Geochronology of Metasomatic Events

  • Igor M. Villa
  • Michael L. Williams
Part of the Lecture Notes in Earth System Sciences book series (LNESS)


In order to date any geological event, suitable mineral geochronometers that record that and only that event must be identified and analyzed. In the case of metasomatism, recrystallisation is a key process that controls both the petrology and the isotopic record of minerals. It can occur both in the form of complete neocrystallisation (e.g. in a vein) and in the form of pseudomorphism, whereby dissolution/reprecipitation at the submicroscopic scale plays a central role. Recrystallisation may be complete or not, raising the possibility that relicts of a pre-metasomatic assemblage may be preserved. Because recrystallisation is energetically less costly at almost any temperature than diffusion, and because radiogenic isotopes (except 4He) never diffuse faster than major elements forming the mineral structure, there is a strong causal link between petrographic relicts and isotopic inheritance (as demonstrated for zircon, monazite, titanite, amphibole, K-feldspar, biotite, and muscovite). Metasomatic assemblages commonly contain such mixtures between relicts and newly formed phases, whose geochronology is slightly more complex than that of simple, ideal systems, but can be managed by techniques that have become routine in the last decade and which are described in this chapter. Because of its crucial role in controlling the isotope systematics, the petrogenesis of a mineral needs to be understood in extreme detail, especially using microchemical analyses and micro-imaging techniques, before mineral ages can be correctly interpreted. As the occurrence of recrystallization is limited by the availability of water, minerals act as “geohygrometers” that allow constraints to be placed on the nature and age of fluid circulation episodes, especially metasomatic events.


Aqueous Fluid Radiogenic Isotope Metasomatic Event Metasomatic Reaction Isotopic Closure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Reviews by Fernando Corfu, Pete Dahl, Gianfranco Di Vincenzo, and Klaus Mezger improved earlier versions of the manuscript.


  1. Allaz J, Berger A, Engi M, Villa IM (2011) The effects of retrograde reactions and of diffusion on 39Ar-40Ar ages of micas. J Petrol 52:691–716CrossRefGoogle Scholar
  2. Allen FM (1992) Mineral definition by HRTEM: problems and opportunities. Rev Mineral 27:289–333Google Scholar
  3. Arnold A, Jäger E (1965) Rb-Sr-Altersbestimmungen an Glimmern im Grenzbereich zwischen voralpinen Alterswerten und alpiner Verjüngung der Biotite. Eclogae Geol Helv 58:367–390Google Scholar
  4. Baldwin JA, Bowring SA, Williams ML, Mahan KH (2006) Geochronological constraints on the evolution of high-pressure felsic granulites from an integrated electron microprobe and ID-TIMS geochemical study. Lithos 88:173–200CrossRefGoogle Scholar
  5. Barth AP, Wooden JL (2010) Coupled elemental and isotopic analyses of polygenetic zircons from granitic rocks by ion microprobe, with implications for melt evolution and the sources of granitic magmas. Chem Geol 277:149–159CrossRefGoogle Scholar
  6. Bouvier A, Wadhwa M (2010) The age of the Solar System redefined by the oldest Pb–Pb age of a meteoritic inclusion. Nature Geosci 3: 637–641Google Scholar
  7. Challandes N, Marquer D, Villa IM (2008) P-T-t modelling, fluid circulation, and 39Ar-40Ar and Rb-Sr mica ages in the Aar Massif shear zones (Swiss Alps). Swiss J Geosci 101:269–288CrossRefGoogle Scholar
  8. Cherniak DJ (2010) Diffusion in accessory minerals: zircon, titanite, apatite, monazite and xenotime. Rev Mineral Geochem 72:827–869CrossRefGoogle Scholar
  9. Christensen JN, Halliday AN, Lee DC, Hall CM (1995) In situ Sr isotopic analysis by laser ablation. Earth Planet Sci Lett 136:79–85CrossRefGoogle Scholar
  10. Cocherie A, Be Mezeme E, Legendre O, Fanning CM, Faure M, Rossi P (2005) Electron microprobe dating as a tool for determining the closure of Th-U-Pb systems in migmatitic monazites. Am Mineral 90:607–618CrossRefGoogle Scholar
  11. Cole DR, Ohmoto H, Lasaga AC (1983) Isotopic exchange in mineral-fluid systems. I. Theoretical evaluation of oxygen isotopic exchange accompanying surface reactions and diffusion. Geochim Cosmochim Acta 47:1681–1693CrossRefGoogle Scholar
  12. Compston W, Williams IS, Meyer CE (1984) U-Pb geochronology of zircons from lunar breccia 73217 using a sensitive high mass-resolution ion microprobe. Proc Lunar Planet Sci Conf 14:525–534Google Scholar
  13. Corfu F (1996) Multistage zircon and titanite growth and inheritance in an Archean gneiss complex, Winnipeg River Subprovince, Ontario. Earth Planet Sci Lett 141:175–186CrossRefGoogle Scholar
  14. Corfu F, Muir TL (1989) The Hemlo Heron Bay greenstone belt and Hemlo Au Mo deposit, Superior Province: II. Timing of metamorphism, alteration and Au mineralization from titanite, rutile, and monazite U Pb geochronology. Chem Geol 79:201–223Google Scholar
  15. Corfu F, Hanchar JM, Hoskin PWO, Kinny P (2003) Atlas of zircon textures. Rev Mineral Geochem 53:468–500CrossRefGoogle Scholar
  16. Crowley JL, Ghent ED (1999) Electron microprobe study of the U-Th-Pb systematics of metamorphosed monazite: the role of Pb diffusion versus overgrowth and recrystallization. Chem Geol 157:285–302CrossRefGoogle Scholar
  17. Dahl PS (1997) A crystal-chemical basis for Pb retention and fission-track annealing systematics in U-bearing minerals, with implications for geochronology. Earth Planet Sci Lett 150:277–290CrossRefGoogle Scholar
  18. Davis DW, Schandl ES, Wasteneys HA (1994) U-Pb dating of minerals in alteration halos of Superior Province massive sulfide deposits - syngenesis versus metamorphism. Contrib Mineral Petrol 115:427–437CrossRefGoogle Scholar
  19. De Sigoyer J, Chavagnac V, Blichert-Toft J, Villa IM, Guillot S, Luais B, Cosca M, Mascle G (2000) Dating the Indian continental subduction and collisional thickening in the northwest Himalaya: multichronology of the Tso Morari eclogites. Geology 28:487–490CrossRefGoogle Scholar
  20. DeWolf CP, Zeissler CJ, Halliday AN, Mezger K, Essene EJ (1996) The role of inclusions in U-Pb and Sm-Nd garnet geochronology: stepwise dissolution experiments and trace uranium mapping by fission track analysis. Geochim Cosmochim Acta 60:121–134CrossRefGoogle Scholar
  21. Di Vincenzo G, Palmeri R (2001) An 40Ar-39Ar investigation of high-pressure metamorphism and the retrogressive history of mafic eclogites from the Lanterman Range (Antarctica): evidence against a simple temperature control on argon transport in amphibole. Contrib Mineral Petrol 141:15–35CrossRefGoogle Scholar
  22. Di Vincenzo G, Ghiribelli B, Giorgetti G, Palmeri R (2001) Evidence of a close link between petrology and isotope records: constraints from SEM, EMP, TEM and in situ 40Ar-39Ar laser analyses on multiple generations of white micas (Lanterman Range, Antarctica). Earth Planet Sci Lett 192:389–405CrossRefGoogle Scholar
  23. Di Vincenzo G, Viti C, Rocchi R (2003) The effect of chlorite interlayering on 40Ar-39Ar biotite dating: an 40Ar-39Ar laserprobe and TEM investigation of variably chloritised biotites. Contrib Mineral Petrol 145:643–648CrossRefGoogle Scholar
  24. Di Vincenzo G, Carosi R, Palmeri R (2004) The relationship between tectono-metamorphic evolution and argon isotope records in white mica: constraints from in situ 40Ar-39Ar laser analysis of the Variscan basement of Sardinia. J Petrol 45:1013–1043CrossRefGoogle Scholar
  25. Engvik AK, Mezger K, Wortelkamp S, Bast R, Corfu F, Korneliussen A, Ihlen P, Bingen B, Austrheim H (2011) Metasomatism of gabbro - mineral replacement and element mobilization during the Sveconorwegian metamorphic event. J Metamorph Geol 29:399–423CrossRefGoogle Scholar
  26. Faure G (1986) Principles of isotope geology, 2nd edn. Wiley, ChichesterGoogle Scholar
  27. Ferrara G, Petrini R, Serri G, Tonarini S (1989) Petrology and isotope geochemistry of San Vincenzo rhyolites (Tuscany, Italy). Bull Volcanol 51:379–388CrossRefGoogle Scholar
  28. Foland KA (1983) 40Ar/39Ar incremental heating plateaus for biotites with excess Ar. Chem Geol 41:3–21CrossRefGoogle Scholar
  29. Frei R, Villa IM, Kramers JD, Nägler TF, Przybylowicz WJ, Prozesky VM, Hofmann B, Kamber BS (1997) Single mineral dating by the Pb-Pb step-leaching method: assessing the mechanisms. Geochim Cosmochim Acta 61:393–414CrossRefGoogle Scholar
  30. Gardés E, Jaoul O, Montel J-M, Seydoux-Guillaume A-M, Wirth R (2006) Geochim Cosmochim Acta 70:2325–2336CrossRefGoogle Scholar
  31. Gebauer D, Av Q, Compston W, Williams IS, Grünenfelder M (1988) Archean zircons in a retrograded Caledonian eclogite of the Gotthard massif (Central Alps, Switzerland). Schweiz Mineral Petrog Mitt 68:485–490Google Scholar
  32. Geisler T, Pidgeon RT, Kurtz R, van Bronswijk W, Schleicher H (2003) Experimental hydrothermal alteration of partially metamict zircon. Am Mineral 88:1496–1513Google Scholar
  33. Geisler T, Schaltegger U, Tomaschek F (2007) Re-equilibration of zircon in aqueous fluids and melts. Elements 3:43–50CrossRefGoogle Scholar
  34. Girard J-P, Onstott TC (1991) Application of 40Ar/39Ar laser-probe and step-heating techniques to the dating of diagenetic K-feldspar overgrowths. Geochim Cosmochim Acta 55:3777–3793CrossRefGoogle Scholar
  35. Glodny J, Kuhn A, Austrheim H (2008) Diffusion versus recrystallization processes in Rb-Sr geochronology: isotopic relics in eclogite facies rocks, western Gneiss region, Norway. Geochim Cosmochim Acta 72:506–525CrossRefGoogle Scholar
  36. Goncalves P, Williams ML, Jercinovic MJ (2005) Electron microprobe age mapping. Am Mineral 90:578–585CrossRefGoogle Scholar
  37. Hames WE, Cheney JT (1997) On the loss of 40Ar* from muscovite during polymetamorphism. Geochim Cosmochim Acta 61:3863–3872CrossRefGoogle Scholar
  38. Hammerschmidt K, Frank E (1991) Relics of high pressure metamorphism in the Lepontine Alps (Switzerland) - 40Ar-39Ar and microprobe analyses on white micas. Schweiz Mineral Petrogr Mitt 71:261–274Google Scholar
  39. Hansen EC, Harlov DE (2007) Whole-rock, phosphate, and silicate compositional trends across an amphibolite- to granulite-facies transition, Tamil Nadu, India. J Petrol 48:1641–1680CrossRefGoogle Scholar
  40. Harlov DE, Dunkley DJ (2010) Experimental high-grade alteration of zircon using akali- and Ca-bearing solutions: resetting the zircon geochronometer during metasomatism V41D-2301 presented at 2010 Fall Meeting, AGU, San Francisco, 13–17 Dec 2010Google Scholar
  41. Harlov DE, Förster H-J (2003) Fluid-induced nucleation of REE-phosphate minerals in apatite: nature and experiment. Part II. Fluorapatite. Am Mineral 88:1209–1229Google Scholar
  42. Harlov DE, Hetherington CJ (2010) Partial high-grade alteration of monazite using alkali-bearing fluids: experiment and nature. Am Mineral 95:1105–1108CrossRefGoogle Scholar
  43. Harlov DE, Förster H-J, Nijland TG (2002) Fluid-induced nucleation of (Y + REE)-phosphate minerals within apatite: nature and experiment. Part I. Chlorapatite. Am Mineral 87:245–261Google Scholar
  44. Harlov DE, Wirth R, Förster H-J (2005) An experimental study of dissolution-reprecipitation in fluorapatite: fluid infiltration and the formation of monazite. Contrib Mineral Petrol 150:268–286CrossRefGoogle Scholar
  45. Harlov DE, Wirth R, Hetherington CJ (2011) Fluid-mediated partial alteration in monazite: the role of coupled dissolution–reprecipitation in element redistribution and mass transfer. Contrib Mineral Petrol 162:329–348CrossRefGoogle Scholar
  46. Hawkins DP, Bowring SA (1997) U-Pb systematics of monazite and xenotime: case studies from the Paleoproterozoic of the Grand Canyon, Arizona. Contrib Mineral Petrol 127:87–103CrossRefGoogle Scholar
  47. Hawkins DP, Bowring SA (1999) U-Pb monazite, xenotime and titanite geochronological constraints on the prograde to post-peak metamorphic thermal history of Paleoproterozoic migmatites from the Grand Canyon, Arizona. Contrib Mineral Petrol 134:150–169CrossRefGoogle Scholar
  48. Hetherington CJ, Harlov DE (2008) Metasomatic thorite and uraninite inclusions in xenotime and monazite from granitic pegmatites, Hidra anorthosite massif, southwestern Norway: mechanics and fluid chemistry. Am Mineral 93:806–820CrossRefGoogle Scholar
  49. Hetherington CJ, Jercinovic MJ, Williams ML, Mahan KH (2008) Understanding geologic processes with xenotime: composition, chronology, and a protocol for electron probe microanalysis. Chem Geol 254:133–147CrossRefGoogle Scholar
  50. Hetherington CJ, Harlov DE, Budzyń B (2010) Experimental metasomatism of monazite and xenotime: mineral stability, REE mobility and fluid composition. Mineral Petrol 99: 165–184Google Scholar
  51. Hodges KV, Hames WE, Bowring SA (1994) 40Ar/39Ar age gradients in micas from a high-temperature-low-pressure metamorphic terrain; evidence for very slow cooling and implications for the interpretation of age spectra. Geology 22:55–58CrossRefGoogle Scholar
  52. Jercinovic MJ, Williams ML, Lane ED (2008) In-situ trace element analysis of monazite and other fine-grained accessory minerals by EPMA. Chem Geol 254:197–215CrossRefGoogle Scholar
  53. Kamber BS, Blenkinsop TG, Villa IM, Dahl PS (1995) Proterozoic transpressive deformation in the Northern Marginal Zone, Limpopo Belt, Zimbabwe. J Geol 103:493–508CrossRefGoogle Scholar
  54. Kastner M, Siever R (1979) Low temperature feldspars in sedimentary rocks. Am J Sci 279:435–479CrossRefGoogle Scholar
  55. Kelly N, Appleby S, Mahan K (2010) Mineralogical and textural characterization of metamorphic rocks using an automated mineralogy approach. In: Programs with abstracts, annual meeting of the geological society of America, DenverGoogle Scholar
  56. Krogh TE, Davis GL (1974) Alteration in zircons with discordant U-Pb ages. Carnegie Inst WashYearb 73:560–567Google Scholar
  57. Krogh TE, Davis GL (1975) Alteration in zircons and differential dissolution of altered and metamict zircon. Carnegie Inst WashYearb 74:619–623Google Scholar
  58. Labotka TC, Cole DR, Fayek M, Riciputi LR, Stadermann FJ (2004) Coupled cation and oxygen-isotope exchange between alkali feldspar and aqueous chloride solution. Am Mineral 89:1822–1825Google Scholar
  59. Lasaga AC (1983) Geospeedometry: an extension of geothermometry. In: Saxena SK (ed) Kinetics and equilibrium in mineral reactions. Springer, New YorkGoogle Scholar
  60. Lasaga AC (1986) Metamorphic reaction rate laws and development of isograds. Mineral Mag 50:359–373CrossRefGoogle Scholar
  61. Mahan KH, Goncalves P, Williams ML, Jercinovic MJ (2006) Dating metamorphic reactions and fluid flow: application to exhumation of high-P granulites in a crustal-scale shear zone, western Canadian Shield. J Metamorph Geol 24:193–217CrossRefGoogle Scholar
  62. Maineri C, Benvenuti M, Costagliola P, Dini A, Lattanzi PF, Ruggieri G, Villa IM (2003) Sericitic alteration at the La Crocetta deposit (Elba Island, Italy): interplay between magmatism, tectonics and hydrothermal activity. Miner Deposita 38:67–86CrossRefGoogle Scholar
  63. Malusà MG, Villa IM, Vezzoli G, Garzanti E (2011) Detrital geochronology of unroofing magmatic complexes and the slow erosion of Oligocene volcanoes in the Alps. Earth Planet Sci Lett 301:324–336Google Scholar
  64. Mayer A, Cortiana G, Dal Piaz GV, Deloule E, De Pieri R, Jobstraibizer PG (2003) U-Pb single zircon ages of the Adamello batholith (Southern Alps). Mem Sci Geol 55:151–167Google Scholar
  65. McIntyre GA, Brooks C, Compston W, Turek A (1966) The statistical assessment of Rb-Sr isochrons. J Geophys Res 71:5459–5468CrossRefGoogle Scholar
  66. Medenbach O (1976) Geochemie der Elemente in Zirkon und ihre räumliche Verteilung – eine Untersuchung mit der Elektronenstrahlmikrosonde. Unpublished Ph.D. thesis, Ruprecht-Karls-Universität HeidelbergGoogle Scholar
  67. Megrue GH (1973) Spatial distribution of 40Ar/39Ar ages in lunar breccia 14301. J Geophys Res 78:3216–3221CrossRefGoogle Scholar
  68. Merrihue CM (1965) Trace-element determinations and potassium-argon dating by mass spectroscopy of neutron-irradiated samples. Trans Am Geophys Union 46:125Google Scholar
  69. Merrihue CM, Turner G (1966) Potassium-argon dating by activation with fast neutrons. J Geophys Res 71:2852–2857CrossRefGoogle Scholar
  70. Mezger K, Krogstad EJ (1997) Interpretation of discordant zircon ages: an evaluation. J Metamorph Geol 15:127–140CrossRefGoogle Scholar
  71. Müller W, Aerden D, Halliday AN (2000) Isotopic dating of strain fringe increments: duration and rates of deformation in shear zones. Science 288:2195–2918CrossRefGoogle Scholar
  72. Müller W, Kelley SP, Villa IM (2002) Dating fault-generated pseudotachylytes: Comparison of 40Ar/39Ar stepwise-heating, laser-ablation and Rb/Sr microsampling analyses. Contrib Mineral Petrol 144:57–77Google Scholar
  73. Neymark LA, Amelin YV, Paces JB (2000) 206Pb–230Th–234U–238U and 207Pb–235U geochronology of Quaternary opal, Yucca Mountain, Nevada. Geochim Cosmochim Acta 64:2913–2928CrossRefGoogle Scholar
  74. Nyfeler D, Armbruster T, Villa IM (1998) Si, Al, Fe order-disorder in Fe-bearing K-feldspar from Madagascar and its implication to Ar diffusion. Schweiz Mineral Petrog Mitt 78:11–21Google Scholar
  75. Oberli F, Ntaflos Th, Meier M, Kurat G (1987) Emplacement age of the peridotites from Zabargad Island (Red Sea): a zircon U-Pb isotope study. Terra Cognita 7:334Google Scholar
  76. Onstott TC, Phillips D, Pringle-Goodell L (1990) Laser microprobe measurement of chlorine and argon zonation in biotite. Chem Geol 90:145–168Google Scholar
  77. Onstott TC, Miller ML, Ewing RC, Arnold GW, Walsh DS (1995) Recoil refinements: implications for the 40Ar/39Ar dating technique. Geochim Cosmochim Acta 59:1821–1834CrossRefGoogle Scholar
  78. Petrik I, Konecny P (2009) Metasomatic replacement of inherited metamorphic monazite in a biotite-garnet granite from the Nizke Tatry Mountains, Western Carpathians, Slovakia: chemical dating and evidence for disquilibrium melting. Am Mineral 94:957–974CrossRefGoogle Scholar
  79. Pettke Th, Audetat A, Schaltegger U, Heinrich CA (2005) Magmatic-to-hydrothermal crystallization in the W-Sn mineralized Mole Granite (NSW, Australia) - Part II: evolving zircon and thorite trace element chemistry. Chem Geol 22:191–213CrossRefGoogle Scholar
  80. Phillips D, Onstott TC (1988) Argon isotopic zoning in mantle phlogopite. Geology 16:542–546CrossRefGoogle Scholar
  81. Podosek FA, Huneke JC (1973) Argon in Apollo 15 green glass spherules (15426): 40Ar-39Ar age and trapped argon. Earth Planet Sci Lett 19:413–421CrossRefGoogle Scholar
  82. Provost A (1990) An improved diagram for isochron data. Chem Geol 80:85–99Google Scholar
  83. Proyer A (2003) The preservation of high-pressure rocks during exhumation: metagranites and metapelites. Lithos 70:183–194CrossRefGoogle Scholar
  84. Putnis A (2002) Mineral replacement reactions: from macroscopic observations to microscopic mechanisms. Mineral Mag 66:689–708CrossRefGoogle Scholar
  85. Putnis A (2009) Mineral replacement reactions. Rev Mineral Geochem 70:87–124CrossRefGoogle Scholar
  86. Putnis A, Austrheim H (2010) Fluid-induced processes: metasomatism and metamorphism. Geofluids 10:254–269Google Scholar
  87. Rasmussen B (1996) Early-diagenetic REE-phosphate minerals (florencite, gorceixite, crandallite, and xenotime) in marine sandstones: a major sink for oceanic phosphorus. Am J Sci 296:601–632CrossRefGoogle Scholar
  88. Rasmussen B (2005) Radiometric dating of sedimentary rocks: the application of diagenetic xenotime geochronology. Earth Sci Rev 68:197–243CrossRefGoogle Scholar
  89. Rasmussen B, Fletcher IR, Bengtson S, McNaughton NJ (2004) SHRIMP U-Pbdating of diagenetic xenotime in the Stirling Range formation, Western Australia: 1.8 billion year minimum age for the Stirling biota. Precamb Res 133:329–337CrossRefGoogle Scholar
  90. Rayner N, Stern RA, Carr D (2005) Grain-scale variations in trace element composition of fluid-altered zircon, Acasta Gneiss complex, northwestern Canada. Contrib Mineral Petrol 148:721–734CrossRefGoogle Scholar
  91. Rutherford E (1906) The mass and velocity of the α particles expelled from radium and actinium. Phil Mag Ser 6 12(70):348CrossRefGoogle Scholar
  92. Schaltegger U (2007) Hydrothermal zircon. Elements 3:51CrossRefGoogle Scholar
  93. Schneider J, Bosch D, Monié P, Bruguier O (2007) Micro-scale element migration during eclogitisation in the Bergen arcs (Norway): a case study on the role of fluids and deformation. Lithos 96:325–352CrossRefGoogle Scholar
  94. Schobert K (2005) Metasomatische Gesteine im Tal des Rio Pisco (Peru). Unpublished M.Sc. thesis, Universität BernGoogle Scholar
  95. Seydoux-Guillaume A-M, Goncalves P, Wirth R, Deutsch A (2003) Transmission electron microscope study of polyphase and discordant monazites; site-specific specimen preparation using the focused ion beam technique. Geology 31:973–976CrossRefGoogle Scholar
  96. Sletten VW, Onstott TC (1999) The effect of the instability of muscovite during in vacuo heating on 40Ar/39Ar step-heating spectra. Geochim Cosmochim Acta 62:123–141CrossRefGoogle Scholar
  97. Smith JV (1974) Feldspar minerals. Springer, HeidelbergCrossRefGoogle Scholar
  98. Spötl C, Kralik M, Kunk MJ (1996) Authigenic feldspar as an indicator of paleo-rock water interactions in Permian carbonates of the northern Calcareous Alps, Austria. J Sediment Res 66:139–146Google Scholar
  99. Steiger RH, Wasserburg GJ (1969) Comparative U-Th-Pb systematics in 2.7 × 109 yr plutons of different geologic histories. Geochim Cosmochim Acta 33:1213–1232CrossRefGoogle Scholar
  100. Stosch HG, Lugmair GW (1990) Geochemistry and evolution of MORB-type eclogites from the Munchberg Massif, southern Germany. Earth Planet Sci Lett 99:230–249CrossRefGoogle Scholar
  101. Thöni M, Jagoutz E (1992) Some new aspects of dating eclogites in orogenic belts: Sm-Nd, Rb-Sr, and Pb-Pb isotopic results from the Austroalpine Saualpe and Koralpe type-locality (Carinthia/Styria, southeastern Austria). Geochim Cosmochim Acta 56:347–368CrossRefGoogle Scholar
  102. Tomaschek F (2004) Zircon reequilibration by dissolution-represipitation: reaction textures from flux-grown solid solutions. Beihefte zum Eur J Mineral 12:214Google Scholar
  103. Tomaschek F, Kennedy AK, Villa IM, Lagos M, Ballhaus C (2003) Zircons from Syros, Cyclades, Greece - recrystallization and mobilization of zircon during high-pressure metamorphism. J Petrol 44:1977–2002CrossRefGoogle Scholar
  104. Turner G, Huneke JC, Podosek FA, Wasserburg GJ (1971) 40Ar-39Ar ages and cosmic ray exposure age of Apollo 14 samples. Earth Planet Sci Lett 12:19–35CrossRefGoogle Scholar
  105. Vance D, O’Nions RK (1990) Isotopic chronometry of zoned garnets: growth kinetics and metamorphic histories. Earth Planet Sci Lett 97:227–240CrossRefGoogle Scholar
  106. Vance D, Müller W, Villa IM (2003) Geochronology: linking the isotopic record with petrology and textures - an introduction. Geol Soc London Spec Pub 220:1–24Google Scholar
  107. Veblen DR (1992) Electron microscopy applied to nonstoichiometry, polysomatism, and replacement reactions in minerals. Rev Mineral 27:181–229Google Scholar
  108. Villa IM (1998) Isotopic closure. Terra Nova 10:42–47CrossRefGoogle Scholar
  109. Villa IM (2002) Mete isotopes without petrography?/'Tis but a jest, as sound chronology/Must needs base on complementarity. Keynote address, Internat Mineral Association congress, EdinburghGoogle Scholar
  110. Villa IM (2006) From the nm to the Mm: isotopes, atomic-scale processes, and continent-scale tectonic models. Lithos 87:155–173CrossRefGoogle Scholar
  111. Villa IM (2010) Disequilibrium textures vs equilibrium modelling: geochronology at the crossroads. Geol Soc London Spec Publ 332:1–15CrossRefGoogle Scholar
  112. Villa IM, Grobéty B, Kelley SP, Trigila R, Wieler R (1996) Assessing Ar transport paths and mechanisms for McClure Mountains Hornblende. Contrib Mineral Petrol 126:67–80Google Scholar
  113. Villa IM, Hermann J, Müntener O, Trommsdorff V (2000) 39Ar-40Ar dating of multiply zoned amphibole generations (Malenco, Italian Alps). Contrib Mineral Petrol 140:363–381CrossRefGoogle Scholar
  114. Villa IM, Ruggieri G, Puxeddu M (2001) Geochronology of magmatic and hydrothermal micas from the Larderello geothermal field. In: Cidu R (ed) Water-rock interaction. Balkema, LisseGoogle Scholar
  115. Villa IM, Ruggieri G, Puxeddu M, Bertini G (2006) Geochronology and isotope transport systematics in a subsurface granite from the Larderello-Travale geothermal system (Italy). J Volcanol Geoth Res 152:20–50CrossRefGoogle Scholar
  116. Williams ML, Jercinovic MJ, Hetherington CJ (2007) Microprobe monazite geochronology: understanding geologic processes by integrating composition and chronology. Annu Rev Earth Planet Sci 35:137–175CrossRefGoogle Scholar
  117. Williams ML, Jercinovic MJ (2002) Microprobe monazite geochronology: putting absolute time into microstructural analysis. J Struct Geol 24:1013–1028CrossRefGoogle Scholar
  118. Williams ML, Jercinovic MJ, Terry MP (1999) Age mapping and dating of monazite on the electron microprobe: deconvoluting multistage tectonic histories. Geology 27:1023–1026CrossRefGoogle Scholar
  119. Williams ML., Jercinovic MJ, Goncalves P, Mahan KH (2006) Format and philosophy for collecting, compiling, and reporting microprobe monazite ages. Chem Geol 225:1–15Google Scholar
  120. Williams ML, Jercinovic MJ, Harlov DE, Budzyń B, Hetherington CJ (2011) Resetting monazite ages during fluid-related alteration. Chem Geol 283:218–225CrossRefGoogle Scholar
  121. Zhou B, Hensen BJ (1995) Inherited Sm/Nd isotope components preserved in monazite inclusions within garnets in leucogneiss from East Antarctica and implications for closure temperature studies. Chem Geol 121:317–326CrossRefGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Institut für GeologieUniversität BernBernSwitzerland
  2. 2.Dipartimento di Scienze Geologiche e GeotecnologieUniversità di Milano BicoccaMilanoItaly
  3. 3.Department of GeosciencesUniversity of MassachusettsAmherstUSA

Personalised recommendations