHCrossRefGoogle Scholar
  50. 50.
    Kottas, T.L., Karlis, A.D., Boutalis, Y.S.: Fuzzy Cognitive Networks for Maximum Power Point Tracking in Photovoltaic Arrays. In: Glykas, M. (ed.) Fuzzy Cognitive Maps. STUDFUZZ, vol. 247, pp. 231–257. Springer, Heidelberg (2010b)CrossRefGoogle Scholar
  51. 51.
    Beeson, P., Modayil, J., Kuipers, B.: Factoring the mapping problem: Mobile robot map-building in the hybrid spatial semantic hierarchy. International Journal of Robotics Research 29(4), 428–459Google Scholar
  52. 52.
    Jetter, A.J.M.: Fuzzy Cognitive Maps in engineering and technology management – what works in practice? In: Anderson, T., Daim, T., Kocaoglu, D. (eds.) Technology Management for the Global Future: Proceedings of PICMET 2006, Istanbul, Turkey, Portland, July 8–13 (2006)Google Scholar
  53. 53.
    Yaman, D., Polat, S.: A fuzzy cognitive map approach for effect based operations: an illustrative case. Information Sciences 179(4), 382–403 (2009)CrossRefGoogle Scholar
  54. 54.
    Wei, Z., Lu, L., Yanchun, Z.: Using fuzzy cognitive time maps for modeling and evaluating trust dynamics in the virtual enterprises. Expert Systems with Applications 35(4), 1583–1592 (2008)CrossRefGoogle Scholar
  55. 55.
    Bueno, S., Salmeron, J.L.: Fuzzy modeling Enterprise Resource Planning tool selection. Computer Standards & Interfaces 30, 137–147 (2008)CrossRefGoogle Scholar
  56. 56.
    Salmeron, J.L.: Supporting decision makers with fuzzy cognitive maps: These extensions of cognitive maps can process uncertainty and hence improve decision making in R&D applications. Research Technology Management 52(3), 53–59 (2009)MathSciNetGoogle Scholar
  57. 57.
    Kim, M.-C., Kim, C.O., Hong, S.R., Kwon, I.-H.: Forward-backward analysis of RFID-enabled supply chain using fuzzy cognitive map and genetic algorithm. Expert Systems with Applications 35(3), 1166–1176 (2008)CrossRefGoogle Scholar
  58. 58.
    Trappey, A.J.C., Trappey, C.V., Wub, C.-R.: Genetic algorithm dynamic performance evaluation for RFID reverse logistic management. Expert Systems with Applications: An International Journal 37(11), 7329–7335 (2010)CrossRefGoogle Scholar
  59. 59.
    Baykasoglu, A., Durmusoglu, Z.D.U., Kaplanoglu, V.: Training Fuzzy Cognitive Maps via Extended Great Deluge Algorithm with applications. Computers in Industry 62(2), 187–195 (2011)CrossRefGoogle Scholar
  60. 60.
    Xirogiannis, G., Glykas, M., Staikouras, C.: Fuzzy Cognitive Maps in Banking Business Process Performance Measurement. In: Glykas, M. (ed.) Fuzzy Cognitive Maps. STUDFUZZ, vol. 247, pp. 161–200. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  61. 61.
    Lazzerini, B., Lusine, M.: Risk Analysis Using Extended Fuzzy Cognitive Maps. In: International Proc., ICICCI 2010, art. no. 5566004, pp. 179–182 (2010)Google Scholar
  62. 62.
    Lo Storto, C.: Assessing ambiguity tolerance in staffing software development teams by analyzing cognitive maps of engineers and technical managers. In: 2nd Int. Conf. on Engineering System Management and Applications, ICESMA 2010, Sharjah (April 2010)Google Scholar
  63. 63.
    Luo, X., Wei, X., Zhang, J.: Game-based Learning Model Using Fuzzy Cognitive Map Proceedings of the first ACM International Workshop on Multimedia Technologies for Distance Learning, Proceeding MTDL 2009 (2009) ISBN: 978-1-60558-757-8Google Scholar
  64. 64.
    Pajares, G., Guijarro, M., Herrera, P.J., Ruz, J.J., de la Cruz, J.M.: Fuzzy Cognitive Maps Applied to Computer Vision Tasks. In: Glykas, M. (ed.) Fuzzy Cognitive Maps. STUDFUZZ, vol. 247, pp. 259–289. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  65. 65.
    Tan, C.O., Ozesmi, U.: A generic shallow lake ecosystem model based on collective expert knowledge. Hydrobiologia 563, 125–142 (2006)CrossRefGoogle Scholar
  66. 66.
    Isaac, M.E., Dawoe, E., Sieciechowicz, K.: Assessing Local Knowledge Use in Agroforestry Management with Cognitive Maps. Environmental Management 43, 1321–1329 (2009)CrossRefGoogle Scholar
  67. 67.
    Ramsey, D., Norbury, G.L.: Predicting the unexpected: using a qualitative model of a New Zealand dryland ecosystem to anticipate pest management outcomes. Austral Ecology 34, 409–421 (2009)Google Scholar
  68. 68.
    Rajaram, T., Das, A.: Modeling of interactions among sustainability components of an agro-ecosystem using local knowledge through cognitive mapping and fuzzy inference system. Expert Systems with Applications (2010) (in press)Google Scholar
  69. 69.
    Kok, K.: The potential of Fuzzy Cognitive Maps for semi-quantitative scenario development, with an example from Brazil. Global Environmental Change 19, 122–133 (2009)CrossRefGoogle Scholar
  70. 70.
    Giordano, R., Vurro, M.: Fuzzy Cognitive Map to Support Conflict Analysis in Drought Management. In: Glykas, M. (ed.) Fuzzy Cognitive Maps. Studies in Fuzziness and Soft Computing, vol. 247, pp. 403–425. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  71. 71.
    Kafetzis, A., McRoberts, N., Mouratiadou, I.: Using Fuzzy Cognitive Maps to Support the Analysis of Stakeholders’ Views of Water Resource Use and Water Quality Policy. In: Glykas, M. (ed.) Fuzzy Cognitive Maps. STUDFUZZ, vol. 247, pp. 383–402. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  72. 72.
    Papageorgiou, E.I., Markinos, A.T., Gemtos, T.A.: Soft Computing Technique of Fuzzy Cognitive Maps to Connect Yield Defining Parameters with Yield in Cotton Crop Production in Central Greece as a Basis for a Decision Support System for Precision Agriculture Application. In: Glykas, M. (ed.) Fuzzy Cognitive Maps. STUDFUZZ, vol. 247, pp. 325–362. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  73. 73.
    Lai, X., Zhou, Y., Zhang, W.: Software Usability Improvement: Modeling, Training and Relativity Analysis. In: Proc. 2nd Int. Symp. on Information Science and Engineering, ISISE 2009, art. no. 5447282, pp. 472–475 (2009)Google Scholar
  74. 74.
    Jose, A., Contreras, J.: The FCM Designer Tool. In: Glykas, M. (ed.) Fuzzy Cognitive Maps. SFSC, vol. 247, pp. 71–87. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  75. 75.
    Furfaro, R., Kargel, J.S., Lunine, J.I., Fink, W., Bishop, M.P.: Identification of Cryovolcanism on Titan Using Fuzzy Cognitive Maps. Planetary and Space Science 5(5), 761–779 (2010)CrossRefGoogle Scholar
  76. 76.
    Li, X., Ji, H., Zheng, R., Li, Y., Yu, F.R.: A novel team-centric peer selection scheme for distributed wireless P2P networks. In: IEEE Wireless Communications and Networking Conference, WCNC, art. no. 4917532 (2009) Google Scholar
  77. 77.
    Stula, M., Stipanicev, D., Bodrozic, L.: Intelligent Modeling with Agent-Based Fuzzy Cognitive Map. International Journal of Intelligent Systems 25(10), 981–1004 (2010)Google Scholar
  78. 78.
    Song, H.J., Miao, C.Y., Wuyts, R., Shen, Z.Q., D’Hondt, M., Catthoor, F.: An extension to fuzzy cognitive maps for classification and prediction. IEEE Transactions on Fuzzy Systems 19(1), art. no. 5601761, 116–135 (2011)Google Scholar
  79. 79.
    Beena, P., Ganguli, R.: Structural Damage Detection using Fuzzy Cognitive Maps and Hebbian Learning. Applied Soft Computing 11(1), 1014–1020 (2011)CrossRefGoogle Scholar
  80. 80.
    Arthi, K., Tamilarasi, A., Papageorgiou, E.I.: Analyzing the performance of fuzzy cognitive maps with non-linear hebbian learning algorithm in predicting autistic disorder. Expert Systems with Applications 38(3), 1282–1292 (2011)CrossRefGoogle Scholar
  81. 81.
    Hanafizadeh, P., Aliehyaei, R.: The Application of Fuzzy Cognitive Map in Soft System Methodology. Systemic Practice and Action Research, 1–30 (2011) (in press)Google Scholar
  82. 82.
    Lee, N., Bae, J.K., Koo, C.: A case-based reasoning based multi-agent cognitive map inference mechanism: An application to sales opportunity assessment. Information Systems Frontiers, 1–16 (2011) (in press)Google Scholar
  83. 83.
    Chytas, P., Glykas, M., Valiris, G.: A proactive balanced scorecard. International Journal of Information Management (2011) (article in Press)Google Scholar
  84. 84.
    Jetter, A., Schweinfort, W.: Building scenarios with Fuzzy Cognitive Maps: An exploratory study of solar energy. Futures 43(1), 52–66 (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Dept of Informatics and Computer TechnologyTechnological Educational Institute of LamiaLamiaGreece

Personalised recommendations