Effects of Metasomatism on Mineral Systems and Their Host Rocks: Alkali Metasomatism, Skarns, Greisens, Tourmalinites, Rodingites, Black-Wall Alteration and Listvenites

  • Franco PirajnoEmail author
Part of the Lecture Notes in Earth System Sciences book series (LNESS)


Heat-liberating events, such as igneous intrusions emplaced into cool crustal rocks, will result not only in loss of heat to the surrounding environment, but also in the transport of volatile components, which are responsible for metasomatic processes. Some of the most impressive results of these processes are, for example, fenites (K- and Na-metasomatism), skarns (Ca-metasomatism) and tourmalinisation (B-metasomatism).


Fluid Inclusion Country Rock Ultramafic Rock Greenstone Belt Rare Earth Element 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



I thank Dan Harlov for inviting me to provide a chapter on metasomatic processes associated with mineral systems and for his useful suggestions. Rob Kerrich, Wolfgang Bach, Daniel Harlov and Håkon Austrheim are thanked for their constructive comments, which considerably improved this contribution. I publish this chapter with the permission of the Executive Director of the Geological Survey of Western Australia.


  1. Bach W, Klein F (2009) The petrology of seafloor rodingites: insights from geochemical reaction path modelling. Lithos 112:103–117Google Scholar
  2. Bailey DK (1983) The chemical and thermal evolution of rifts. Tectonophysics 94:585–598Google Scholar
  3. Bailey DK (1984) Kimberlite: “the mantle sample” formed by ultrametasomatism. In: Kornprobst J (ed) Kimberlite and relate rocks. Elsevier, Amsterdam, pp 232–333Google Scholar
  4. Bailey DK (1987) Mantle metasomatism – perspective and prospect. Geol Soc Lond 30:1–14, Sp PublGoogle Scholar
  5. Barnes SJ (2006) Komatiites: petrology, volcanology, metamorphism and geochemistry. Soc Econ Geol 13:13–49, Sp PublGoogle Scholar
  6. Barsukov VL (1957) The geochemistry of tin. Geokimiya 1:41–53Google Scholar
  7. Barton MD, Johnson DA (1996) Evaporitic source model for igneous-related Fe oxide-(REE-Cu-Au-U) mineralization. Geology 24:259–262Google Scholar
  8. Bédard JH (2010) Parental magmas of Grenville Province massif-type anorthosite and conjectures about why massif anorthosites are restricted to the Proterozoic. T Roy Soc Edin (Earth Env Sci) 100:77–103Google Scholar
  9. Best MG (1982) Igneous and metamorphic petrology. Freeman, San Francisco, p 630Google Scholar
  10. Béziat D, Bourges F, Debat P, Lompo M, Tollon F, Zonou S (1998) Albitite et “listvénite” sites de concentration aurifère inédits dans les ceintures de roches vertes birimiennes fortment hydrothermalisées du Burkina Faso. Bull Soc Géol Fr 169(4):563–571Google Scholar
  11. Bowden P (1985) The geochemistry and mineralization of alkaline ring complexes in Africa (a review). J Afr Earth Sci 3:17–40Google Scholar
  12. Bowden P, Kinnaird JA, Abaa SI, Ike EC, Turaki UM (1984) Geology and mineralization of the Nigerian anorogenic ring complexes. Geol Jahrb B 56:1–65Google Scholar
  13. Brogger WC (1921) Die Eruptivgesteine des Kristianiagebiets IV. Das Fengebiet in Telemarken, Norwegen. Norsk Vidensk Akademie Oslo Skr Nat Kl 9, 408Google Scholar
  14. Brown PE, Bowman JR, Kelly WC (1985) Petrologic and stable isotope constraints on the source and evolution of skarn-forming fluids at Pine Creek, California. Econ Geol 80:72–95Google Scholar
  15. Bucher K, Frey M (2002) Petrogenesis of metamorphic rocks. Springer, Berlin, p 341Google Scholar
  16. Bucher K, De Capitani C, Grapes R (2005) The development of a margarite-corundum blackwall by metasomatic alteration of a slice of mica schist in ultramafic rock, Kvesjoen, Norwegian Caledonides. Can Mineral 43:129–156Google Scholar
  17. Burnham CW, Ohmoto H (1980) Late stage processes of felsic magmatism. Mining Geol 8:1–11, Sp IssGoogle Scholar
  18. Burt DM (1981) Acidity-salinity diagrams – application to greisen and porphyry deposits. Econ Geol 76:832–843Google Scholar
  19. Carmichael IS, Turner FJ, Verhoogen J (1974) Igneous petrology. McGraw-Hill, New YorkGoogle Scholar
  20. Castor SB (2008) The mountain pass rare-earth carbonatite and associated ultrapotassic rocks, California. Can Mineral 46:779–806Google Scholar
  21. Chen SF, Morris PA, Pirajno F (2005) Occurrence of komatiites in the Sandstone greenstone belt, north-central Yilgarn Craton. Aust J Earth Sci 52:959–963Google Scholar
  22. Coleman RG (1977) Ophiolites. Springer, Berlin/Heidelberg/New YorkGoogle Scholar
  23. Cuney M, Kyser K (2009) Recent and not-so-recent developments in uranium deposits and implications for exploration, vol 39. Mineralogical Association of Canada, Quebec, Short CourseGoogle Scholar
  24. Dubé B, Gosselin P (2007) Greenstone-hosted quartz-carbonate vein deposits. In: Goodfellow WD (ed) Mineral Deposits of Canada: a synthesis of major deposit-types, district metallogeny, the evolution of geological provinces and exploration methods, vol 5. Geological Association of Canada, Ottawa, pp 49–73, Sp PublGoogle Scholar
  25. Duncan RK, Willett GC (1990) Mount weld carbonatite. In: Hughes FE (ed) Geology of the mineral deposits of Australia and Papua new guinea, vol 14. The Australasian Institute of Mining and Metallurgy, Parkville, pp 591–597, MonogrGoogle Scholar
  26. Einaudi MT (1982) Description of skarns associated with porphyry copper plutons. In: Titley SR (ed) Advances in geology of the porphyry copper deposits, southwestern North America. University of Arizona Press, Tucson, pp 139–184Google Scholar
  27. Einaudi MT, Burt DM (eds) (1982) A special issue devoted to skarn deposits – introduction, terminology, classification and composition of skarn deposits. Econ Geol 77(4):745–754Google Scholar
  28. Einaudi MT, Meinert LD, Newberry RJ (1981) Skarn deposits. Econ Geol 75:317–391Google Scholar
  29. Eugster HP (1984) Granites and hydrothermal ore deposits: a geochemical framework. Mineral Mag 49:7–23Google Scholar
  30. Ferguson J, McIver JR, Danchin RV (1975) Fenitization associated with the alkaline carbonatite complex of Epemba, South West Africa. Trans Geol Soc S Afr 78:111–122Google Scholar
  31. Fitton JG, Upton BGJ (eds) (1987) Alkaline igneous rocks, vol 30. Geological Society by Blackwell Scientific, Oxford, Sp PublGoogle Scholar
  32. Fleet ME (2003) Rock forming minerals, sheet silicates: micas, vol 3A, 2nd edn. Geological Society, London, p 758Google Scholar
  33. Flint D, Abeysinghe PB (2000) Geology and mineral resources of the Gascoyne Region. Geological Survey of Western Australia, East Perth, p 29, Rec 2000/7Google Scholar
  34. Frost BR (1975) Contact metamorphism of serpentinite, chloritic blackwall and rodingite at Paddy-Go-Easy Pass, Central Cascades, Washington. J Petrol 16:272–313Google Scholar
  35. Fryer BJ, Kerrich R, Hutchinson RW, Peirce MG, Rogers DS (1979) Achaean precious-metal hydrothermal systems, Dome Mine, Abitibi Greenstone Belt. I. Patterns of alteration and metal distribution. Can J Earth Sci 16:421–439Google Scholar
  36. Grey K, Hocking RM, Stevens MK, Bagas L, Carlsen GM, Irimies F, Pirajno F, Haines PW, Apak SN (2005) Lithostratigraphic nomenclature of the officer basin and correlative parts of the Paterson Orogen, Western Australia. Geol Surv West Aus Rpt 93:89Google Scholar
  37. Groves DI (1993) The crustal continuum model for late-Archaean lode-gold deposits of the Yilgarn Block, Western Australia. Miner Deposita 28:366–374Google Scholar
  38. Groves DI, Ridley JR, Bloem EMJ, Gebre-Mariam M, Hageman SG, Hronsky JMA, Knight JT, McNaughton NJ, Ojala J, Vielreicher RM, McCuaig TC, Holyland PW (1995) Lode-gold deposits of the Yilgarn block: products of late Archaean crustal scale overpressured hydrothermal systems. Geol Soc Lond 95:155–172, Sp PublGoogle Scholar
  39. Halls C, Zhao R (1995) Listvenite and related rocks: perspectives on terminology and mineralogy with reference to an occurrence at Cregganbaun, Co. Mayo, Republic of Ireland. Mineral Dep 30:303–313Google Scholar
  40. Hemley J, Jones WR (1964) Chemical aspects of hydrothermal alteration with emphasis on hydrogen metasomatism. Econ Geol 59:538–569Google Scholar
  41. Hosking KFG (1988) The world’s major types of tin deposits. In: Hutchison CS (ed) Geology of tin deposits in Asia and the Pacific. Springer, Berlin/Heidelberg/New York, pp 3–49Google Scholar
  42. Hutchison CS (ed) (1988) Geology of tin deposits in Asia and the Pacific. United Nations economic and social commission for Asia and the Pacific. Springer, Berlin/Heidelberg, p 718Google Scholar
  43. Ishihara S (1977) The magnetite-series and ilmenite-series granitic rocks. Mining Geol 27:293–305Google Scholar
  44. Ishihara S (1981) The granitoid series and mineralization. Econ Geol 75:458–484Google Scholar
  45. Jones AP, Wall F, Williams CT (eds) (1996) Rare earth minerals – chemistry, origin and ore deposits, vol 7, Mineralogical Society Series. Chapman and Hall, London, p 372Google Scholar
  46. Kalbskopf SP, Barton JM (2003) The Zandrivier deposit, Pietersburg greenstone belt, South Africa: an auriferous tourmalinite. S Afr J Geol 106:361–374Google Scholar
  47. Kelly WC, Rye RO (1979) Geologic, fluid inclusion, and stable isotope studies of the tin-tungsten deposits of Panasqueira, Portugal. Econ Geol 74:1721–1822Google Scholar
  48. Kent AJR, Ashley PM, Fanning CM (2000) Metasomatic alteration associated with regional metamorphism: an example from the Willyama Supergroup, South Australia. Lithos 54:33–62Google Scholar
  49. Kerrich R, Fyfe WS (1981) The gold – carbonate association: source of CO2, and CO2 fixation reactions in Archaean lode deposits. Chem Geol 42(8):265–294Google Scholar
  50. Kerrich R, Fyfe WS, Barnett RL, Blair BB, Willmore LM (1987) Corundum, Cr-muscovite rocks at O’Briens, Zimbabwe: the conjunction of hydrothermal desilification and LIL-element enrichment – geochemical and isotopic evidence. Contrib Mineral Petrol 95:481–498Google Scholar
  51. Kinnaird JA (1985) Hydrothermal alteration and mineralisation of the alkaline anorogenic ring complexes of Nigeria. J Afr Earth Sci 3:229–252Google Scholar
  52. Kirwin DJ (1985) Tourmaline breccia pipes. Unpublished thesis, James Cook University, North Queensland, 139ppGoogle Scholar
  53. Kresten P (1988) The chemistry of fenitisation: examples from Fen, Norway. Chem Geol 68:329–349Google Scholar
  54. Laznicka P (2006) Giant metallic deposits – future resources of industrial minerals. Springer, BerlinGoogle Scholar
  55. Le Bas MJ (1977) Carbonatite nepheline volcanism. Wiley, New YorkGoogle Scholar
  56. Le Bas MJ (1987) Nephelinites and carbonatites. Geol Soc Lond 30:53–83, Sp PublGoogle Scholar
  57. Leblanc M, Lbouabi M (1988) Native silver mineralisation along a rodingite tectonic contact between serpentinite and quartz-diorite (Bon Azzer, Morocco). Econ Geol 83:1379–1391Google Scholar
  58. Li XP, Zhang L, Wei C, Al Y, Chen J (2007) Petrology of rodingite derived from eclogite in western Tianshan, China. J Metamorph Geol 25:363–382Google Scholar
  59. Lindgren W (1933) Mineral deposits. McGraw-Hill, New York, p 930Google Scholar
  60. Manning DC (1982) An experimental study of the effects of fluorine on the crystallization of granite melts. In: Evans AM (ed) Metallization associated with acid magmatism. Wiley, Chichester, pp 191–203Google Scholar
  61. Mao JW, Wang YT, Lehmann B, Yu JJ, Du A, Mei YX, Li YF, Zang WS, Stein HJ (2006) Molybdenite Re-Os and albite 40Ar/39Ar dating of Cu-Au-Mo and magnetite porphyry systems in the Yangzte River valley and metallogenic implications. Ore Geol Rev 29:307–324Google Scholar
  62. Mao JW, Xie GQ, Chao,D, Pirajno F, Ishiyama D, Chen YC (2011) A tectono-genetic model for porphyry Cu-Au-Mo-Fe and magnetite-apatite deposits along the Middle-Lower Yangtze River Valley, eastern China. Ore Geol Rev 43(1):294–314Google Scholar
  63. Mariano AN (1989) Economic geology of rare earth elements. In: Lipin BR, McKay GA (eds) Geochemistry and mineralogy of rare earth elements, vol 21, Reviews in mineralogy. Mineralogical Society of America, Washington, DC, pp 309–337Google Scholar
  64. McPhie J, Doyle M, Allen R (1993) Volcanic textures. Tasmanian Govt Print Office, Hobart, 198pGoogle Scholar
  65. Meinert LD, Lentz DR, Newberry RJ (eds) (2000) A special issue devoted to skarn deposits. Econ Geol 95(6):1183–1365Google Scholar
  66. Meinert LD, Dipple GM, Nicolescu S (2005) World skarn deposits. Econ Geol 100:299–336Google Scholar
  67. Meyer C, Hemley JJ (1967) Wall rock alteration. In: Barnes HL (ed) Geochemistry of hydrothermal ore deposits, 1st edn. Holt Rinehart and Winston, New York, pp 166–235Google Scholar
  68. Mottl MJ (1983) Metabasalts, axial hot springs, and the structure of hydrothermal systems at mid-ocean ridges. Geol Soc Am Bull 94:161–180Google Scholar
  69. Mueller AG (1988) Achaean gold-silver deposits with prominent calc-silicate alteration in the Southern Cross greenstone belt, Western Australia: analogues of Phanerozoic skarn deposits. Geol Dept & Univ Ext, Univ West Aust, Publ 12: 141–163Google Scholar
  70. Mueller AG, Groves DI (1991) The classification of Western Australian greenstone-hosted gold deposits according to wallrock-alteration mineral assemblages. Ore Geol Rev 6:291–331Google Scholar
  71. Mueller AG, De Laeter JR, Groves DI (1991) Strontium isotope systematics of hydrothermal minerals from epigenetic Archean gold deposits in the Yilgarn Block, Western Australia. Econ Geol 86:780–809Google Scholar
  72. Munhá J, Kerrich R (1980) Sea water interaction in spilites from the Iberian pyrite belt. Contrib Mineral Petrol 73:191–200Google Scholar
  73. Mustard R (2004) Textural, mineralogical and geochemical variation in the zoned Timbarra Tablelands pluton, New South Wales. Aust J Earth Sci 51:385–405Google Scholar
  74. Newberry RJ (1991) Scheelite-bearing skarns in the Sierra Nevada region, California. Contrasts in zoning and mineral compositions and tests of the infiltration metasomatism theory. In: Barto-Kyriakidis RJ (ed) Skarns – their genesis and metallogeny. Theophrastus, Athens, pp 343–384Google Scholar
  75. Oliver NHS, Rubenach MJ, Valenta RK (1998) Precambrian metamorphism, fluid flow and metallogeny of Australia. AGSO J Geol Geophys 17(4):31–53Google Scholar
  76. Palandri JL, Read MH (2004) Geochemical models of metasomatism in ultrmafic systems: serpentinisation, rodingitisation and sea floor carbonate chimney precipitation. Geoch Cosmoch Acta 68:1115–1133Google Scholar
  77. Pan Y, Dong P (1999) The lower Chanjiang (Yangzi/Yangzte River) metallogenic belt, East China: intrusion- and wall rock-hosted Cu-Fe-Au, Mo, Zn, Pb and Ag deposits. Ore Geol Rev 15:177–242Google Scholar
  78. Pearson JM, Taylor WR (1996) Mineralogy and geochemistry of fenitized alkaline ultrabasic sills of the Gifford Creek complex, Gascoyne province, Western Australia. Can Mineral 34:201–219Google Scholar
  79. Pearson JM, Taylor WR, Barley ME (1995) Geology of the alkaline Gifford Creek complex, Gascoyne complex, Western Australia. Aust J Earth Sci 43:299–309Google Scholar
  80. Phillips GN, Powell R (2010) Formation of gold deposits: a metamorphic devolitilization model. J metamoroh Geol 28:689–718Google Scholar
  81. Pichavant M (1981) An experimental study of the effect of boron on a water saturated haplogranite at 1 kbar vapour pressure. Contrib Mineral Petrol 76:430–439Google Scholar
  82. Pichavant M, Manning D (1984) Petrogenesis of tourmaline granites and topaz granites; the contribution of experimental data. Phys Earth Planet Inter 35:31–50Google Scholar
  83. Pirajno F (1982) Geology, geochemistry, mineralisation and metal zoning of the McConnochie greisenised granite, Reefton district, New Zealand. NZ J Geol Geophys 25:405–425Google Scholar
  84. Pirajno F (1992) Hydrothermal mineral deposits. Springer, BerlinGoogle Scholar
  85. Pirajno F (2000) Ore deposits and mantle plumes. Kluwer, DodrechtGoogle Scholar
  86. Pirajno F (2004) Oceanic plateau accretion onto the northwestern margin of the Yilgarn Craton, Western Australia: implications for a mantle plume event at ca, 2.0 Ga. J Geodyn 37:205–231Google Scholar
  87. Pirajno F (2009) Hydrothermal processes and mineral systems. Springer, BerlinGoogle Scholar
  88. Pirajno F, Bentley PN (1985) Greisen-related scheelite, gold and sulphide mineralisation at Kirwans Hill and Bateman Creek, Reefton District, Westland, New Zealand. N Z J Geol Geophys 28:97–109Google Scholar
  89. Pirajno F, Schlögl HU (1987) The alteration-mineralisation of the Krantzberg tungsten deposit, South West Africa/Namibia. S Afr J Geol 90:499–508Google Scholar
  90. Pirajno F, Smithies RH (1992) The FeO/Feo + MgO ratio of tourmaline: a useful indicator of spatial variations in granite-related hydrothermal mineral deposits. J Geochem Explor 42:371–382Google Scholar
  91. Pirajno F, Occhipinti SA, Swager CP (2000) Geology and mineralization of the Palaeoproterozoic Bryah and Padbury Basins Western Australia. Geological Survey of Western Australia, East Perth, p 52, Rep 59Google Scholar
  92. Pirajno F, Haines PW, Hocking RM (2006) Keene Basalt, Northwest Officer Basin, Western Australia: tectono-stratigraphic setting and implications for possible submarine mineralisation. Aust J Earth Sci 53:1013–1022Google Scholar
  93. Pirajno F, Sheppard S, González-Alvaréz I, Johnson SP, Thorne A (2010) The Gifford Creek carbonatite complex. Symp Proc IAGOD 2010, Giant ore deposits down under, Adelaide, 115–116Google Scholar
  94. Pirajno F, Seltmann R, Yang YQ (2011) A Review of mineral systems and associated tectonic settings of Northern Xinjiang, NW China. Geosci Frontier 2(2):157–185Google Scholar
  95. Plimer IR (1987) The association of tourmalinite with stratiform scheelite deposits. Miner Deposita 22:82–291Google Scholar
  96. Polito PA, Kyser K, Stanley C (2009) The Proterozoic, albitite-hosted, Valhalla uranium deposit, Queensland, Australia: a description of the alteration assemblage associated with uranium mineralisation in diamond drill hole v39. Miner Deposita 44:11–40Google Scholar
  97. Pollard PJ (1983) Magmatic and postmagmatic processes in the formation of rocks associated with rare element deposits. Trans Inst Min Metall 92:B1–B9Google Scholar
  98. Pollard PJ, Pichavant M, Charoy B (1987) Contrasting evolution of fluorine- and boron-rich tin systems. Miner Deposita 22:315–321Google Scholar
  99. Pollard PJ, Taylor RG, Cuff C (1988) Genetic modelling of greisen-style tin systems. In: Hutchison CS (ed) Geology of tin deposits in Asia and the Pacific. Springer, Berlin, pp 59–72Google Scholar
  100. Putnis A, Hinrichs R, Putnis CV, Golla-Schindler U, Collins LG (2007) Hematite in porous red-clouded feldspars: evidence of large-scale crustal fluid-rock interaction. Lithos 95:10–18Google Scholar
  101. Ramberg H (1952) The origin of metamorphic and metasomatic rocks. University of Chicago Press, Chicago, p 317Google Scholar
  102. Roedder E (1984) Fluid inclusions. Mineralogical Society of America, Washington, DC, p 644, Rev Mineral 12Google Scholar
  103. Rona PA (1984) Hydrothermal mineralization at seafloor spreading centers. Earth Sci Rev 20:1–104Google Scholar
  104. Rose G (1837) Mineralogisch-geognostische Reise nach dem Ural,dem Altai und dem Kaspischen Meere. Vol 1: Reise nach dem nördlichen Ural und dem Altai. Berlin, CW Eichhoff (Verlag derSanderschen Buchhandlung), 641p.Google Scholar
  105. Rose AW, Burt DM (1979) Hydrothermal alteration. In: Barnes HL (ed) Geochemistry of hydrothermal ore deposits, 2nd edn. Wiley, New York, pp 173–235Google Scholar
  106. Rosenbauer RJ, Bischoff JL (1983) Uptake and transport of heavy metals by seawater: a summary of the experimental results. In: Rona PA, Bostrom K, Laubier L, Smith KL (eds) Hydrothermal processes at seafloor spreading centers. Plenum, New York, pp 177–198Google Scholar
  107. Rozendaal A, Misiewicz JE, Scheepers R (1995) The tin zone: sediment-hosted hydrothermal tin mineralization at Rooiberg, South Africa. Miner Deposita 30:178–187Google Scholar
  108. Sánchez-Muñoz L, Crespop E, García-Guinea J, de Moura OJM, Zagorsky VY (2009) What is a twin structure? An answer from microcline minefrals from pegmatites. Estudos Geol 19(2):240–245Google Scholar
  109. Seedorff E, Dilles JH, Proffett JM, Einaudi MT, Zurcher L, Stavast WJA, Johnson DA, Barton MD (2005) Porphyry deposits: characteristics and origin of hypogene features. Econ Geol 100:251–298Google Scholar
  110. Seltmann R, Soloviev S, Shatov V, Pirajno F, Naumov E, Cherkasov S (2010) Metallogeny of Siberia: tectonic, geologic and metallogenic settings of selected significant deposits. Aust J Earth Sci 57:655–706Google Scholar
  111. Seyfried WE, Janecky DR (1985) Heavy metal and sulfur transport during subcritical and supercritical hydrothermal alteration of basalt: Influence of fluid pressure and basalt composition and crystallinity. Geochim Cosmochim Acta 49:2545–2560Google Scholar
  112. Seyfried WE, Berndt ME, Seewald JS (1988) Hydrothermal alteration processes at mid-ocean ridges: constraints from diabase alteration experiments, hot spring fluids and composition of the oceanic crust. Can Mineral 26:787–804Google Scholar
  113. Sharkov EV (2010) Middle-proterozoic anorthosite-rapakivi granite complexes: an example of within-plate magmatism in abnormally thick crust: evidence from the East European Craton. Precambrian Res 183:689–700Google Scholar
  114. Shcherba GN (1970) Greisens. Int Geol Rev 12:114–255Google Scholar
  115. Sheppard S, Rasmussen B, Muhling JR, Farrell TR, Fletcher IR (2007) Grenvillian-aged orogenesis in the Palaeoproterozoic Gascoyne complex, Western Australia: 1030–950 Ma reworking of the Proterozoic Capricorn orogen. J Metamorph Geol 25:477–494Google Scholar
  116. Sillitoe RH (2010) Porphyry copper systems. Econ Geol 105:3–41Google Scholar
  117. Slack JF (1996) Tourmaline associations with hydrothermal ore deposits. Rev Mineral 33:559–641Google Scholar
  118. Slack JF, Herriman N, Barnes RG, Plimer IR (1984) Stratiform tourmalinites in metamorphic terranes and their geologic significance. Geology 12:713–716Google Scholar
  119. Smirnov VI (1976) Geology of mineral deposits. MIR, MoscowGoogle Scholar
  120. Šoŝtaríc SB, Palinkaŝ LA, Topa D, Spangeberg JE, Prochaska W (2011) Silver-base metal epithermal and listwaenite types of deposit Crnac, Rogozna Mts., Kosovo. Part I: ore mineral geochemistry and sulphur isotope study. Ore Geol Rev 40:65–80Google Scholar
  121. Spear FS (1993) Metamorphic phase equlibria and pressure-temperature-time paths. Mineralogical Society of America, Washington, DC, p 799, MonogrGoogle Scholar
  122. Storey BC, Alabaster T, Pankhurst RJ (eds) (1992) Magmatism and the causes of continental breakup, vol 68, Geological Society of London. The Geological Society, London, Sp PublGoogle Scholar
  123. Taylor RG (1979) Geology of tin deposits. Elsevier, AmsterdamGoogle Scholar
  124. Taylor R, Pollard PJ (1988) Pervasive hydrothermal alteration in tin-bearing granites and implications for the evolution of ore-bearing magmatic fluids. Can Inst Min Metall 39:86–95, Sp VolGoogle Scholar
  125. Verwoerd WJ (1966) Fenitization of basic igneous rocks. In: Tuttle DF, Gittens J (eds) Carbonatites. Wiley, New York, pp 295–308Google Scholar
  126. Vigneresse JL (2005) The specific case of the Mid-Proterozoic rapakivi granites and associated suite within the context of the Columbia supercontinent. Precambrian Res 137:1–34Google Scholar
  127. Walker RJ, Böhlke JK, McDonough WF, Li J (2007) Effects of Mother Lode-type gold mineralization on 187Os/188Os and platinum group element concentrations in peridotite: Alleghany District, California. Econ Geol 102:1079–1089Google Scholar
  128. Walraven F (1985) Genetic aspects of the granophyric rocks of the Bushveld complex. Econ Geol 80:1166–1180Google Scholar
  129. Williams PJ (ed) (1998) A special issue on the McArthur River-Mount Isa-Cloncurry minerals province. Econ Geol 98(8):139–178Google Scholar
  130. Woolley AR (1987) The alkaline rocks and carbonatites of the world. Part 1: North and South America. British Museum Natural History, University Texas Press, LondonGoogle Scholar
  131. Woolley AR (2001) Alkaline rocks and carbonatites of the world. Part 3: Africa. Geological Society, LondonGoogle Scholar
  132. Woolley AR, Kjarsgaard BA (2008) Carbonatite occurrences of the world: map and database. Geological Survey of Canada, Open File 5796Google Scholar
  133. Woolley AF, Symes RF, Elliot CJ (1972) Metasomatised (fenitized) quartzites from the Barralam complex, Scotland. Mineral Mag 38:819–836Google Scholar
  134. Wright JH, Kwak TAP (1989) Tin-bearing greisens of Mount Bischoff, northwestern Tasmania, Australia. Econ Geol 84:551–574Google Scholar
  135. Zharikov V, Pertsev N, Rusinov V, Callegari E, Fettes D (2007) Metasomatism and metasomatic rocks. In: Fettes D, Desmons J (eds) Metamorphic rocks – a classification and glossary of terms. Cambridge University Press, Cambridge, pp 58–68Google Scholar
  136. Zoheir B, Lehmann B (2011) Listvenite-lode association at the Barramiya gold mine, Eastern Desert, Egypt. Ore Geol Rev 39:101–115Google Scholar

Copyright information

© Springer Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Geological Survey of Western AustraliaEast PerthAustralia
  2. 2.Centre for Exploration TargetingUniversity of Western AustraliaCrawleyAustralia

Personalised recommendations