Metasomatism Within the Ocean Crust

  • Wolfgang BachEmail author
  • Niels Jöns
  • Frieder Klein
Part of the Lecture Notes in Earth System Sciences book series (LNESS)


From ridge to trench, the ocean crust undergoes extensive chemical exchange with seawater, which is critical in setting the chemical and isotopic composition of the oceans and their rocky foundation. Although the overall exchange fluxes are great, the first-order metasomatic changes of crustal rocks are generally minor (usually <10% relative change in major element concentrations). Drastic fluid-induced metasomatic mass transfers are limited to areas of very high fluid flux such as hydrothermal upflow zones. Epidotization, chloritization, and serizitization are common in these upflow zones, and they often feature replacive sulfide mineralization, forming significant metal accumulations below hydrothermal vent areas. Diffusional metasomatism is subordinate in layered (gabbroic-doleritic-basaltic) crust, because the chemical potential differences between the different lithologies are minor. In heterogeneous crust (mixed mafic-ultramafic lithologies), however, diffusional mass transfers between basaltic lithologies and peridotite are very common. These processes include rodingitization of gabbroic dikes in the lithospheric mantle and steatitization of serpentinites in contact to gabbroic intrusions. Drivers of these metasomatic changes are strong across-contact differences in the activities of major solutes in the intergranular fluids. Most of these processes take place under greenschist-facies conditions, where the differences in silica and proton activities in the fluids are most pronounced. Simple geochemical reaction path models provide a powerful tool for investigating these processes. Because the oceanic crust is hydrologically active throughout much of its lifetime, the diffusional metasomatic zones are commonly also affected by fluid flow, so that a clear distinction between fluid-induced and lithology-driven metasomatism is not always possible. Heterogeneous crust is common along slow and ultraslow spreading ridges, were much of the extension is accommodated by faulting (normal faults and detachment faults). Mafic-ultramafic contacts hydrate to greater extents and at higher temperatures than uniform mafic or ultramafic masses of rock. Hence, these lithologic contacts turn mechanically weak at great lithopheric depth and are prone to capture much of the strain during exhumation and uplift of oceanic core complexes. Metasomatism therefore plays a critical role in setting rheological properties of oceanic lithosphere along slow oceanic spreading centers, which – by length – comprise half of the global mid-ocean ridge system.


Oceanic Crust Lithospheric Mantle Oceanic Lithosphere Detachment Fault Abyssal Peridotite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We acknowledge support from the Deutsche Forschungsgemeinschaft grant BA1605/1 and BA1605/2 as well as the Marum Research Cluster of Excellence. F. Klein acknowledges the financial support by an Ocean Ridge Initiative Research Award and the Deep Ocean Exploration Institute at the Woods Hole Oceanographic Institution. We are particularly grateful to Michael Hentscher for assembling the thermodynamic database. The paper benefited from insightful reviews of J. S. Beard and F. Pirajno. We thank Dan Harlov and Håkon Austrheim for helpful editorial advise.


  1. Abrajano TA, Sturchio NC, Bohlke JK, Lyon GL, Poreda RJ, Stevens CM (1988) Methane-hydrogen gas seeps, Zambales Ophiolite, Philippines: deep or shallow origin? Chem Geol 71(1–3):211–222CrossRefGoogle Scholar
  2. Alt JC (1995) Subseafloor processes in mid-ocean ridge hydrothermal systems. In: Humphris SE, Zierenberg RA, Mullineaux LS, Thomson RE (eds) Seafloor hydrothermal systems, Geophysical monograph. American Geophysical Union, Washington, DC, pp 85–114Google Scholar
  3. Alt JC, Teagle DAH (1998) Probing the TAG hydrothermal mound and stockwork: oxygen-isotopic profiles from deep ocean drilling. In: Humphris SE, Herzig PM, Miller DJ, Zierenberg RA (eds) Proceedings of the ocean drilling program, scientific results, vol 158. Ocean drilling program, College Station, pp 285–295Google Scholar
  4. Alt JC, Teagle DAH (1999) The uptake of carbon during alteration of ocean crust. Geochim Cosmochim Acta 63:1527–1535CrossRefGoogle Scholar
  5. Alt JC, Honnorez J, Laverne C, Emmermann R (1986) Hydrothermal alteration of a 1 km section through the upper oceanic crust. DSDP Hole 504B: mineralogy, chemistry and evolution of seawater-basalt interactions. J Geophys Res 91:309–335CrossRefGoogle Scholar
  6. Alt JC, Laverne C, Vanko D, Tartarotti P, Teagle DAH, Bach W, Zuleger E, Erzinger J, Honnorez J (1996a) Hydrothermal alteration of a section of upper oceanic crust in the eastern equatorial Pacific: a synthesis of results from DSDP/ODP Legs 69, 70, 83, 111, 137, 140, and 148 at Site 504B. In: Alt JC, Kinoshita H, Stokking LB, Michael PJ (eds) Proceedings of the ocean drilling program, scientific results, vol 148. Ocean drilling program, College Station, pp 417–434Google Scholar
  7. Alt JC, Teagle DAH, Laverne C, Vanko D, Bach W, Honnorez J, Becker K (1996b) Ridge flank alteration of upper oceanic crust in the eastern Pacific: a synthesis of results for volcanic rocks of Holes 504B and 896A. In: Alt JC, Kinoshita H, Stokking LB, Michael PJ (eds) Proceedings of the ocean drilling program, scientific results, vol 148. Ocean drilling program, College Station, pp 435–450Google Scholar
  8. Alt JC, Shanks WC, Bach W, Paulick H, Garrido CJ, Beaudoin G (2007) Hydrothermal alteration and microbial sulfate reduction in peridotite and gabbro exposed by detachment faulting at the Mid-Atlantic Ridge, 15°20′N (ODP Leg 209): a sulfur and oxygen isotope study. Geochem Geophys Geosyst 8(8):Q08002. doi: 08010.01029/02007GC001617 CrossRefGoogle Scholar
  9. Andreani M, Luquot L, Gouze P, Godard M, Hoise E, Gibert B (2009) Experimental study of carbon sequestration reactions controlled by the percolation of CO2-rich brine through peridotites. Environ Sci Technol 43(4):1226–1231CrossRefGoogle Scholar
  10. Anonymous (1972) Penrose field conference on ophiolites. Geotimes 17:24–25Google Scholar
  11. Aumento F (1971) Uranium content of mid-ocean ridge basalts. Earth Planet Sci Lett 11:90–94CrossRefGoogle Scholar
  12. Aumento F, Loubat H (1971) The Mid-Atlantic Ridge near 45 °N. XVI. Serpentinized ultramafic intrusions. Can J Earth Sci 8(6):631–663CrossRefGoogle Scholar
  13. Austrheim H, Prestvik T (2008) Rodingitization and hydration of the oceanic lithosphere as developed in the Leka ophiolite, north-central Norway. Lithos 104(1–4):177–198CrossRefGoogle Scholar
  14. Austrheim H, Putnis CV, Engvik AK, Putnis A (2008) Zircon coronas around Fe-Ti oxides: a physical reference frame for metamorphic and metasomatic reactions. Contrib Mineral Petrol 156:517–527CrossRefGoogle Scholar
  15. Bach W, Klein F (2009) The petrology of seafloor rodingites: insights from geochemical reaction path modeling. Lithos 112(1–2):103–117CrossRefGoogle Scholar
  16. Bach W, Alt JC, Niu Y, Humphris SE, Erzinger J, Dick HJB (2001) The geochemical consequences of late-stage low-grade alteration of lower ocean crust at the SW Indian Ridge: results from ODP Hole 735B (Leg 176). Geochim Cosmochim Acta 65:3267–3287CrossRefGoogle Scholar
  17. Bach W, Peucker-Ehrenbrink B, Hart SR, Blusztajn JS (2003) Geochemistry of hydrothermally altered oceanic crust: DSDP/ODP Hole 504B – Implications for seawater-crust exchange budgets and Sr- and Pb-isotopic evolution of the mantle. Geochem Geophys Geosyst 4(3). doi: 10.1029/2002GC000419
  18. Bach W, Garrido CJ, Harvey J, Paulick H, Rosner M (2004) Seawater-peridotite interactions – first insights from ODP Leg 209, MAR 15ºN. Geochem Geophys Geosyst 5(9):Q09F26. doi: 10.1029/2004GC000744 CrossRefGoogle Scholar
  19. Baker ET, Chen YJ, Phipps Morgan JP (1996) The relationship between near-axis hydrothermal cooling and the spreading rate of mid-ocean ridges. Earth Planet Sci Lett 142:137–145CrossRefGoogle Scholar
  20. Baker ET, Embley RW, Walker SL, Resing JA, Lupton JE, Nakamura K, de Ronde CEJ, Massoth GJ (2008) Hydrothermal activity and volcano distribution along the Mariana arc. J Geophys Res 113:B08S09. doi: 10.1029/2007JB005423 CrossRefGoogle Scholar
  21. Banerjee NR, Gillis KM, Muehlenbachs K (2000) Discovery of epidosites in a modern oceanic setting, the Tonga forearc. Geology 28(2):151–154CrossRefGoogle Scholar
  22. Barnes I, O’Neil JR (1969) The relationship between fluids in some fresh alpine-type ultramafics and possible modern serpentinization, Western United States. Geol Soc Am Bull 80:1948–1960CrossRefGoogle Scholar
  23. Barnes I, Lamarche VC, Himmelberg G (1967) Geochemical evidence of present-day serpentinization. Science 156:830–832CrossRefGoogle Scholar
  24. Barriga FJAS, Fyfe WS (1983) Development of rodingite in basaltic rocks in serpentinites, East Liguria, Italy. Contrib Mineral Petrol 84:146–151CrossRefGoogle Scholar
  25. Beard JS, Fullagar PD, Sinha AK (2002) Gabbroic pegmatite intrusions, Iberia Abyssal Plain, ODP Leg 173, Site 1070: magmatism during a transition from non-volcanic rifting to sea-floor spreading. J Petrol 43(5):885–905CrossRefGoogle Scholar
  26. Bickle MJ, Teagle DAH (1992) Strontium alteration in the Troodos ophiolite: implications for fluid fluxes and geochemical transport in mid-ocean ridge hydrothermal systems. Earth Planet Sci Lett 113:219–237CrossRefGoogle Scholar
  27. Bideau D, Hebert R, Hekinian R, Cannat M (1991) Metamorphism of deep-seated rocks from the Garrett Ultrafast transform (East Pacific rise near 13°25′S). J Geophys Res 96:10079–10099. doi: 10.1029/91JB00243 CrossRefGoogle Scholar
  28. Bird P (2003) An updated digital model of plate boundaries. Geochem Geophys Geosyst 4(3):1027. doi: 1010.1029/2001GC000252 CrossRefGoogle Scholar
  29. Bischoff JL, Rosenbauer RJ (1985) An empirical equation of state for hydrothermal seawater (3.2 percent NaCl). Am J Sci 285:725–763CrossRefGoogle Scholar
  30. Bischoff JL, Rosenbauer RJ (1996) The alteration of rhyolite in CO2 charged water at 200°C and 350°C: the unreactivity of CO2 at higher temperature. Geochim Cosmochim Acta 60(20):3859–3867CrossRefGoogle Scholar
  31. Blackman DK, Canales P, Harding A (2009) Geophysical signatures of oceanic core complexes. Geophys J Int 178:593–613CrossRefGoogle Scholar
  32. Bogdanov YA, Bortnikov NS, Vikentyev IV, Gurvich EG, Sagalevich AM (1997) A new type of modern mineral-forming system: black smokers of the hydrothermal field at 14°45′N latitude, Mid-Atlantic Ridge. Geol Ore Deposit 39(1):58–78Google Scholar
  33. Böhlke JK (1989) Comparison of metasomatic reactions between a common CO2-rich vein fluid and diverse wall rocks; intensive variables, mass transfers, and Au mineralization at Alleghany, California. Econ Geol 84(2):291–327CrossRefGoogle Scholar
  34. Boschi C, Früh-Green GL, Escartin J (2006a) Occurrence and significance of serpentinite-hosted talc- and amphibole-rich fault rocks in modern oceanic settings and ophiolite complexes; an overview. Ofioliti 31(2):129–140Google Scholar
  35. Boschi C, Früh-Green GL, Delacour A, Karson JA, Kelley DS (2006b) Mass transfer and fluid flow during detachment faulting and development of an oceanic core complex Atlantis Massif (MAR 30°N). Geochem Geophys Geosyst 7:Q01004. doi: 10.1029/2005GC001074 CrossRefGoogle Scholar
  36. Bowers TS, Taylor HP Jr (1985) An integrated chemical and stable-isotope model of the origin of midocean ridge hot spring systems. J Geophys Res 90, 12583–12606. doi: 10.1029/JB090iB14p12583 Google Scholar
  37. Cann JR (1969) Spilites from the Carlsberg Ridge, Indian Ocean. J Petrol 10:1–19CrossRefGoogle Scholar
  38. Cannat M, Mével C, Maia M, Deplus C, Durand C, Gente P, Agrinier P, Belarouchi A, Dubuisson G, Humler E, Reynolds J (1995) Thin crust, ultramafic exposures, and rugged faulting patterns at the Mid-Atlantic Ridge (22°–24°N). Geology 23:49–52CrossRefGoogle Scholar
  39. Charlou J-L, Donval J-P, Fouquet Y, Jean-Baptiste P, Holm N (2002) Geochemistry of high H2 and CH4 vent fluids issuing from ultramafic rocks at the Rainbow hydrothermal field (36º14′N, MAR). Chem Geol 191:345–359CrossRefGoogle Scholar
  40. Cheminee J-L, Stoffers P, McMurtry G, Richnow H, Puteanus D, Sedwick P (1991) Gas-rich submarine exhalations during the 1989 eruption of Macdonald Seamount. Earth Planet Sci Lett 107:318–327CrossRefGoogle Scholar
  41. Chidester AH, Cady WM (1972) Origin and emplacement of Alpine-type ultramafic rocks. Nature 240:27–31Google Scholar
  42. Cogne J-P, Humler E (2004) Temporal variations of oceanic spreading and crustal production rates during the last 180 My. Earth Planet Sci Lett 227:427–439CrossRefGoogle Scholar
  43. Coleman RG (1967) Low-temperature reaction zones and alpine rocks of California, Oregon, and Washington, vol 1247, US Geoligal Survey Bulletin. U.S. Govt. Print. Off, Washington, DCGoogle Scholar
  44. Dabitzias SG (1980) Petrology and genesis of the Vavdos cryptocrystalline magnesite deposits, Chalkidiki Peninsula, northern Greece. Econ Geol 75(8):1138–1151CrossRefGoogle Scholar
  45. de Ronde CEJ, Baker ET, Massoth GJ, Lupton JE, Wright IC, Feely RA, Greene RR (2001) Intra-oceanic subduction-related hydrothermal venting, Kermadec volcanic arc, New Zealand. Earth Planet Sci Lett 193:359–369CrossRefGoogle Scholar
  46. Dias AS, Barriga F (2006) Mineralogy and geochemistry of hydrothermal sediments from the serpentinite-hosted Saldanha hydrothermal field (36°34′N; 33°26′W) at MAR. Mar Geol 225(1–4):157–175CrossRefGoogle Scholar
  47. Dick HJB, Natland JH, Alt JC, Bach W, Bideau D, Gee JS, Haggas S, Hertogen JGH, Hirth G, Holm PM, Ildefonse B, Iturrino GJ, John BE, Kelley DS, Kikawa E, Kingdon A, LeRoux PJ, Maeda J, Meyer PS, Miller DJ, Naslund HR, Niu Y, Robinson PT, Snow J, Stephen RA, Trimby PW, Worm H-U, Yoshinobu A (2000) A long in situ section of the lower ocean crust: results of ODP Leg 176 Drilling at the Southwest Indian Ridge. Earth Planet Sci Lett 179:31–51CrossRefGoogle Scholar
  48. Dick HJB, Lin J, Schouten H (2003) An ultraslow-spreading class of ocean ridge. Nature 426:405–412CrossRefGoogle Scholar
  49. Dick HJB, Tivey MA, Tucholke BE (2008) Plutonic foundation of a slow-spreading ridge segment: oceanic core complex at Kane Megamullion, 23°30′N, 45°20′W. Geochem Geophys Geosyst 9(5):Q05014. doi: 05010.01029/02007GC001645 CrossRefGoogle Scholar
  50. D’Orazio M, Boschi C, Brunelli D (2004) Talc-rich hydrothermal rocks from the St. Paul and Conrad fracture zones in the Atlantic Ocean. Eur J Mineral 16:73–83CrossRefGoogle Scholar
  51. Elderfield H, Schultz A (1996) Mid-ocean ridge hydrothermal fluxes and the chemical composition of the ocean. Annu Rev Earth Planet Sci Lett 24:191–224CrossRefGoogle Scholar
  52. Elderfield H, Wheat CG, Mottl MJ, Monnin C, Spiro B (1999) Fluid and geochemical transport through oceanic crust: a transect across the eastern flank of the Juan de Fuca Ridge. Earth Planet Sci Lett 172:151–165CrossRefGoogle Scholar
  53. Escartín J, Hirth G, Evans B (2001) Strength of slightly serpentinized peridotites: implications for the tectonics of ocean lithosphere. Geology 29:1023–1026CrossRefGoogle Scholar
  54. Escartín J, Mevel C, MacLeod CJ, McCaig AM (2003) Constraints on deformation conditions and the origin of oceanic detachments: the Mid-Atlantic Ridge core complex at 15º45′N. Geochem Geophys Geosyst 4(8). doi: 10.1029/2002GC000472
  55. Escartín J, Andreani M, Hirth G, Evans B (2008) Relationship between the microstructural evolution and the rheology of talc at elevated pressures and temperatures. Earth Planet Sci Lett 268:463–475CrossRefGoogle Scholar
  56. Evans BW (1977) Metamorphisms of alpine peridotite and serpentinite. Annu Rev Earth Planet Sci 5:398–447CrossRefGoogle Scholar
  57. Feth JH, Rogers SM, Robertson E (1961) Aqua de Ney, California, a spring of unique chemical character. Geochim Cosmochim Acta 22:75–86CrossRefGoogle Scholar
  58. Frost BR (1975) Contact metamorphism of serpentinite, chloritic blackwall and rodingite at Paddy-Go-Easy Pass, central cascades, Washington. J Petrol 16:272–313Google Scholar
  59. Frost BR (1985) On the stability of sulfides, oxides and native metals in serpentinite. J Petrol 26:31–63CrossRefGoogle Scholar
  60. Frost BR, Beard JS (2007) On silica activity and serpentinization. J Petrol 48:1351–1368CrossRefGoogle Scholar
  61. Frost BR, Beard JS, McCaig A, Condliffe E (2008) The formation of micro-rodingites from IODP Hole U1309D: key to understanding the process of serpentinization. J Petrol 49:1579–1588CrossRefGoogle Scholar
  62. Gass IG, Smewing JD (1973) Intrusion, extrusion and metamorphism at constructive margins: evidence from the Troodos Massif, Cyprus. Nature 242:26–29CrossRefGoogle Scholar
  63. Gerdemann SJ, Dahlin DC, O’Connor WK, Penner LR (2003) Carbon dioxide sequestration by aqueous mineral carbonation of magnesium silicate minerals. In: Second annual conference on carbon sequestration, Alexandria, May 5–8, 2003. Report no. DOE/ARC-2003-018, OSTI ID: 898299 8 ppGoogle Scholar
  64. Gillis KM (1995) Controls on hydrothermal alteration in a section of fast-spreading oceanic crust. Earth Planet Sci Lett 134:473–489CrossRefGoogle Scholar
  65. Gillis KM (2002) The rootzone of an ancient hydrothermal system exposed in the Troodos ophiolite, Cyprus. J Geol 110:57–74CrossRefGoogle Scholar
  66. Graham D, Sarda P (1991) Mid-ocean ridge popping rocks – implications for degassing at ridge crests – comment. Earth Planet Sci Lett 105(4):568–573CrossRefGoogle Scholar
  67. Gregory RT, Taylor HP (1981) An oxygen isotope profile in a section of Cretaceous oceanic crust, Samail ophiolite, Oman: evidence for δ18O buffering of the oceans by deep (>5 km) seawater-hydrothermal circulation at mid-ocean ridges. J Geophys Res 86:2737–2755CrossRefGoogle Scholar
  68. Gresens RL (1967) Composition-volume relationships of metasomatism. Chem Geol 2:47–65CrossRefGoogle Scholar
  69. Halls C, Zhao R (1995) Listvenite and related rocks: perspectives on terminology and mineralogy with reference to an occurrence at Cregganbaun, Co. Mayo, Republic of Ireland. Miner Deposita 30(3):303–313CrossRefGoogle Scholar
  70. Hansen LD, Dipple GM, Gordon TM, Kellett DA (2005) Carbonated serpentinite (listwanite) at Atlin, British Columbia: a geological analogue to carbon dioxide sequestration. Can Mineral 43:225–239CrossRefGoogle Scholar
  71. Harper GD, Bowman JR, Kuhns R (1988) A field, chemical, and stable isotope study of subseafloor metamorphism of the Josephine ophiolite, California-Oregon. J Geophys Res 93:4625–4656CrossRefGoogle Scholar
  72. Hart RA (1970) Chemical exchange between seawater and deep ocean basalts. Earth Planet Sci Lett 9:269–279CrossRefGoogle Scholar
  73. Hart SR, Staudigel H (1982) The control of alkalies and uranium in seawater by ocean crust alteration. Earth Planet Sci Lett 58:202–212CrossRefGoogle Scholar
  74. Hatzipanagiotou K, Tsikouras B (2001) Rodingite formation from diorite in the Samothraki ophiolite, NE Aegean, Greece. Geol J 36(2):93–109CrossRefGoogle Scholar
  75. Hekinian R, Bideau D, Francheteau J, Cheminee JL, Armijo R, Lonsdale P, Blum N (1993) Petrology of the East Pacific Rise crust and upper mantle exposed in Hess Deep (eastern equatorial Pacific). J Geophys Res 98:8069–8094CrossRefGoogle Scholar
  76. Hess HH (1933) The problem of serpentinization and the origin of certain chrysotile asbestos, talc, and soapstone deposits. Econ Geol 28(7):634–657CrossRefGoogle Scholar
  77. Honnorez J (2003) Hydrothermal alteration vs. ocean-floor metamorphism. A comparison between two case histories: the TAG hydrothermal mound (Mid-Atlantic Ridge) vs. DSDP/ODP Hole 504B (Equatorial East Pacific). Comptes Rendus Geosci 335:781–824CrossRefGoogle Scholar
  78. Honnorez J, Kirst P (1975) Petrology of rodingites from the equatorial Mid-Atlantic fracture zones and their geotectonic significance. Contrib Mineral Petrol 49:233–257CrossRefGoogle Scholar
  79. Humphris SE, Thompson G (1978) Hydrothermal alteration of oceanic basalts by seawater. Geochim Cosmochim Acta 42:107–125CrossRefGoogle Scholar
  80. Humphris SE, Herzig PM, Miller DJ, Alt JC (1995) The internal structure of an active sea-floor massive sulphide deposit. Nature 377:713–716CrossRefGoogle Scholar
  81. Humphris SE, Alt JC, Teagle DAH, Honnorez J (1998) Geochemical changes during hydrothermal alteration of basement in the stockwork beneath the active TAG hydrothermal mound. In: Humphris SE, Herzig PM, Miller DJ, Zierenberg RA (eds) Proceedings of the ocean drilling program, scientific results, vol 158. Ocean Drilling Program, College Station, pp 255–276Google Scholar
  82. Ildefonse B, Blackman DK, John BE, Ohara Y, Miller DJ, MacLeod CJ (2007) Oceanic core complexes and crustal accretion at slow-spreading ridges. Geology 35(7):623–626CrossRefGoogle Scholar
  83. Iyer K, Austrheim H, John T, Jamtveit B (2008) Serpentinization of the oceanic lithosphere and some geochemical consequences: constraints from the Leka Ophiolite complex, Norway. Chem Geol 249(1–2):66–90CrossRefGoogle Scholar
  84. Janecky DR, Seyfried WE Jr (1986) Hydrothermal serpentinization of peridotite within the oceanic crust: experimental investigations of mineralogy and major element chemistry. Geochim Cosmochim Acta 50:1357–1378CrossRefGoogle Scholar
  85. Jarrard RD (2003) Subduction fluxes of water, carbon dioxide, chlorine, and potassium. Geochem Geophys Geosyst 4(5):8905. doi: 8910.1029/2002GC000392 CrossRefGoogle Scholar
  86. Johnson JW, Oelkers EH, Helgeson HC (1991) SUPCRT92: a software package for calculating the standard molal thermodynamic properties of minerals, gases, aqueous species, and reactions from 1 – 5000 bars and 0–1000°C. Comput Geosci 18:899–947Google Scholar
  87. Jöns N, Bach W, Schroeder T (2009) Formation and alteration of plagiogranites in an ultramafic-hosted detachment fault at the Mid-Atlantic Ridge (ODP Leg 209). Contrib Mineral Petrol 157(5):625–639CrossRefGoogle Scholar
  88. Jöns N, Bach W, Klein F (2010) Magmatic influence on reaction paths and element transport during serpentinization. Chem Geol 274(3–4):196–211CrossRefGoogle Scholar
  89. Kadko D, Barross J, Alt JC (1995) The magnitude and global implications of hydrothermal flux. In: Humphris SE, Zierenberg RA, Mullineaux LS, Thomson RE (eds) Seafloor hydrothermal systems, Geophysical monograph. American Geophysical Union, Washington, DC, pp 446–466Google Scholar
  90. Kelemen PB, Kikawa E, Miller DJ, Abe N, Bach W, Carlson RL, Casey JF, Chambers LM, Cheadle M, Cipriani A, Dick HJB, Faul U, Garces M, Garrido C, Gee JS, Godard MM, Graham DW, Griffin DW, Harvey J, Ildefonse B, Iturrino GJ, Josef J, Meurer WP, Paulick H, Rosner M, Schroeder T, Seyler M, Takazawa E (2004) Site 1275. In: Proceedings of the ocean drilling program; initial reports; drilling mantle peridotite along the Mid-Atlantic Ridge from 14 degrees to 16 degrees N; covering Leg 209 of the cruises of the drilling vessel JOIDES Resolution; Rio de Janeiro, Brazil, to St George, Bermuda; sites 1268–1275, 6 May-6 July 2003, vol Texas A&M University Ocean Drilling Program College Station, pp 167Google Scholar
  91. Kelley DS, Gillis KM, Thompson G (1993) Fluid evolution in submarine magma-hydrothermal systems at the Mid-Atlantic Ridge. J Geophys Res 98:19579–19596CrossRefGoogle Scholar
  92. Kelley DS, Karson JA, Blackman DK, Früh-Green GL, Butterfield DA, Lilley MD, Olson EJ, Schrenk MO, Roe KK, Lebon GT, Rivizzigno P, Party A-S (2001) An off-axis hydrothermal vent field near the Mid-Atlantic Ridge at 30°N. Nature 412:127–128CrossRefGoogle Scholar
  93. Kelley DS, Karson JA, Fruh-Green GL, Yoerger DR, Shank TM, Butterfield DA, Hayes JM, Schrenk MO, Olson EJ, Proskurowski G, Jakuba M, Bradley A, Larson B, Ludwig K, Glickson D, Buckman K, Bradley AS, Brazelton WJ, Roe K, Elend ML, Delacour A, Bernasconi SM, Lilley MD, Baross JA, Summons RE, Sylva SP (2005) A serpentinite-hosted ecosystem: the lost city hydrothermal field. Science 307:1428–1434CrossRefGoogle Scholar
  94. Kimball KL, Spear FS, Dick HJB (1985) High temperature alteration of Abyssal ultramafics from the Islas Orcadas fracture zone, South Atlantic. Contrib Mineral Petrol 91:307–320CrossRefGoogle Scholar
  95. Klein EM (2004) Geochemistry of the igneous oceanic crust. In: Holland HD, Turekian KK (eds) Treatise on geochemistry, vol 3. Elsevier, Amsterdam, pp 433–463Google Scholar
  96. Klein F, Garrido CJ (2011) Thermodynamic constraints on mineral carbonation of serpentinized peridotite. Lithos 126:147–160CrossRefGoogle Scholar
  97. Klein F, Bach W, Jöns N, McCollom T, Moskowitz B, Berquó T (2009) Iron partitioning and hydrogen generation during serpentinization of abyssal peridotites from 15°N on the Mid-Atlantic Ridge. Geochim Cosmochim Acta 73(22):6868–6893CrossRefGoogle Scholar
  98. Knott R, Fouquet Y, Honnorez J, Petersen S, Bohn M (1998) Petrology of hydrothermal mineralization: a vertical section through the TAG mound. In: Herzig PM, Humphris SE, Miller DJ, Zierenberg RA (eds) Proceedings of the ocean drilling program, scientific results, vol 158. Ocean drilling program, College Station, pp 5–26Google Scholar
  99. Koons PO (1981) A study of natural and experimental metasomatic assemblages in an ultramafic-quartzofeldspathic metasomatic system from the Haast Schist, South Island, New Zealand. Contrib Mineral Petrol 78:189–195CrossRefGoogle Scholar
  100. Lecuyer C, Grurau G (1996) Oxygen and strontium isotope compositions of Hess Deep gabbros (Holes 894 F and 894 G): high-temperature interaction of seawater with ocean crust layer 3. In: Mevel C, Gillis KM, Allan JF, Meyer PS (eds) Proceedings of the ocean drilling program, scientific results, vol 147, Ocean drilling program, College Station, pp 227–234Google Scholar
  101. Lilley MD, Butterfield DA, Lupton JE, Olson EJ (2003) Magmatic events can produce rapid changes in hydrothermal vent chemistry. Nature 422:878–881CrossRefGoogle Scholar
  102. Ludden JN, Thompson G (1978) Behaviour of rare earth elements during submarine weathering of tholeiitic basalt. Nature 274:147–149CrossRefGoogle Scholar
  103. Mackenzie FT (1992) Chemical mass balance between rivers and oceans. In: Nierenberg WA (ed) Encyclopedia of earth system science, vol 1. Academic, New York, pp 431–445Google Scholar
  104. MacLeod CJ, Searle RC, Murton BJ, Casey JF, Mallows C, Unsworth SC, Achenbach KL, Harris M (2009) Life cycle of oceanic core complexes. Earth Planet Sci Lett 287(3–4):333–344CrossRefGoogle Scholar
  105. Malahoff A, McMurtry GM, Wiltshire JC, Yeh H-W (1982) Geology and chemistry of hydrothermal deposits from active submarine volcano Loihi, Hawaii. Nature 298:234–239CrossRefGoogle Scholar
  106. Manning CE, MacLeod CJ (1996) Fracture-controlled metamorphism of Hess Deep gabbros, Site 894: contraints on the roots of mid-ocean ridge hydrothermal systems at fast-spreading centers. In: Mevel C, Gillis KM, Allan JF, Meyer PS (eds) Proceedings of the ocean drilling program, scientific results, vol 147, Ocean drilling program, College Station, pp 189–212Google Scholar
  107. Manning CE, Weston PE, Mahon KI (1996) Rapid high-temperature metamorphism of East Pacific Rise gabbros from Hess Deep. Earth Planet Sci Lett 144:123–132CrossRefGoogle Scholar
  108. Matthews DH (1962) Altered lavas from the floor of the Eastern North Atlantic. Nature 194:368–369CrossRefGoogle Scholar
  109. McCaig AM, Cliff RA, Escartín J, Fallick AE, MacLeod CJ (2007) Oceanic detachment faults focus very large volumes of black smoker fluids. Geology 35:935–938CrossRefGoogle Scholar
  110. McCollom TM, Bach W (2009) Thermodynamic constraints on hydrogen generation during serpentinization. Geochim Cosmochim Acta 73:856–879CrossRefGoogle Scholar
  111. McCollom TM, Shock EL (1998) Fluid-rock interactions in the lower oceanic crust: thermodynamic models of hydrothermal alteration. J Geophys Res 103:547–575CrossRefGoogle Scholar
  112. Melson WG, Bowen VT, Van Andel T-H, Siever R (1966) Greenstones from the central valley of the Mid-Atlantic Ridge. Nature 209:604–605CrossRefGoogle Scholar
  113. Melson WG, Thompson G, Van Andel T-H (1968) Volcanism and metamorphism in the Mid-Atlantic ridge, 22°N latitude. J Geophys Res 73:5925–5941CrossRefGoogle Scholar
  114. Mével C (2003) Serpentinization of abyssal peridotite at mid-ocean ridges. Comptes Rendus Geosci 335:825–852CrossRefGoogle Scholar
  115. Mével C, Cannat M (1991) Lithospheric stretching and hydrothermal processes in oceanic gabbros from slow spreading ridges. In: Peters T, Nicolas A, Coleman RG (eds) Ophiolite genesis and the evolution of the oceanic lithosphere. Kluwer, Dordrecht, pp 293–312CrossRefGoogle Scholar
  116. Michael PJ, Langmuir CH, Dick HJB, Snow JE, Goldstein SL, Graham DW, Lehnert K, Kurras G, Jokat W, Muehe R, Edmonds HN (2003) Magmatic and amagmatic seafloor generation at the ultraslow-spreading Gakkel ridge, Arctic Ocean. Nature 423:956–961CrossRefGoogle Scholar
  117. Miyashiro A, Shido F, Ewing M (1971) Metamorphism in the Mid-Atlantic Ridge near 24° and 30°N. Philos Trans R Soc Lond A 268:589–603CrossRefGoogle Scholar
  118. Morishita T, Hara K, Nakamura K, Sawaguchi T, Tamura A, Arai S, Okino K, Takai K, Kumagai H (2009) Igneous, alteration and exhumation processes recorded in Abyssal peridotites and related fault rocks from an oceanic core complex along the central Indian ridge. J Petrol 50(7):1299–1325CrossRefGoogle Scholar
  119. Mottl MJ (1983) Metabasalts, axial hot springs, and the structure of hydrothermal systems at mid-ocean ridges. Geol Soc Am Bull 94:161–180CrossRefGoogle Scholar
  120. Mottl MJ, Wheat CG (1994) Hydrothermal circulation through mid-ocean ridge flanks: fluxes of heat and magnesium. Geochim Cosmochim Acta 58:2225–2237CrossRefGoogle Scholar
  121. Mottl MJ, Wheat G, Baker E, Becker N, Davis E, Feely R, Grehan A, Kadko D, Lilley M, Massoth G, Moyer C, Sansone F (1998) Warm springs discovered on 3.5 Ma oceanic crust, eastern flank of the Juan de Fuca Ridge. Geology 26:51–54CrossRefGoogle Scholar
  122. Mottl MJ, Komor SC, Fryer P, Moyer CL (2003) Deep-slab fluids fuel extremophilic Archaea on a Mariana forearc serpentinite mud volcano: ocean drilling program leg 195. Geochem Geophys Geosyst 4(11). doi: 10.1029/2003GC000588
  123. Mottl MJ, Wheat CG, Fryer P, Gharib J, Martin JB (2004) Chemistry of springs across the Mariana forearc shows progressive devolatilization of the subducting plate. Geochim Cosmochim Acta 68(23):4915–4933CrossRefGoogle Scholar
  124. Muehlenbachs K, Clayton RN (1972) Oxygen isotope geochemistry of submarine greenstones. Can J Earth Sci 9:471–478CrossRefGoogle Scholar
  125. Neal C, Stanger G (1983) Hydrogen generation from mantle source rocks in Oman. Earth Planet Sci Lett 66:315–320CrossRefGoogle Scholar
  126. Niu Y (2004) Bulk-rock major and trace element compositions of abyssal peridotites: implications for mantle melting, melt extraction and post-melting processes beneath mid-ocean ridges. J Petrol 45(12):2423–2458CrossRefGoogle Scholar
  127. Normand C, Williams-Jones AE (2007) Physicochemical conditions and timing of rodingite formation: evidence from rodingite-hosted fluid inclusions in the JM Asbestos mine, Asbestos, Quebec. GeochemTrans 25(8). doi: 10.1186/1467-4866-1188-1111
  128. Parsons B (1981) The rates of plate creation and consumption. Geophys J Roy Astr Soc 67:437–448CrossRefGoogle Scholar
  129. Pirajno F (2009) Hydrothermal processes and mineral systems. Springer, Dordrecht/London, p 1250CrossRefGoogle Scholar
  130. Pollack HN, Hurter SJ, Johnson JR (1993) Heat flow from the Earth’s interior: analysis of the global data set. Rev Geophys 31:267–280CrossRefGoogle Scholar
  131. Quon SH, Ehlers EG (1963) Rocks of Northern part of Mid-Atlantic ridge. Geol Soc Am Bull 74:1–8CrossRefGoogle Scholar
  132. Ranero CR, Morgan JP, McIntosh K, Reichert C (2003) Bending-related faulting and mantle serpentinization at the Middle America trench. Nature 425:367–373CrossRefGoogle Scholar
  133. Read HH (1934) On zoned associations of antigorite, talc, actinolite, chlorite, and biotite in Unst, Shetland Islands. Mineral Mag 23:519–540CrossRefGoogle Scholar
  134. Richards HG, Cann JR, Jensenius J (1989) Mineralogical zonation and metasomatism of the alteration pipes of Cyprus sulfide deposits. Econ Geol 84:91–115CrossRefGoogle Scholar
  135. Richardson CJ, Cann JR, Richards HG, Cowan JG (1987) Metal-depleted root zones of the Troodos ore-forming hydrothermal systems, Cyprus. Earth Planet Sci Lett 84:243–253CrossRefGoogle Scholar
  136. Rose NM, Bird DK (1994) Hydrothermally altered dolerite dykes in East Greenland: implications for Ca-metasomatism of basaltic protoliths. Contrib Mineral Petrol 116:420–432CrossRefGoogle Scholar
  137. Saccocia PJ, Gillis KM (1995) Hydrothermal upflow zones in the oceanic crust. Earth Planet Sci Lett 136:1–16CrossRefGoogle Scholar
  138. Schmidt K, Koschinsky A, Garbe-Schönberg D, de Carvalho LM, Seifert R (2007) Geochemistry of hydrothermal fluids from the ultramafic-hosted Logatchev hydrothermal field, 15°N on the Mid-Atlantic Ridge: temporal and spatial investigation. Chem Geol 242:1–21CrossRefGoogle Scholar
  139. Seewald JS, Cruse A, Saccocia PJ (2003) Aqueous volatiles in hydrothermal fluids from the Main Endeavour Field, northern Juan de Fuca ridge: temporal variability following earthquake activity. Earth Planet Sci Lett 216:575–590CrossRefGoogle Scholar
  140. Seyfried WE Jr, Bischoff JL (1979) Low temperature basalt interaction with seawater: an experimental study at 70°C and 150°C. Geochim Cosmochim Acta 43:1937–1947CrossRefGoogle Scholar
  141. Seyfried WE Jr, Bischoff JL (1981) Experimental seawater-basalt interaction at 300°C, 500 bars, chemical exchange, secondary mineral formation and implications for the transport of heavy metals. Geochim Cosmochim Acta 45:135–147CrossRefGoogle Scholar
  142. Seyfried WE, Dibble WEJ (1980) Sea water – peridotite interaction at 300°C and 500 bars: implications for the origin of oceanic serpentinites. Geochim Cosmochim Acta 44:309–321CrossRefGoogle Scholar
  143. Seyfried WE Jr, Janecky DR, Mottl MJ (1984) Alteration of the oceanic crust: implications for geochemical cycles of lithium and boron. Geochim Cosmochim Acta 48:557–569CrossRefGoogle Scholar
  144. Seyfried WE Jr, Berndt ME, Seewald JS (1988) Hydrothermal alteration processes at mid ocean ridges: constraints from diabase alteration experiments, hot-spring fluids and composition of the oceanic crust. In: Barrett TJ, Jambor JL (eds) Seafloor hydrothermal mineralization, vol 26. Mineralogical Association of Canada, Toronto/Canada, pp 787–804Google Scholar
  145. Seyfried WE Jr, Foustoukos DI, Fu Q (2007) Redox evolution and mass transfer during serpentinization; an experimental and theoretical study at 200°C, 500 bar with implications for ultramafic-hosted hydrothermal systems at mid-ocean ridges. Geochim Cosmochim Acta 71(15):3872–3886CrossRefGoogle Scholar
  146. Sinton JM, Detrick RS (1992) Mid-ocean ridge magma chambers. J Geophys Res 97:197–216CrossRefGoogle Scholar
  147. Sleep NH (1991) Hydrothermal circulation, anhydrite precipitation, and thermal structure at ridge axes. J Geophys Res 96:2375–2387CrossRefGoogle Scholar
  148. Smith DK, Cann JR, Escartín J (2006) Widespread active detachment faulting and core complex formation near 13°N on the Mid-Atlantic Ridge. Nature 442:440–443CrossRefGoogle Scholar
  149. Snow JE, Dick HJB (1995) Pervasive magnesium loss by marine weathering of peridotite. Geochim Cosmochim Acta 59:4219–4235CrossRefGoogle Scholar
  150. Staudigel H, Hart SR, Richardson SH (1981) Alteration of the oceanic crust: processes and timing. Earth Planet Sci Lett 52:311–327CrossRefGoogle Scholar
  151. Staudigel H, Plank T, While B, Schmincke H-U (1996) Geochemical fluxes during seafloor alteration of the basaltic upper oceanic crust: DSDP Sites 417 and 418. In: Bebout GE, Scholl DW, Kirby SH, Platt JP (eds) Subduction top to bottom, vol 96, Geophysical monograph. American Geophysical Union, Washington, DC, pp 19–38CrossRefGoogle Scholar
  152. Stein CA, Stein S (1994) Constraints on hydrothermal heat flux through the oceanic lithosphere from global heat flow. J Geophys Res 99(B2):3081–3095CrossRefGoogle Scholar
  153. Stein CA, Stein S, Pelayo A (1995) Heat flow and hydrothermal circulation. In: Humphris SE, Zierenberg RA, Mullineaux LS, Thomson RE (eds) Seafloor hydrothermal processes, Geophysical monograph. American Geophysical Union, Washington, DC, pp 425–445Google Scholar
  154. Stern C, De Wit MJ, Lawrence JR (1976) Igneous and metamorphic processes associated with the formation of Chilean ophiolites and their implications for ocean floor metamorphism, seismic layering, and magnetism. J Geophys Res 81:4370–4380CrossRefGoogle Scholar
  155. Teagle DAH, Alt JC, Chiba H, Humphris SE, Halliday AN (1998a) Strontium and oxygen isotopic constraints on fluid mixing, alteration and mineralization in the TAG hydrothermal deposit. Chem Geol 149:1–24CrossRefGoogle Scholar
  156. Teagle DAH, Alt JC, Halliday AN (1998b) Tracing the chemical evolution of fluids during hydrothermal recharge: constraints from anhydrite recovered in ODP Hole 504B. Earth Planet Sci Lett 155:167–182CrossRefGoogle Scholar
  157. Thayer TP (1966) Serpentinization considered as a constant-volume metasomatic process. Am Mineral 51:685–710Google Scholar
  158. Thompson G (1991) Metamorphic and hydrothermal processes: basalt-seawater interactions. In: Floyd PA (ed) Oceanic basalts. Blackie, Glasgow/London, pp 148–173CrossRefGoogle Scholar
  159. Thompson G, Melson WG (1970) Boron contents of serpentinites and metabasalts in the oceanic crust: implications for the boron cycle in the oceans. Earth Planet Sci Lett 8:61–65CrossRefGoogle Scholar
  160. Tivey MK, Humphris SE, Thompson G, Hannington MD, Rona PA (1995) Deducing patterns of fluid flow and mixing within the active TAG mound using mineralogical and geochemical data. J Geophys Res 100:12527–12555. doi: 10.1029/95JB00610 Google Scholar
  161. Tivey MK, Mills RA, Teagle DAH (1998) Temperature and salinity of fluid inclusions in anhydrite as indicators of seawater entrainment and heating in the TAG active mound. In: Herzig PM, Humphris SE, Miller DJ, Zierenberg RA (eds) Proceedings of the ocean drilling program, scientific results, vol 158. Ocean drilling program, College Station, pp 179–190Google Scholar
  162. Tucholke BE, Lin J (1994) A geological model for the structure of ridge segments in slow spreading ocean crust. J Geophys Res 99(B6):11937–11958CrossRefGoogle Scholar
  163. Tucholke BE, Lin J, Kleinrock MC (1998) Megamullions and mullion structure defining oceanic metamorphic core complexes on the Mid-Atlantic Ridge. J Geophys Res 103:9857–9866CrossRefGoogle Scholar
  164. Valsami E, Cann JR (1992) Mobility of rare earth elements in zones of intense hydrothermal alteration in the Pindos ophiolite, Greece. In: Parson LM, Burton BJ, Browning P (eds) Ophiolites and their modern oceanic analogues, vol 60. Geological Society, London, pp 219–232Google Scholar
  165. Wells DM, Mills RA, Roberts S (1998) Rare earth element mobility in a mineralized alteration pipe within the Troodos ophiolite, Cyprus. In: Mills RA, Harrison K (eds) Modern ocean floor processes and the geological record, vol 148. Geological Society, London, pp 153–176Google Scholar
  166. Wheat CG, Mottl MJ (2000) Composition of pore and spring waters from baby bare: global implications of geochemical fluxes from a ridge flank hydrothermal system. Geochim Cosmochim Acta 64:629–642CrossRefGoogle Scholar
  167. Wheat CG, Feely RA, Mottl MJ (1996) Phosphate removal by oceanic hydrothermal processes: an update of the phosphorus budget in the oceans. Geochim Cosmochim Acta 60:3593–3608CrossRefGoogle Scholar
  168. Wilcock WSD, Delaney JR (1996) Mid-ocean ridge sulfide deposits: evidence for heat extraction from magma chambers or cracking fronts? Earth Planet Sci Lett 145:49–65CrossRefGoogle Scholar
  169. Winter JD (2001) An introduction to igneous and metamorphic petrology. Prentice Hall, New JerseyGoogle Scholar
  170. Wolery TJ, Jarek RL (2003) Software user’s manual EQ3/6 (version 8.0). Sandia National Laboratories, Albuquerque/New MexicoGoogle Scholar
  171. Zharikov VA, Pertsev NN, Rusinov VL, Callegari E, Fettes DJ (2007) Metasomatism and metasomatic rocks. In: Recommendations by the IUGS Subcommission on the systematics of metamorphic rocks. Online document: Accessed 6 Oct 2010
  172. Zierenberg RA, Shanks WC III, Seyfried WE Jr, Koski RA, Strickler MD (1988) Mineralization, alteration, and hydrothermal metamorphism of the ophiolite-hosted Turner-Albright sulfide deposit, southwestern Oregon. J Geophys Res 93:4657–4674CrossRefGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of GeosciencesUniversity of BremenBremenGermany
  2. 2.Department of Marine Chemistry and GeochemistryWoods Hole Oceanographic InstitutionWoods HoleUSA

Personalised recommendations