How to Do Social Simulation in Logic: Modelling the Segregation Game in a Dynamic Logic of Assignments

  • Benoit Gaudou
  • Andreas Herzig
  • Emiliano Lorini
  • Christophe Sibertin-Blanc
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7124)

Abstract

The aim of this paper is to show how to do social simulation in logic. In order to meet this objective we present a dynamic logic with assignments, tests, sequential and nondeterministic composition, and bounded and non-bounded iteration. We show that our logic allows to represent and reason about a paradigmatic example of social simulation: Schelling’s segregation game. We also build a bridge between social simulation and planning. In particular, we show that the problem of checking whether a given property P (such as segregation) will emerge after n simulation moves is nothing but the planning problem with horizon n, which is widely studied in AI: the problem of verifying whether there exists a plan of length at most n ensuring that a given goal will be achieved.

Keywords

Cellular Automaton Propositional Variable Dynamic Logic Boolean Formula Polynomial Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F. (eds.): Description Logic Handbook. Cambridge University Press (2003)Google Scholar
  2. 2.
    van Benthem, J., van Eijck, J., Kooi, B.: Logics of communication and change. Information and Computation 204, 1620–1662 (2006)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Bylander, T.: The computational complexity of propositional strips planning. Artificial Intelligence 69, 165–204 (1994)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Chapman, D.: Planning for conjunctive goals. Artificial Intelligence 32(3), 333–377 (1987)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Conte, R., Paolucci, M.: Responsibility for societies of agents. Journal of Artificial Societies and Social Simulation 7(4) (2004)Google Scholar
  6. 6.
    Cultien, C.: Implementing dynamic logic of propositional assignments in a QBF solver. Master’s thesis, Université de Toulouse (September 2011)Google Scholar
  7. 7.
    Dignum, F., Edmonds, B., Sonenberg, L.: Editorial: The Use of Logic in Agent-Based Social Simulation. Journal of Artificial Societies and Social Simulation 7(4) (2004)Google Scholar
  8. 8.
    van Ditmarsch, H.P., van der Hoek, W., Kooi, B.: Dynamic epistemic logic with assignment. In: Proceedings of AAMAS 2005, pp. 141–148. ACM Press (2005)Google Scholar
  9. 9.
    Edmonds, B.: How Formal Logic Can Fail to Be Useful for Modelling or Designing MAS. In: Lindemann, G., Moldt, D., Paolucci, M. (eds.) RASTA 2002. LNCS (LNAI), vol. 2934, pp. 1–15. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  10. 10.
    Fasli, M.: Formal systems and agent-based social simulation equals null? Journal of Artificial Societies and Social Simulation 7(4) (2004)Google Scholar
  11. 11.
    Fattorosi-Barnaba, M., de Caro, F.: Graded modalities I. Studia Logica 44, 197–221 (1985)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman Co. (1979)Google Scholar
  13. 13.
    Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. MIT Press, Cambridge (2000)MATHGoogle Scholar
  14. 14.
    Horrocks, I.: Using an expressive description logic: Fact or fiction? In: Proceedings of KR 1998, pp. 636–649 (1998)Google Scholar
  15. 15.
    Kautz, H.A., Selman, B.: Planning as satisfiability. In: Proceedings of ECAI 1992, pp. 359–363 (1992)Google Scholar
  16. 16.
    Reiter, R.: Knowledge in Action: Logical Foundations for Specifying and Implementing Dynamical Systems. MIT Press (2001)Google Scholar
  17. 17.
    Schelling, T.C.: Dynamic Models of Segregation. Journal of Mathematical Sociology 1, 143–186 (1971)CrossRefMATHGoogle Scholar
  18. 18.
    Shanahan, M.: Solving the frame problem: a mathematical investigation of the common sense law of inertia. MIT Press (1997)Google Scholar
  19. 19.
    Taillandier, P., Drogoul, A., Vo, D.A., Amouroux, E.: GAMA: a simulation platform that integrates geographical information data, agent-based modeling and multi-scale control. In: Proceedings of PRIMA 2010 (2010)Google Scholar
  20. 20.
    Thielscher, M.: The logic of dynamic systems. In: Proceedings of the 14th International Joint Conference on Artificial Intelligence (IJCAI 1995), Montreal, Canada, pp. 1956–1962 (1995)Google Scholar
  21. 21.
    van der Hoek, W.: On the semantics of graded modalities. Journal of Applied Non-Classical Logics 2(1) (1992)Google Scholar
  22. 22.
    van Eijck, J.: Making things happen. Studia Logica 66(1), 41–58 (2000)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Wilensky, U.: Netlogo segregation model. Technical report, Center for Connected Learning and Computer-Based Modeling. Northwestern University, Evanston, IL (1997)Google Scholar
  24. 24.
    Wilensky, U.: Netlogo. Technical report, Center for Connected Learning and Computer-Based Modeling. Northwestern University, Evanston, IL (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Benoit Gaudou
    • 1
    • 2
    • 3
  • Andreas Herzig
    • 1
    • 2
    • 3
  • Emiliano Lorini
    • 1
    • 2
    • 3
  • Christophe Sibertin-Blanc
    • 1
    • 2
    • 3
  1. 1.University of ToulouseFrance
  2. 2.UMR 5505, Institut de Recherche en Informatique de Toulouse (IRIT), CNRSFrance
  3. 3.IRIT, Université Paul SabatierToulouse Cedex 9France

Personalised recommendations