Advertisement

Nevogenesis pp 49-57 | Cite as

The Dual Pathway of Nevogenesis

  • Iris Zalaudek
  • Alon Scope
  • Giuseppe Argenziano
  • Caterina Longo
  • Simonetta Piana
  • Caterina Carticalà
  • Ashfaq A. Marghoob
Chapter

Abstract

The evolution of melanocytic nevi is a complex, multifactorial process involving both constitutional and environmental factors. While histopathology remains the gold standard for diagnosis of melanocytic lesions, it is a mere cross-sectional view of nevus evolution at one point in time. Dermoscopy and more recently, reflectance confocal microscopy (RCM) are in vivo diagnostic techniques for the assessment of morphologic features of nevi; the fact that most dermoscopic features are well correlated with histopathologic criteria makes these methods valuable for observing gross tissue changes of nevi over time without need to biopsy (Table 4.1). Thus, dermoscopy and RCM have enriched profoundly our knowledge about the morphological variability of nevi and offered new insights into their evolution.

Keywords

BRAF Mutation Melanocytic Nevus Reticular Pattern Reflectance Confocal Microscopy Epidermal Melanocyte 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Ackerman AB, Magana-Garcia M. Naming acquired melanocytic nevi. Unna’s, Miescher’s, Spitz’s Clark’s. Am J Dermatopathol. 1990;12:193–209.PubMedCrossRefGoogle Scholar
  2. 2.
    Alexeev V, Yoon K. Distinctive role of the cKit receptor tyrosine kinase signaling in mammalian melanocytes. J Invest Dermatol. 2006;126:1102–10.PubMedCrossRefGoogle Scholar
  3. 3.
    Argenziano G, Zalaudek I, Ferrara G, et al. Proposal of a new classification system for melanocytic naevi. Br J Dermatol. 2007;157:217–27.PubMedCrossRefGoogle Scholar
  4. 4.
    Bastian BC, LeBoit PE, Pinkel D. Mutations and copy number increase of HRAS in spitz nevi with distinctive histopathological features. Am J Pathol. 2000;157(3):967–72.PubMedCrossRefGoogle Scholar
  5. 5.
    Bauer J, Curtin JA, Pinkel D, Bastian BC. Congenital melanocytic nevi frequently harbor NRAS mutations but no BRAF mutations. J Invest Dermatol. 2007;127(1):179–82.PubMedCrossRefGoogle Scholar
  6. 6.
    Blokx WA, van Dijk MC, Ruiter DJ. Molecular cytogenetics of cutaneous melanocytic lesions - diagnostic, prognostic and therapeutic aspects. Histopathology. 2010;56:121–32.PubMedCrossRefGoogle Scholar
  7. 7.
    Changchien L, Dusza SW, Agero AL. Age- and site-specific variation in the dermoscopic patterns of congenital melanocytic nevi: an aid to accurate classification and assessment of melanocytic nevi. Arch Dermatol. 2007;143:1007–14.PubMedCrossRefGoogle Scholar
  8. 8.
    Clemmensen OJ, Kroon S. The histology of “congenital features” in early acquired melanocytic nevi. J Am Acad Dermatol. 1988;19(4):742–6.PubMedCrossRefGoogle Scholar
  9. 9.
    Cohen LM, Bennion SD, Johnson TW, Golitz LE. Hyper-melanotic nevus: clinical, histopathologic, and ultrastructural features in 316 cases. Am J Dermatopathol. 1997;19:23–30.PubMedCrossRefGoogle Scholar
  10. 10.
    Cramer SF. The origin of epidermal melanocytes. Implications for the histogenesis of nevi and melanomas. Arch Pathol Lab Med. 1991;115(2):115–9.PubMedCrossRefGoogle Scholar
  11. 11.
    Cramer SF. Speckled lentiginous nevus (nevus spilus): the “roots” of the “melanocytic garden”. Arch Dermatol. 2001;137:1654–5.PubMedCrossRefGoogle Scholar
  12. 12.
    Cribier BJ, Santinelli F, Grosshans E. Lack of clinical-pathological correla- tion in the diagnosis of congenital na- evi. Br J Dermatol. 1999;141:1004–9.PubMedCrossRefGoogle Scholar
  13. 13.
    Dadzie OE, Goerig R, Bhawan J. Incidental microscopic foci of nevic aggregates in skin. Am J Dermatopathol. 2008;30:45–50.PubMedCrossRefGoogle Scholar
  14. 14.
    Gleason BC, Crum CP, Murphy GF. Expression patterns of MITF during human cutaneous embryogenesis: evidence for bulge epithelial expression and persistence of dermal melanoblasts. J Cutan Pathol. 2008;35:615–22.PubMedCrossRefGoogle Scholar
  15. 15.
    Gray-Schopfer VC, Cheong SC, Chong H, et al. Cellular senescence in naevi and immortalisation in melanoma: a role for p16? Br J Cancer. 2006;95:496–505.PubMedCrossRefGoogle Scholar
  16. 16.
    Hafner C, Stoehr R, van Oers JM, et al. The absence of BRAF, FGFR3, and PIK3CA mutations differentiates lentigo simplex from melanocytic nevus and solar lentigo. J Invest Dermatol. 2009;129:2730–5.PubMedCrossRefGoogle Scholar
  17. 17.
    Halpern AC, Guerry 4th D, Elder DE, Trock B, Synnestvedt M, Humphreys T. Natural history of dysplastic nevi. J Am Acad Dermatol. 1993;40:51–7.CrossRefGoogle Scholar
  18. 18.
    Horikawa T, Norris DA, Yohn JJ, et al. Melanocyte mitogens induce both melanocyte chemokinesis and chemotaxis. J Invest Dermatol. 1995;104:256–9.PubMedCrossRefGoogle Scholar
  19. 19.
    Houben R, Ortmann S, Drasche A, et al. Proliferation arrest in B-Raf mutant melanoma cell lines upon MAPK pathway activation. J Invest Dermatol. 2009;129:406–14.PubMedCrossRefGoogle Scholar
  20. 20.
    Ichii-Nakato N, Takata M, Takayanagi S, et al. High frequency of BRAFV600E mutation in acquired nevi and small congenital nevi, but low frequency of mutation in medium-sized congenital nevi. J Invest Dermatol. 2006;126:2111–8.PubMedCrossRefGoogle Scholar
  21. 21.
    Kincannon J, Boutzale C. The physiology of pigmented nevi. Pediatrics. 1999;104:1042–5.PubMedGoogle Scholar
  22. 22.
    Kittler H, Seltenheim M, Dawid M, et al. Frequency and characteristics of enlarging common melanocytic nevi. Arch Dermatol. 2000;136:316–20.PubMedCrossRefGoogle Scholar
  23. 23.
    Kopf AW, Levine LJ, Rigel DS, Fried-man RJ, Levenstein M. Prevalence of congenital nevus-like nevi, nevi spili, and cafe au lait spots. Arch Dermatol. 1985;121(6):766–9.PubMedCrossRefGoogle Scholar
  24. 24.
    Kumar R, Angelini S, Snellman E, Hemminki K. BRAF mutations are common somatic events in melanocytic nevi. J Invest Dermatol. 2004;122:342–8.PubMedCrossRefGoogle Scholar
  25. 25.
    Lieb JA, Scope A, Dusza SW, et al. The dermoscopic pattern of truncal nevi may mirror the surrounding skin pigment pattern. J Am Acad Dermatol. 2007; 56: AB144.PubMedCrossRefGoogle Scholar
  26. 26.
    Lin J, Takata M, Murata H, et al. Polyclonality of BRAF mutations in acquired melanocytic nevi. J Natl Cancer Inst. 2009;101:1423–7.PubMedCrossRefGoogle Scholar
  27. 27.
    Loewe R, Kittler H, Fischer G, et al. BRAF kinase gene V599E mutation in growing melanocytic lesions. J Invest Dermatol. 2004;123:733–6.PubMedCrossRefGoogle Scholar
  28. 28.
    Martinka M, Bruecks AK, Trotter MJ. Histologic spectrum of melanocytic nevi removed from patients  >  60 years of age. J Cutan Med Surg. 2007;11(5):168–73.PubMedGoogle Scholar
  29. 29.
    Michaloglou C, Vredeveld LC, Soengas MS, et al. BRAFE600-Associated senescence-like cell cycle arrest of human naevi. Nature. 2005;436:720–4.PubMedCrossRefGoogle Scholar
  30. 30.
    Nguyen LP, Emley A, Wajapeyee N, Green MR, Mahalingam M. BRAF V600E mutation and the tumour suppressor IGFBP7 in atypical genital naevi. Br J Dermatol. 2010;162(3):677–80. Epub 2009 Nov 16.PubMedCrossRefGoogle Scholar
  31. 31.
    Pellacani G, Scope A, Ferrari B, et al. New insights into nevogenesis: in vivo characterization and follow-up of melanocytic nevi by reflectance confocal microscopy. J Am Acad Dermatol. 2009;61:1001–13.PubMedCrossRefGoogle Scholar
  32. 32.
    Piliouras P, Gilmore S, Wurm EM, Soyer HP, Zalaudek I. New insights in naevogenesis: number, distribution and dermoscopic patterns of naevi in the elderly. Australas J Dermatol. 2011;52(4):254–8.PubMedCrossRefGoogle Scholar
  33. 33.
    Seidenari S, Pellacani G, Martella A, et al. Instrument-, age- and site-dependent variations of dermoscopic patterns of congenital melanocytic naevi: a multicentre study. Br J Dermatol. 2006;155:56–61.PubMedCrossRefGoogle Scholar
  34. 34.
    Scope A, Marghoob AA, Dusza SW, et al. Dermoscopic patterns of naevi in fifth grade children of the Framingham school system. Br J Dermatol. 2008;158:1041–9.PubMedCrossRefGoogle Scholar
  35. 35.
    Scope A, Dusza SW, Marghoob AA, Satagopan JM, Braga Casagrande Tavoloni J, Psaty EL, Weinstock MA, Oliveria SA, Bishop M, Geller AC, Halpern AC. Clinical and dermoscopic stability and volatility of melanocytic nevi in a population-based cohort of children in Framingham school system. J Invest Dermatol. 2011;131(8):1615–21.PubMedCrossRefGoogle Scholar
  36. 36.
    Soyer HP, Smolle J, Hodl S, Pachernegg H, Kerl H. Surface microscopy. A new approach to the diagnosis of cutaneous pigmented tumors. Am J Dermatopathol. 1989;11:1–10.PubMedCrossRefGoogle Scholar
  37. 37.
    Sowa J, Kobayashi H, Ishii M, Kimura T. Histopathologic findings in Unna’s nevus suggest it is a tardive congenital nevus. Am J Dermatopathol. 2008;30(6):561–6.PubMedCrossRefGoogle Scholar
  38. 38.
    Takata M, Murata H, Saida T. Molecular pathogenesis of malignant melanoma: a different perspective from the studies of melanocytic nevus and acral melanoma. Pigment Cell Melanoma Res. 2010;23:64–71.PubMedCrossRefGoogle Scholar
  39. 39.
    Terushkin V, Scope A, Halpern AC, Marghoob AA. Pathways to involution of nevi: insights from dermoscopic follow-up. Arch Dermatol. 2010;146:459–60.PubMedCrossRefGoogle Scholar
  40. 40.
    Thomas AJ, Erickson CA. The making of a melanocyte: the specification of melanoblasts from the neural crest. Pigment Cell Melanoma Res. 2008;21(6):598–610.PubMedCrossRefGoogle Scholar
  41. 41.
    Thomas NE. BRAF somatic mutations in malignant melanoma and melanocytic naevi. Melanoma Res. 2006;16:97–103.PubMedCrossRefGoogle Scholar
  42. 42.
    Unna PG. Berl Klin Wochenschr. 1893;30:14–6.Google Scholar
  43. 43.
    van Engen-van Grunsven AC, van Dijk MC, Ruiter DJ, Klaasen A, Mooi WJ, Blokx WA. HRAS-mutated Spitz tumors: a subtype of Spitz tumors with distinct features. Am J Surg Pathol. 2010;34(10):1436–41.PubMedCrossRefGoogle Scholar
  44. 44.
    Van Raamsdonk CD, Bezrookove V, Green G, Bauer J, Gaugler L, O’Brien JM, Simpson EM, Barsh GS, Bastian BC. Frequent somatic mutations of GNAQ in uveal melanoma and blue naevi. Nature. 2009;457(7229):599–602.PubMedCrossRefGoogle Scholar
  45. 45.
    Westhafer J, Gildea J, Klepeiss S, et al. Age distribution of biopsied junctional nevi. J Am Acad Dermatol. 2007;56(5):825–7.PubMedCrossRefGoogle Scholar
  46. 46.
    Witt C, Krengel S. Clinical and epidemiological aspects of subtypes of melanocytic nevi (Flat nevi, Miescher nevi, Unna nevi). Dermatol Online J. 2010;15:16–1.Google Scholar
  47. 47.
    Worret WI, Burgdorf WH. Which di- rection do nevus cells move? abtrop- fung reexamined. Am J Dermatopathol. 1998;20:135–9.PubMedCrossRefGoogle Scholar
  48. 48.
    Wu J, Rosenbaum E, Begum S, Westra WH. Distribution of BRAF T1799A(V600E) mutations across various types of benign nevi: implications for melanocytic tumorigenesis. Am J Dermatopathol. 2007;29:534–7.PubMedCrossRefGoogle Scholar
  49. 49.
    Yadav S, Vossaert KA, Kopf AW, Silver-man M, Grin-Jorgensen C. Histopa- thologic correlates of structures seen on dermoscopy (epiluminescence micros- copy). Am J Dermatopathol. 1993;15:297–305.PubMedCrossRefGoogle Scholar
  50. 50.
    Zalaudek I, Argenziano G, Ferrara G, Soyer HP, Corona R, Sera F, Cerroni L, Carbone A, Chiominto A, Cicale L, De Rosa G, Ferrari A, Hofmann-Wellenhof R, Malvehy J, Peris K, Pizzichetta MA, Puig S, Scalvenzi M, Staibano S, Ruocco V. Clinically equivocal melanocytic skin lesions with features of regression: a dermoscopic-pathological study. Br J Dermatol. 2004;150:64–71.PubMedCrossRefGoogle Scholar
  51. 51.
    Zalaudek I, Donati P, Catricalà C, Argenziano G. “Dying nevus” or regressing melanoma. Hautarzt. 2011;62:293–6.PubMedCrossRefGoogle Scholar
  52. 52.
    Zalaudek I, Guelly C, Pellacani G, Hofmann-Wellenhof R, Trajanoski S, Kittler H, Scope A, Marghoob AA, Longo C, Leinweber B, Ferrara G, Saida T, Grichnik JM, Argenziano G, Becker JC. The dermoscopical and histopathological patterns of nevi correlate with the frequency of BRAF mutations. J Invest Dermatol. 2011;131(2):542–5.PubMedCrossRefGoogle Scholar
  53. 53.
    Zalaudek I, Grinschgl S, Argenziano G, et al. Age-related prevalence of dermoscopy patterns in acquired melanocytic naevi. Br J Dermatol. 2006;154:299–304.PubMedCrossRefGoogle Scholar
  54. 54.
    Zalaudek I, Hofmann-Wellenhof R, Kittler H, et al. A dual concept of nevogenesis: theoretical considerations based on dermoscopic features of melanocytic nevi. J Dtsch Dermatol Ges. 2007;5:985–92.PubMedCrossRefGoogle Scholar
  55. 55.
    Zalaudek I, Leinweber B, Hofmann-Wellenhof R, et al. The epidermal and dermal origin of melanocytic tumors: theoretical considerations based on epidemiologic, clinical, and histopathologic findings. Am J Dermatopathol. 2008;30:403–6.PubMedCrossRefGoogle Scholar
  56. 56.
    Zalaudek I, Schmid K, Marghoob AA, Scope A, Manzo M, Moscarella E, Malvehy J, Puig S, Pellacani G, Thomas L, Catricalà C, Argenziano G. Frequency of dermoscopic nevus subtypes by age and body site: a cross-sectional study. Arch Dermatol. 2011;147(6):663–70.PubMedCrossRefGoogle Scholar

Copyright information

© Springer- Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Iris Zalaudek
    • 1
    • 2
  • Alon Scope
    • 4
    • 5
    • 6
  • Giuseppe Argenziano
    • 2
  • Caterina Longo
    • 2
  • Simonetta Piana
    • 7
  • Caterina Carticalà
    • 8
  • Ashfaq A. Marghoob
    • 3
  1. 1.Dermatology and Skin Cancer UnitMedical University of GrazGrazItaly
  2. 2.Dermatology and Skin Cancer UnitArcispedale Santa Maria Nuova, IRCCSReggio EmiliaItaly
  3. 3.Memorial Sloan-Kettering Skin Cancer CenterNew YorkUSA
  4. 4.Dermatology ServiceMemorial Sloan-Kettering Cancer CenterNew YorkUSA
  5. 5.Department of DermatologySheba Medical CenterRamat GanIsrael
  6. 6.Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
  7. 7.Pathology UnitArcispedale Santa Maria NuovaReggio EmiliaItaly
  8. 8.Department of Oncologic DermatologySan Gallicano Dermatological InstituteRomeItaly

Personalised recommendations