Skip to main content

Metasomatism in the Early Solar System: The Record from Chondritic Meteorites

  • Chapter
  • First Online:
Metasomatism and the Chemical Transformation of Rock

Part of the book series: Lecture Notes in Earth System Sciences ((LNESS))

Abstract

Mineralogic, petrologic, and isotopic studies of chondritic meteorites have revealed a significant body of evidence of metasomatic processes during the earliest stages of Solar System evolution. The exact nature of these processes, as well as the conditions and environments where metasomatism occurred, are still the subject of vigorous debate. The interaction of aqueous fluids with early Solar System solids affected different chondrite groups to different degrees: even within a single chondrite group the effects of metasomatism can be highly variable. Among the carbonaceous chondrite groups, the CV (Vigarano-type) and CO (Ornans-type) chondrites show the best documented evidence of metasomatic effects. In the oxidized subgroup of the CV chondrites, Ca-Al-rich Inclusions (CAIs), Amoeboid Olivine Aggregates (AOAs), chondrules, and matrix have all been extensively affected by Fe-alkali-halogen metasomatism, that has resulted in the formation of a wide range of secondary, dominantly anhydrous minerals, including grossular, andradite, wollastonite, monticellite, anorthite, forsterite, ferroan olivine, corundum, Na-melilite, nepheline, sodalite, wadalite, Al-diopside, kushiroite, ferroan diopside − hedenbergite pyroxenes, ilmenite, phosphates, magnetite, awaruite, tetrataenite, and Fe,Ni sulfides. Hydrous phases are much rarer, but include, margarite, vesuvianite, and kaolinite. The mineral assemblages that form are highly dependent on the primary mineralogy of the host object: distinct mineral assemblages are produced by alteration of CAIs, chondrules, and matrix, for example. Nebular and asteroidal scenarios for these metasomatic effects have been extensively discussed in the literature for the metasomatism observed in the CV chondrites. Oxygen isotopic studies of the secondary minerals in CV chondrites, such as fayalite, magnetite and Ca, Fe-rich silicates, indicate formation at relatively low temperatures (<550 K) from aqueous solutions, consistent with an asteroidal environment. On the other hand, primary minerals in CAIs show oxygen isotopic heterogeneity, with melilite and anorthite exhibiting heavy isotope enrichments compared with spinel, hibonite, Al,Ti-diopside, and forsterite. The origin of this selective isotopic exchange is still the subject of debate; it may have occurred by gas–solid or gas–melt exchange in the solar nebula or by isotopic exchange with a 16O-depleted fluid in an asteroidal environment. The CO chondrites show significant evidence of metasomatic events, but the degree and extent of metasomatism is much less than that for the CV chondrites. Calcium-rich phases, such as melilite, plagioclase, and glassy mesostasis in CAIs, AOAs and chondrules have been affected the most and have been replaced by fine-grained alteration products. Although the secondary minerals in CO chondrites have not been characterized in as much detail as the CV chondrites, nepheline, sodalite, ilmenite, ferroan olivine, and ferroan diopside − hedenbergite pyroxenes have all been positively identified. Collectively the data indicate that Fe-alkali metasomatism has also affected the CO chondrites, but the involvement of halogens is much less extensive. Although the alteration of CAIs, AOAs and chondrules is extremely heterogeneous in CO chondrites, there is a general correlation between the degree of metasomatism and metamorphism, indicating that the metasomatism occurred dominantly within an asteroidal environment. However, some rare CAIs in type 3.0 CO chondrites and chondrules in higher petrologic CO3 subtypes contain metasomatic effects that may be best explained by alteration prior to asteroidal accretion. In comparison, the ordinary chondrites (H, L, and LL) show minimal evidence of metasomatic effects. Only a few unequilibrated ordinary chondrites show evidence of highly localized and minimal development of nepheline, sodalite, and scapolite that occurs only with chondrules that contain Al-rich phases such as plagioclase. The most extensively metasomatized ordinary chondrite is Tieschitz (H3.6), which contains a highly unusual component of matrix consisting of veins of nepheline and albite interstitial to chondrules. Chondrule glass in this meteorite has been leached extensively of alkalis and Al, indicating extensive interaction with an aqueous fluid. Finally, new evidence is coming to light which suggests that some more highly metamorphosed ordinary chondrites may have undergone metasomatism, indicated by partial albitization of plagioclase, formation of ferroan olivine replacing low-Ca pyroxene and remobilization of phosphate minerals. These limited data suggest that mineral-fluid interactions in the ordinary chondrites occurred late in the metamorphic history of these meteorites. Metasomatic effects may be much more extensively developed in the ordinary chondrites, but are cryptic in nature and have yet to be recognized. Research on the role of fluids in the geologic evolution of the ordinary chondrite parent bodies is therefore still in its infancy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 179.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Based on the textures and mineralogy, six major types of CAIs are recognized in CV chondrites (e.g., MacPherson et al. 1988): fine-grained (1) spinel-rich (porous aggregates of concentrically-zoned objects having a spinel (MgAl2O4) ± hibonite (CaAl12O19) ± perovskite (CaTiO3) core surrounded by layers of melilite/anorthite and Al,Ti-diopside), and coarse-grained: (2) fluffy Type A (FTA, irregularly-shaped, melilite-rich), (3) compact Type A (CTA, igneous, melilite-rich), (4) Type B1 (igneous, rich in pyroxene and anorthite, with a melilite mantle), (5) Type B2 (igneous, rich in Al,Ti-diopside and anorthite, unmantled), and (6) Type C (igneous, anorthite-rich).

  2. 2.

    CAIs in other CVOxA chondrites have not been systematically studied yet.

  3. 3.

    Identified tentatively based on the textural similarity to margarite described by Ford and Brearley (2010).

  4. 4.

    Na-melilite usually contains ~1−3 wt.% Na2O and can be recognized clearly only in BSE images.

  5. 5.

    We note, however, that there are significant differences in both the style and the degree of alteration processes, which affected chondrules and matrices in the CVOxA, CVOxB and CVR chondrites (e.g., Housley and Cirlin 1983; Ikeda and Kimura 1995; Keller and Buseck 1990a; Keller and McKay 1993; Keller et al. 1994; Kimura and Ikeda 1995, 1998; Brearley 1997b; Krot et al. 1997a, 1998a, b, 2004b; Choi et al. 2000).

  6. 6.

    In the Efremovka (CVR) dark inclusions, chondrules are pseudomorphed by a fine-grained mixture of ferroan olivine, phyllosilicates, and, occasionally, andradite (Figs. 15.19e−f; Krot et al. 1999).

  7. 7.

    The formation of PGC is a thermodynamically irreversible process, which results from annealing of graphitizeable carbons. In nature these are complex hydrocarbons, such as kerogens, which are formed at low temperatures (Buseck and Huang 1985). In the classical condensation sequence, graphitic carbon does not become stable until temperatures reach 600 K at a total pressure of 10−3 atm (Hayatsu et al. 1980), ~500−600 K below the condensation temperature of diopside. These observations indicate ferroan olivine and ferroan diopside – hedenbergite pyroxenes must have formed after formation of the low temperature carbonaceous material.

  8. 8.

    The origin of ferroan olivine in the CV matrices, as a result of the dehydration of phyllosilicates, was later challenged by Krot et al. (2004b). For additional arguments against this mechanism see Brearley and Prinz (1996), Brearley (1997a), and Clayton and Mayeda (1999).

  9. 9.

    The water/rock ratio depends upon the Fe2+/Fe0 ratio in the precursor material. If the CVR chondrites are the primary precursor materials of the CVOxB chondrites, an aqueous solution in equilibrium with a partially altered CV chondrite should appear at a lower water/rock ratio (<0.1).

  10. 10.

    Magnesium is excluded from thermodynamic analysis by the addition of the activity terms for fayalite and hedenbergite dissolved in the olivine and pyroxene solid solutions, respectively. The ideal models of Fe-Mg exchange in olivine are used.

  11. 11.

    XFa and XHed = Fe/(Fe + Mg) in ferroan olivine and ferroan diopside − hedenbergite pyroxene, respectively.

  12. 12.

    207Pb-206Pb absolute age of a forsterite-bearing Type B CAI from Allende corrected for 238U/235U ratio is 4567.22 ± 0.21 Ma (Amelin et al. 2010). This age can be considered as the age of the Solar System.

References

  • Abreu NM, Brearley AJ (2010) Early solar system processes recorded in the matrices of two highly pristine CR3 carbonaceous chondrites, MET00426 and QUE99177. Geochim Cosmochim Acta 74:1146–1171

    Google Scholar 

  • Akai J (1988) Incompletely transformed serpentine-type phyllosilicates in the matrix of Antarctic CM chondrites. Geochim Cosmochim Acta 52:1593–1599

    Google Scholar 

  • Akai J (1992) T-T-T diagram of serpentine and saponite, and estimation of metamorphic heating degree of Antarctic carbonaceous chondrites. Proc NIPR Symp Antarct Meteor 5:120–135

    Google Scholar 

  • Aléon J, Krot AN, McKeegan KD, MacPherson GJ, Ulyanov AA (2005) Fine-grained, spinel-rich inclusions from the reduced CV chondrite Efremovka: II. Oxygen isotopic compositions. Meteor Planet Sci 40:1043–1058

    Google Scholar 

  • Alexander CMO’D, Hutchison RH, Graham AL, Yabuki H (1987) Discovery of scapolite in the Bishunpur (LL3) chondritic meteorite. Mineral Mag 51:733–735

    Google Scholar 

  • Alexander CMO’D, Barber DJ, Hutchison R (1989) The microstructure of Semarkona and Bishunpur. Geochim Cosmochim Acta 53:3045–3057

    Google Scholar 

  • Amelin Y, Irving AJ (2007) Seven million years of evolution of the angrite parent body from Pb-isotopic data (abstract). Workshop on chronology of meteorites and the early solar system, Kauai, p 4053

    Google Scholar 

  • Amelin Y, Krot AN, Hutcheon ID, Ulyanov AA (2002) Lead isotopic ages of chondrules and calcium-aluminum-rich inclusions. Science 297:1678–1683

    Google Scholar 

  • Amelin Y, Kaltenbach A, Iizuka T, Stirling CH, Ireland TR, Petaev MI, Jacobsen SB (2010) Importance of uranium isotope variations for chronology of the solar system’s first solids (abstract). Lunar Planet Sci 41:1648

    Google Scholar 

  • Ash RD, Young ED, Rumble D III, Alexander CMO’D, MacPherson GJ (1999) Oxygen isotope systematics in Allende chondrules (abstract). Lunar Planet Sci 30:1836

    Google Scholar 

  • Ashworth JR (1981) Fine structure in H-group chondrites. Proc R Soc Lond A374:179–194

    Google Scholar 

  • Beckett JR, Stolper E (2000) The partitioning of Na between melilite and liquid: part I. The role of crystal chemistry and liquid composition. Geochim Cosmochim Acta 64:2509–2517

    Google Scholar 

  • Beckett JR, Simon SB, Stolper E (2000) The partitioning of Na between melilite and liquid: part II. Applications to Type B inclusions from carbonaceous chondrites. Geochim Cosmochim Acta 64:2519–2534

    Google Scholar 

  • Birck J-L, Allègre CJ (1988) Manganese-chromium isotope systematics and the development of the early solar system. Nature 331:579–584

    Google Scholar 

  • Bischoff A (1998) Aqueous alteration of carbonaceous chondrites: evidence for preaccretionary alteration – A review. Meteor Planet Sci 33:1113–1122

    Google Scholar 

  • Bischoff A, Keil K (1984) Al-rich objects in ordinary chondrites: related origin of carbonaceous and ordinary chondrites and their constituents. Geochim Cosmochim Acta 48:693–709

    Google Scholar 

  • Bland PA, Jackson MD, Coker RF, Cohen BA, Webber JBW, Lee MR, Duffy CM, Chater RJ, Ardakani MG, McPhail DS, McComb DW, Benedix GK (2009) Why aqueous alteration in asteroids was isochemical: high porosity [≠] high permeability. Earth Planet Sci Lett 287:559–568

    Google Scholar 

  • Bonal L, Quirico E, Bourot-Denise M, Montagnac G (2006) Determination of the petrologic type of CV3 chondrites by Raman spectroscopy of included organic matter. Geochim Cosmochim Acta 70:1849–1863

    Google Scholar 

  • Bonal L, Bourot-Denise M, Quirico E, Montagnac G, Lewin E (2007) Organic matter and metamorphic history of CO chondrites. Geochim Cosmochim Acta 71:1605–1623

    Google Scholar 

  • Brazzle RH, Pravdivtseva OV, Meshik AM, Hohenberg CM (1999) Verification and interpretation of the I-Xe chronometer. Geochim Cosmochim Acta 63:739–760

    Google Scholar 

  • Brearley AJ (1993) Matrix and fine-grained rims in the unequilibrated CO3 chondrite, ALH A77307: origins and evidence for diverse, primitive nebular dust components. Geochim Cosmochim Acta 57:1521–1550

    Google Scholar 

  • Brearley AJ (1994) Metamorphic effects in the matrices of CO3 chondrites: compositional and mineralogical variations (abstract). Lunar Planet Sci 25:165–166

    Google Scholar 

  • Brearley AJ (1996) The nature of matrix in unequilibrated chondritic meteorites and its possible relationship to chondrules. In: Hewins RH, Jones RH, Scott ERD (eds) Chondrules and the protoplanetary disk. Cambridge University Press, Cambridge, pp 137–152

    Google Scholar 

  • Brearley AJ (1997a) Contrasting microstructures of fayalitic olivine in matrix and chondrules in the Allende CV3 chondrite (abstract). Lunar Planet Sci 28:151–152

    Google Scholar 

  • Brearley AJ (1997b) Disordered biopyriboles, amphibole, and talc in the Allende meteorite; products of nebular or parent body aqueous alteration? Science 276:1103–1105

    Google Scholar 

  • Brearley AJ (1999) Origin of graphitic carbon and pentlandite in matrix olivines in the Allende meteorite. Science 285:1380–1382

    Google Scholar 

  • Brearley AJ (2003) Nebular and parent body processing. In: Davis AM (ed) Treatise on geochemistry, vol 1, Meteorites, comets and planets. Elsevier, Oxford, pp 247–268

    Google Scholar 

  • Brearley AJ (2006) The action of water. In: Dante L, McSween HY Jr (eds) Meteorites and the early solar system II. Arizona University Press, Tucson, pp 587–624

    Google Scholar 

  • Brearley AJ, Burger PV (2007) Hydrothermal alteration behavior of Kainsaz (CO3) at low temperatures under reducing conditions: insights into incipient aqueous alteration of carbonaceous chondrites (abstract). Lunar Planet Sci 38:1687

    Google Scholar 

  • Brearley AJ, Jones RH (1998) Chondritic meteorites. In: Paprika JJ (ed) Planetary materials. Mineralogical Society of America, Washington, DC, pp 1–398

    Google Scholar 

  • Brearley AJ, Prinz M (1996) Dark inclusions in the Allende meteorite: new insights from transmission electron microscopy (abstract). Lunar Planet Sci 18:161–162

    Google Scholar 

  • Brearley AJ, Shearer CK (2000) Origin of calcium-Fe-rich pyroxenes in Allende matrix: clues from rare-earth-element abundances (abstract). Meteor Planet Sci 35(Suppl):A33

    Google Scholar 

  • Bridges JC, Alexander CMO’D, Hutchison R, Franchi IA, Pillinger CT (1997) Sodium, chlorine-rich mesostases in Chainpur (LL3) and Parnallee (LL3) chondrules. Meteor Planet Sci 32:555–565

    Google Scholar 

  • Brigham CA, Hutcheon ID, Papanastassiou DA, Wasserburg GJ (1986) Evidence for 26Al and Mg isotopic heterogeneity in a fine-grained CAI (abstract). Lunar Planet Sci 17:85–86

    Google Scholar 

  • Buchanan PC, Zolensky ME, Reid AM (1997) Petrology of Allende dark inclusions. Geochim Cosmochim Acta 61:1733–1743

    Google Scholar 

  • Burbine TH, McCoy TJ, Meibom A, Gladman B, Keil K (2002) Meteoritic parent bodies: their number and identification. In: Bottke WF Jr et al (eds) Asteroids III. Arizona University Press, Tucson, pp 653–667

    Google Scholar 

  • Burger PV, Brearley AJ (2005) Localized chemical redistribution during aqueous alteration in CR2 carbonaceous chondrites EET87770 and EET92105. Lunar and Planetary Science XXXVI CDROM abstract, p 2288

    Google Scholar 

  • Buseck PR, Huang B-J (1985) Conversion of carbonaceous material to graphite during metamorphism. Geochim Cosmochim Acta 49:2003–2016

    Google Scholar 

  • Busemann H, Alexander CMO’D, Nittler LR (2007) Characterization of insoluble organic matter in primitive meteorites by microRaman spectroscopy. Meteor Planet Sci 42:1387–1416

    Google Scholar 

  • Chizmadia LJ, Rubin AE, Wasson JT (2002) Mineralogy and petrology of amoeboid olivine inclusions in CO3 chondrites: relationship to parent body aqueous alteration. Meteor Planet Sci 37:1781–1796

    Google Scholar 

  • Choi B-G, McKeegan KD, Krot AN, Wasson JT (1998) Oxygen with high Δ17O in magnetite from unequilibrated ordinary chondrites. Nature 392:577–579

    Google Scholar 

  • Choi B-G, Krot AN, Wasson JT (2000) Oxygen-isotopes in magnetite and fayalite in CV chondrites Kaba and Mokoia. Meteor Planet Sci 35:1239–1249

    Google Scholar 

  • Christophe Michel-Lévy M (1976) La matrice noire et blanche de la chondrite de Tieschitz. Earth Planet Sci Lett 30:143–150

    Google Scholar 

  • Ciesla F (2005) Chondrule-forming processes–an overview. In: Krot AN, Scott ERD, Reipurth B (eds) Chondrites and the protoplanetary disk, vol 341, Astronomical Society of the Pacific conference series. Astronomical Society of the Pacific, San Francisco, pp 811–820

    Google Scholar 

  • Clayton RN, Mayeda TK (1999) Oxygen isotope studies of carbonaceous chondrites. Geochim Cosmochim Acta 63:2089–2104

    Google Scholar 

  • Clayton RN, Onuma N, Grossman L, Mayeda TK (1977) Distribution of the pre-solar component in allende and other carbonaceous chondrites. Earth Planet Sci Lett 34:209–224

    Google Scholar 

  • Clayton RN, Onuma N, Ikeda Y, Mayeda TK, Hutcheon I, Olsen EJ, Molini-Velsko C (1983) Oxygen isotopic compositions of chondrules in Allende and ordinary chondrites. In: King EA (ed) Chondrules and their origins. Lunar and Planetary Institute, Houston

    Google Scholar 

  • Cody GD, Alexander CMO’D, Yabuta H, Kilcoyne ALD, Araki T, Ade H, Dera R, Fogel M, Militzer B, Mysen BO (2008) Organic thermometry for chondritic parent bodies. Earth Planet Sci Lett 272:446–455

    Google Scholar 

  • Cohen BA, Coker RF (2000) Modeling of liquid water on CM meteorite parent bodies and implications for amino acid racemization. Icarus 145:369–381

    Google Scholar 

  • Coker RF, Cohen BA (2001) The effect of liquid transport on the modelling of CM parent bodies. Meteor Planet Sci 36:A43–A44

    Google Scholar 

  • Cosarinsky M, Leshin LA, MacPherson GJ, Guan Y, Krot AN (2008) Chemical and oxygen isotopic compositions of accretionary rim and matrix olivine in CV chondrites: constraints on the evolution of nebular dust. Geochim Cosmochim Acta 72:1887–1913

    Google Scholar 

  • Desch SJ, Connolly HC Jr (2002) A thermal model of the processing of particles in solar nebula shocks: applications to the cooling rates of chondrules. Meteor Planet Sci 37:183–207

    Google Scholar 

  • Desch SJ, Ciesla FJ, Hood LL, Nakamoto T (2005) Heating of chondritic materials in solar nebula shocks. In: Krot AN, Scott ERD, Reipurth B (eds) Chondrites and the protoplanetary disk, vol 341, Astronomical Society of the Pacific Conference Series. Astronomical Society of the Pacific, San Francisco, pp 849–873

    Google Scholar 

  • Dodd RT, Van Schmus WR, Koffman DM (1967) A survey of the unequilibrated ordinary chondrites. Geochim Cosmochim Acta 31:921–951

    Google Scholar 

  • Dohmen R, Chakraborty S, Palme H, Rammensee W (1998) Solid-solid reactions mediated by a gas phase; an experimental study of reaction progress and the role of surfaces in the system olivine + Fe metal. Am Miner 83:970–984

    Google Scholar 

  • Fagan TJ, Krot AN, Keil K, Yurimoto H (2004) Oxygen isotopic compositions of amoeboid olivine aggregates in the reduced CV3 chondrites Efremovka, Vigarano and Leoville. Geochim Cosmochim Acta 68:2591–2611

    Google Scholar 

  • Fagan TJ, Guan Y, MacPherson GJ (2007) Al-Mg isotopic evidence for episodic alteration of Ca-Al-rich inclusions from Allende. Meteor Planet Sci 42:1221–1240

    Google Scholar 

  • Fahey AJ, Zinner E, Kurat K, Kracher A (1994) Hibonite-hercynite inclusion HH-1 from the Lance (CO3) meteorite: the history of an ultrarefractory CAI. Geochim Cosmochim Acta 58:4779–4793

    Google Scholar 

  • Fedkin AV, Grossman L (2010) Condensation of the high-FeO silicates in primitive chondrites: still a problem (abstract). Lunar Planet Sci 41:1448

    Google Scholar 

  • Ford RL, Brearley AJ (2008) Element exchange between matrix and CAIs in the Allende meteorite (abstract). Lunar Planet Sci 39:2399

    Google Scholar 

  • Ford RL, Brearley AJ (2010) Discovery of vesuvianite and kaolinite formed during the alteration of melilite in an Allende Type A CAI: characterization by FIB/TEM (abstract). Lunar Planet Sci 41:1402

    Google Scholar 

  • Fruland RM, King AE, McKay DS (1978) Allende dark inclusions. In: Proceedings of the 9th Lunar and Planetary Science Conference, Houston, pp 1305−1329

    Google Scholar 

  • Göpel C, Manhes G, Allegre CJ (1994) U-Pb systematics of phosphates from equilibrated ordinary chondrites. Earth Planet Sci Lett 121:153–171

    Google Scholar 

  • Greenwood RC, Franchi IA (2004) Alteration and metamorphism of CO3 chondrites: evidence from oxygen and carbon isotopes. Meteor Planet Sci 39:1823–1838

    Google Scholar 

  • Greenwood RC, Hutchison R, Huss GR, Hutcheon ID (1992) CAIs in CO3 meteorites: parent body or nebular alteration? (abstract). Meteoritics 27:229

    Google Scholar 

  • Grimm RE, McSween HY Jr (1989) Water and the thermal evolution of carbonaceous chondrite parent bodies. Icarus 82:244–280

    Google Scholar 

  • Grossman JN, Brearley AJ (2005) On the onset of metamorphism in ordinary and carbonaceous chondrites. Meteor Planet Sci 40:87–122

    Google Scholar 

  • Grossman J, Alexander CMO’D, Wang JH, Brearley AJ (2000) Bleached chondrules: evidence for widespread aqueous processes on the parent asteroids of ordinary chondrites. Meteor Planet Sci 35:467–486

    Google Scholar 

  • Grossman JN, Alexander CMO’D, Wang JH, Brearley AJ (2002) Zoned chondrules in Semarkona: evidence for high- and low-temperature processing. Meteor Planet Sci 37:49–73

    Google Scholar 

  • Guimon RK, Symes SJK, Sears DWG, Benoit PH (1995) Chemical and physical study of type 3 chondrites XII: the metamorphic history of CV chondrites and their components. Meteoritics 30:704–714

    Google Scholar 

  • Harlov DE, Förster H-J, Nijland TG (2002) Fluid-induced nucleation of REE-phosphate minerals in apatite: nature and experiment. Part I. Chlorapatite. Am Mineral 87:245–261

    Google Scholar 

  • Hashimoto A, Grossman L (1987) Alteration of Al-rich inclusions inside amoeboid olivine aggregates in the Allende meteorite. Geochim Cosmochim Acta 51:1685–1704

    Google Scholar 

  • Hashimoto A, Wood JA (1986) Enhanced volatility of CaO in H2O-rich gas environments as a factor in the alteration of Ca, Al-rich inclusions (abstract). Meteoritics 21:391–392

    Google Scholar 

  • Hayatsu R, Scott RG, Studier MH, Lewis RS, Anders E (1980) Carbynes in meteorites: detection, low-temperature origin, and implications for interstellar molecules. Science 209:1515–1518

    Google Scholar 

  • Holmberg AA, Hashimoto A (1992) A unique, (almost) unaltered spinel-rich fine-grained inclusion in Kainsaz. Meteoritics 27:149–153

    Google Scholar 

  • Housley RM, Cirlin EH (1983) On the alteration of Allende chondrules and formation of the matrix. In: King ED (ed) Chondrules and their origins. Lunar and Planetary Institute, Houston, pp 145–161

    Google Scholar 

  • Hsu W, Guan Y, Leshin LA, Ushikubo T, Wasserburg GJ (2006) A late episode of irradiation in the early solar system: evidence from extinct 36Cl and 26Al in meteorites. Astrophys J 640:525–529

    Google Scholar 

  • Hua X, Adam J, Palme H, El Goresy A (1988) Fayalite-rich rims, veins, and halos around and in forsteritic olivines in CAIs and chondrules in carbonaceous chondrites: types, compositional profiles and constraints on their formation. Geochim Cosmochim Acta 52:1389–1408

    Google Scholar 

  • Hua X, Huss GR, Tachibana S, Sharp TG (2005) Oxygen, silicon, and Mn–Cr isotopes of fayalite in the Kaba oxidized CV3 chondrite: constraints for its formation history. Geochim Cosmochim Acta 69:1333–1348

    Google Scholar 

  • Huckenholz HG, Lindhuber W, Springer J (1974) The join CaSiO3-Al2O3-Fe2O3 of the CaO-Al2O3-Fe2O3-SiO2 quaternary system and its bearing on the formation of granditic garnets and fassaitic pyroxenes. N Jb Miner Abh 121:160–207

    Google Scholar 

  • Huss GR, Lewis RS (1994a) Noble gases in presolar diamonds I: three distinct components and their implications for diamonds origins. Meteoritics 29:791–811

    Google Scholar 

  • Huss GR, Lewis RS (1994b) Noble gases in presolar diamonds II: component abundances reflect thermal processing. Meteoritics 29:811–829

    Google Scholar 

  • Huss GR, Lewis RS (1995) Presolar diamond, SiC and graphite in primitive chondrites: abundance as a function of meteorite class and petrologic type. Geochim Cosmochim Acta 59:115–160

    Google Scholar 

  • Huss GR, Lewis RS, Hemkin S (1996) The “normal planetary” noble gas component in primitive chondrites: compositions, carrier, and metamorphic history. Geochim Cosmochim Acta 60:3311–3340

    Google Scholar 

  • Huss GR, Alexander CMO’D, Palme H, Bland PA, Wasson JT (2005) Genetic relationships between chondrules, fine grained rims, and interchondrule matrix. In: Reiperth B, Krot AN, Scott ERD (eds) Chondrites and the protoplanetary disk, vol 341, AIP Conference Series. AIP, San Francisco, pp 701–731

    Google Scholar 

  • Huss GR, Rubin AE, Grossman JN (2006) Thermal metamorphism in chondrites. In: Lauretta D, McSween HY Jr (eds) Meteorites and the early solar system II. Arizona University Press, Tucson, pp 567–586

    Google Scholar 

  • Hutcheon ID, Newton RC (1981) Mg isotopes, mineralogy and mode of formation of secondary phases in C3 refractory inclusions (abstract). Lunar Planet Sci 12:491–493

    Google Scholar 

  • Hutcheon ID, Krot AN, Keil K, Phinney DL, Scott ERD (1998) 53Mn-53Cr dating of fayalite formation in the CV3 chondrite Mokoia: evidence for asteroidal alteration. Science 282:1865–1867

    Google Scholar 

  • Hutcheon ID, Marhas KK, Krot AN, Goswami JN, Jones RH (2009) 26Al in plagioclase-rich chondrules in carbonaceous chondrites: evidence of an extended duration of chondrule formation. Geochim Cosmochim Acta 73:5080–5099

    Google Scholar 

  • Hutchison R, Bevan AWR, Agrell SO, Ashworth JR (1979) Accretion temperature of Tieschitz H3, chondritic meteorite. Nature 280:116–119

    Google Scholar 

  • Hutchison R, Alexander CMO’D, Barber DJ (1987) The Semarkona meteorite: first recorded occurrence of smectite in an ordinary chondrite, and its implications. Geochim Cosmochim Acta 51:1875–1882

    Google Scholar 

  • Hutchison R, Alexander CMO’D, Bridges JC (1998) Elemental redistribution in Tieschitz and the origin of white matrix. Meteor Planet Sci 33:1169–1180

    Google Scholar 

  • Ikeda Y (1982) Petrology of the ALH-77003 chondrite (C3). In: Proceedings of the 7th symposium on Antarctic meteorites. Memoirs National Institute of Polar Research special issue, vol 25. Tokyo, pp 34−65

    Google Scholar 

  • Ikeda Y (1983) Alteration of chondrules and matrices in the four Antarctic carbonaceous chondrites ALH 77307 (C3), Y-790123 (C2), Y-75293(C2) and Y-74662(C2). In: Proceedings of the eighth symposium on Antarctic meteorites, Memoirs of the National Institute of Polar Research, vol 30. Tokyo, pp 93−108

    Google Scholar 

  • Ikeda Y, Kimura M (1995) Anhydrous alteration of Allende chondrules in the solar nebula I: Description and alteration of chondrules with known oxygen-isotopic compositions. In: Proceedings of the NIPR Symposium on Antarctic Meteorites, vol 8. Tokyo, pp 97−122

    Google Scholar 

  • Ishii HA, Krot AN, Bradley JP, Keil K, Nagashima K, Teslich N, Jacobsen B, Yin Q-Z (2010) Discovery, mineral paragenesis, and origin of wadalite in a meteorite. Am Mineral 95:440–448

    Google Scholar 

  • Ito M, Nagasawa H, Yurimoto H (2004) Oxygen isotopic SIMS analysis in Allende CAI: details of the very early thermal history of the solar system. Geochim Cosmochim Acta 68:2905–2923

    Google Scholar 

  • Itoh D, Tomeoka K (1998) Na-bearing Ca-Al-rich inclusions in four CO3 chondrites, Kainsaz, Ornans, Lancé, and Warrenton (abstract). Symp Antarct Meteorites 23:42–44

    Google Scholar 

  • Itoh D, Tomeoka K (2003) Dark inclusions in CO3 chondrites: new indicators of parent-body processes. Geochim Cosmochim Acta 67:153–169

    Google Scholar 

  • Itoh S, Kojima H, Yurimoto H (2004) Petrography and oxygen isotopic compositions in refractory inclusions from CO chondrites. Geochim Cosmochim Acta 68:183–194

    Google Scholar 

  • Jabeen I, Kusakabe M, Nakamura T, and Nagao K (1998a) Oxygen isotopic signature in Allende chondrules (abstract). Meteor Planet Sci 33 (Suppl):A76−A77

    Google Scholar 

  • Jabeen I, Kusakabe M, Nakamura T, Nagao K (1998b) Oxygen isotope study of Tsukuba chondrite, some HED meteorites and Allende chondrules. Antarct Meteor Res 11:122–135

    Google Scholar 

  • Jabeen I, Kusakabe M, Nakamura T, Nagao K (1999) Parent body processes in Allende: evidence from oxygen isotope study of the Allende chondrules (abstract). Symp Antarct Meteorites 24:59–61

    Google Scholar 

  • Jacobsen B, Yin Q-Z, Moynier F, Amelin Y, Krot AN, Nagashima K, Hutcheon ID, Palme H (2008) 26Al-26 Mg and 207Pb-206Pb systematics of Allende CAIs: Canonical solar initial 26Al/27Al ratio reinstated. Earth Planet Sci Lett 272:353–364

    Google Scholar 

  • Jogo K, Nakamura T, Noguchi T, Zolotov MYu (2009) Fayalite in the Vigarano CV3 carbonaceous chondrite: occurrences, formation age and conditions. Earth Planet Sci Lett 287:320–328

    Google Scholar 

  • Jogo K, Nakamura T, Ito M, Messenger S (2010) Mn-Cr systematics of secondary fayalites in the CV3 carbonaceous chondrites A 881317, MET 00430 and MET 01074 (abstract). Lunar Planet Sci 41:1573

    Google Scholar 

  • Johnson CA, Prinz M, Weisberg MK, Clayton RN, Mayeda TK (1990) Dark inclusions in Allende, Leoville, and Vigarano: evidence for nebular oxidation of CV3 constituents. Geochim Cosmochim Acta 54:819–831

    Google Scholar 

  • Jones RH (1997) Alteration of plagioclase-rich chondrules in CO3 chondrites: evidence for late-stage sodium and Fe metasomatism in a nebular environment. In: Zolensky ME, Krot AN, Scott ERD (eds) Workshop on parent-body and Nebular modification of chondritic materials (abstract). Lunar and Planetary Institute, Houston, pp 30−31

    Google Scholar 

  • Jones RH, Brearley AJ (2010a) Late-stage fluids on the LL chondrite parent body: evidence from feldspar in the LL4 chondrites Bo Xian and Bjurböle. LPI Contribution No. 1533:2133

    Google Scholar 

  • Jones RH, Brearley AJ (1994) Reduced plagioclase-rich chondrules in the Lance and Kainsaz CO3 chondrites (abstract). Lunar Planet Sci 25:641–642

    Google Scholar 

  • Jones CL, Brearley AJ (2006) Experimental aqueous alteration of the Allende meteorite under oxidizing conditions: constraints on asteroidal alteration. Geochim Cosmochim Acta 70:1040–1058

    Google Scholar 

  • Jones RH, Brearley AJ (2010b) Fluids on the LL chondrite parent body: evidence from the Bo Xian chondrites (abstract). Meteor Planet Sci 45(Suppl):A96

    Google Scholar 

  • Jones RH, Rubie DC (1991) Thermal histories of CO3 chondrites — application of olivine diffusion modelling to parent body metamorphism. Earth Planet Sci Lett 106:73–86

    Google Scholar 

  • Jones RH, Grossman JN, Rubin AE (2005) Chemical, mineralogical and isotopic properties of chondrules: clues to their origin. In: Reiperth B, Krot AN, Scott ERD (eds) Chondrites and the protoplanetary disk, vol 341. AIP Conference Series, San Francisco, pp 251–285

    Google Scholar 

  • Kallemeyn GW, Wasson JT (1981) The compositional classification of chondrites-I. The carbonaceous chondrite groups. Geochim Cosmochim Acta 45:1217–1230

    Google Scholar 

  • Keller LP, Buseck PR (1990a) Aqueous alteration in the Kaba CV3 carbonaceous chondrite. Geochim Cosmochim Acta 54:2113–2120

    Google Scholar 

  • Keller LP, Buseck PR (1990b) Matrix mineralogy of the Lancé CO3 carbonaceous chondrite: a transmission electron microscope study. Geochim Cosmochim Acta 54:1155–1163

    Google Scholar 

  • Keller LP, McKay DS (1993) Aqueous alteration of the Grosnaja CV3 carbonaceous chondrite (abstract). Meteoritics 28:378

    Google Scholar 

  • Keller LP, Thomas KL, Clayton RN, Mayeda TK, DeHart JM, McKay DS (1994) Aqueous alteration of the Bali CV3 chondrite: evidence from mineralogy, mineral chemistry, and oxygen isotopic compositions. Geochim Cosmochim Acta 58:5589–5598

    Google Scholar 

  • Kerridge JF (1972) Fe transport in chondrites: evidence from the Warrenton chondrite. Geochim Cosmochim Acta 36:913–916

    Google Scholar 

  • Kim GL, Yurimoto H, Sueno S (2002) Oxygen isotopic composition of a compound Ca-Al-rich inclusion from Allende meteorite: implications for origin of palisade bodies and O-isotopic environment in the CAI-forming region. J Mineral Petrol Sci 97:161–167

    Google Scholar 

  • Kimura M, Ikeda Y (1995) Anhydrous alteration of Allende chondrules in the solar nebula; II, Alkali-Ca exchange reactions and formation of nepheline, sodalite and Ca-rich phases in chondrules. Proc NIPR Symp Antarct Meteor 8:123–138

    Google Scholar 

  • Kimura M, Ikeda Y (1998) Hydrous and anhydrous alterations of chondrules in Kaba and Mokoia CV chondrites. Meteor Planet Sci 33:1139–1146

    Google Scholar 

  • Kimura M, Grossman JN, Weisberg MK (2008) Fe-Ni metal in primitive chondrites: indicators of classification and metamorphic conditions for ordinary and CO chondrites. Meteor Planet Sci 43:1161–1177

    Google Scholar 

  • Kirschbaum C (1988) Carrier phases for iodine in the Allende meteorite and their associated 129Xer/129I ratios; a laser microprobe study. Geochim Cosmochim Acta 52:679–699

    Google Scholar 

  • Kojima T, Tomeoka K (1996) Indicators of aqueous alteration and thermal metamorphism on the CV parent body: microtextures of a dark inclusion from Allende. Geochim Cosmochim Acta 60:2651–2666

    Google Scholar 

  • Kojima T, Yada S, Tomeoka K (1995) Ca-Al-rich inclusions in three Antarctic CO3 chondrites, Yamato-81020, Yamato-820050 and Yamato-790992: record of low-temperature alteration. Proc NIPR Symp Antarct Meteor 8:79–96

    Google Scholar 

  • Kovach HA, Jones RH (2010) Feldspar in type 4–6 ordinary chondrites: metamorphic processing on the H and LL chondrite parent bodies. Meteor Planet Sci 45:246–264

    Google Scholar 

  • Krot AN, Scott ERD, Zolensky ME (1995) Mineralogic and chemical variations among CV3 chondrites and their components: nebular and asteroidal processing. Meteoritics 30:748–775

    Google Scholar 

  • Krot AN, Scott ERD, Zolensky ME (1997a) Origin of fayalitic olivine rims and plate-like matrix olivine in the CV3 chondrite Allende and its dark inclusions. Meteoritics 32:31–49

    Google Scholar 

  • Krot AN, Zolensky ME, Wasson JT, Scott ERD, Keil K, Ohsumi K (1997b) Carbide-magnetite-bearing type 3 ordinary chondrites. Geochim Cosmochim Acta 61:219–237

    Google Scholar 

  • Krot AN, Petaev MI, Scott ERD, Choi B-G, Zolensky ME, Keil K (1998a) Progressive alteration in CV3 chondrites: more evidence for asteroidal alteration. Meteor Planet Sci 33:1065–1085

    Google Scholar 

  • Krot AN, Zolensky ME, Keil K, Scott ERD, Nakamura K (1998b) Secondary Ca-Fe-rich minerals in the Bali-like and Allende-like oxidized CV3 chondrites and Allende dark inclusions. Meteor Planet Sci 33:623–645

    Google Scholar 

  • Krot AN, Brearley AJ, Ulyanov AA, Biryukov VV, Swindle TD, Keil K, Mittlefehldt DW, Scott ERD, Clayton RN, Mayeda TK (1999) Mineralogy, petrography and bulk chemical, I-Xe, and oxygen isotopic compositions of dark inclusions in the reduced CV3 chondrite Efremovka. Meteor Planet Sci 34:67–89

    Google Scholar 

  • Krot AN, Meibom A, Keil K (2000a) A clast of Bali-like oxidized CV3 material in the reduced CV3 chondrite breccia Vigarano. Meteor Planet Sci 35:817–827

    Google Scholar 

  • Krot AN, Hiyagon H, Petaev MI, Meibom A (2000b) Oxygen isotopic compositions of secondary Ca-Fe-rich silicates from the Allende dark inclusions: Evidence against high-temperature formation (abstract). In: Lunar Planetary Science XXXI, Lunar Planetary Institute, Houston, CD ROM, No 1463

    Google Scholar 

  • Krot AN, Petaev MI, Meibom A, Keil K (2001) In situ growth of Ca-rich rims around Allende dark inclusions. Geochem Int 36:351–368

    Google Scholar 

  • Krot AN, Keil K, Goodrich CA, Scott ERD, Weisberg MK (2003) Classification of meteorites. In: Davis M (ed) Treatise on geochemistry, vol 1, Meteorites, comets and planets. Elsevier, Oxford, pp 143–200

    Google Scholar 

  • Krot AN, MacPherson GJ, Ulyanov AA, Petaev MI (2004a) Fine-grained, spinel-rich inclusions from the reduced CV chondrites Efremovka and Leoville: I. Mineralogy, petrology, and bulk chemistry. Meteor Planet Sci 39:1517–1553

    Google Scholar 

  • Krot AN, Petaev MI, Bland PA (2004b) Multiple formation mechanisms of ferrous olivine in CV3 carbonaceous chondrites during fluid-assisted metamorphism. Antarct Meteor Res 17:154–172

    Google Scholar 

  • Krot AN, Petaev MI, Russell SS, Itoh S, Fagan TJ, Yurimoto H, Chizmadia LJ, Weisberg MK, Komatsu M, Ulyanov AA, Keil K (2004c) Amoeboid olivine aggregates and related objects in carbonaceous chondrites: records of nebular and asteroid processes. Chem Erde 64:185–239

    Google Scholar 

  • Krot AN, Hutcheon ID, Brearley AJ, Pravdivtseva OV, Petaev MI, Hohenberg CM (2006) Timescales for secondary alteration of chondritic meteorites. In: Lauretta D, McSween HY Jr (eds) Meteorites and the early solar system II. Arizona University Press, Tucson, pp 525–555

    Google Scholar 

  • Krot AN, Yurimoto H, Hutcheon ID, Libourel G, Chaussidon M, Petaev MI, MacPherson GJ, Paque-Heather J, Wark D (2007) Anorthite-rich, igneous (Type C) Ca, Al-rich inclusions from the CV carbonaceous chondrite Allende: evidence for multistage formation history. Geochim Cosmochim Acta 71:4342–4364

    Google Scholar 

  • Krot AN, Chaussidon M, Yurimoto H, Sakamoto N, Nagashima K, Hutcheon ID, MacPherson GJ (2008) Oxygen isotopic compositions of Allende Type C CAIs: Evidence for isotopic exchange during nebular melting and asteroidal metamorphism. Geochim Cosmochim Acta 72:2534–2555

    Google Scholar 

  • Krot AN, Amelin Y, Bland PA, Ciesla FJ, Connelly J, Davis AM, Huss GR, Hutcheon ID, Makide K, Nagashima K, Nyquist LE, Russell SS, Scott ERD, Thrane K, Yurimoto H, Yin QZ (2009) Origin and chronology of chondritic components: a review. Geochim Cosmochim Acta 73:4963–4997

    Google Scholar 

  • Krot AN, Nagashima K, Hutcheon ID, Ishii HA, Jacobsen B, Yin Q-Z, Davis AM, Simon SB (2010) Mineralogy, petrography, oxygen and magnesium isotopic compositions and formation age of grossular-bearing assemblages in the Allende CAIs (abstract). Lunar Planet Sci 41:1441

    Google Scholar 

  • Krot A, Hutcheon I, Nagashima K, Crites S, Gasda P, Hallis L, Jilly C, Petaev M, Robertson K, Taylor G, Telus M (2011) Origin of ferroan olivine in matrices of unequilibrated chondrites (abstract). Meteor Planet Sci 45 (Suppl):2443–2464

    Google Scholar 

  • Kunihiro T, Rubin AE, McKeegan KD, Wasson JT (2004) Initial 26Al/27Al in carbonaceous-chondrite chondrules: too little 26Al to melt asteroids. Geochim Cosmochim Acta 68:2947–2957

    Google Scholar 

  • Kurahashi E, Kita NT, Nagahara H, Morishita Y (2008) 26Al–26 Mg systematics of chondrules in a primitive CO chondrite. Geochim Cosmochim Acta 72:3865–3883

    Google Scholar 

  • Kurat G (1969) The formation of chondrules and chondrites and some observations on chondrules from the Tieschitz meteorite. In: Millman PM (ed) Meteorite research. Reidel, Dordrecht, pp 185–190

    Google Scholar 

  • Kurat G (1975) De kohlige Chondrit Lance: Eine petrologische analyse der komplexen genese eines gchondriten. Tschermaks Min Petr Mitt 22:38–78

    Google Scholar 

  • Kurat G, Kracher A (1980) Basalts in the Lancé carbonaceous chondrite. Zeitschr Naturforsch 35a:180–190

    Google Scholar 

  • Kurat G, Palme H, Brandstätter F, Huth J (1989) Allende xenolith AF: undisturbed record of condensation and aggregation of matter in the solar nebula. Zeitschr Naturforsch 44a:988–1004

    Google Scholar 

  • Lavielle B, Marti K (1992) Trapped xenon in ordinary chondrites. J Cheochem Res 97:875–881

    Google Scholar 

  • Li CL, Bridges JC, Hutchison R, Franchi IA, Sexton AS, Ouyang ZY, Pillinger CT (2000) Bo Xian (LL3.9): oxygen-isotopic and mineralogical characterisation of separated chondrules. Meteor Planet Sci 35:561–568

    Google Scholar 

  • Lin Y, Guan Y, Leshin LA, Ouyang Z, Wang D (2005) Short-lived chlorine-36 in a Ca- and Al-rich inclusion from the Ningqiang carbonaceous chondrite. Proc Natl Acad Sci 102:1306–1311

    Google Scholar 

  • Lugmair GW, Shukolyukov A (1998) Early solar system timescales according to 53Mn-53Cr systematics. Geochim Cosmochim Acta 62:2863–2886

    Google Scholar 

  • MacPherson GJ (2003) Calcium–aluminum-rich inclusions in chondritic meteorites. In: Davis AM (ed) Meteorites, comets, and planets meteorites, comets, and planets, vol 1. Elsevier-Pergamon, Oxford, pp 201–241

    Google Scholar 

  • MacPherson GJ, Wark DA, Armstrong JT (1988) Primitive material surviving in chondrites: refractory inclusions. In: Kerridge JF, Matthews MS (eds) Meteorites and the early solar system. Arizona University Press, Tucson, pp 746–807

    Google Scholar 

  • MacPherson GJ, Davis AM, Zinner EK (1995) The distribution of aluminum-26 in the early solar system – a reappraisal. Meteoritics 30:365–386

    Google Scholar 

  • MacPherson GJ, Simon SB, Davis AM, Grossman L, Krot AN (2005) Calcium-Aluminum-rich inclusions: major unanswered questions. In: Reiperth B, Krot AN, Scott ERD (eds) Chondrules and the protoplanetary disk, vol 341. AIP Conference Series, San Francisco, pp 225–250

    Google Scholar 

  • Makide K, Nagashima K, Krot AN, Huss GR, Hutcheon ID, Bischoff A (2009) Oxygen− and magnesium-isotope compositions of calcium−aluminum-rich inclusions from CR2 carbonaceous chondrites. Geochim Cosmochim Acta 73:5018–5051

    Google Scholar 

  • McGuire AV, Hashimoto A (1989) Origin of zoned fine-grained inclusions in the Allende meteorite. Geochim Cosmochim Acta 53:1123–1133

    Google Scholar 

  • McSween HY Jr (1977a) Petrographic variations among carbonaceous chondrites of the Vigarano type. Geochim Cosmochim Acta 41:1777–1790

    Google Scholar 

  • McSween HY Jr (1977b) Carbonaceous chondrites of the Ornans type: a metamorphic sequence. Geochim Cosmochim Acta 44:477–491

    Google Scholar 

  • McSween HY Jr, Labotka TC (1993) Oxidation during metamorphism of the ordinary chondrites. Geochim Cosmochim Acta 57:1105–1114

    Google Scholar 

  • McSween HY Jr, Ghosh A, Grimm RE, Wilson L, Young ED (2002) Thermal evolution models of asteroids. In: Bottke WF Jr et al (eds) Asteroids III. University of Arizona, Tucson, pp 559–571

    Google Scholar 

  • Morimoto N, Fabries J, Ferguson AK, Ginzburg IV, Ross M, Seifert FA, Zussman J, Aoki K, Gottardi G (1988) Nomenclature of pyroxenes. Am Mineral 73:1123–1133

    Google Scholar 

  • Nagashima K, Krot AN, Hua X (2007) Common presence of 16O-rich melilite in calcium-aluminum-rich inclusions from the least metamorphosed CV carbonaceous chondrite Kaba (abstract). Lunar Planet Sci 38:2059

    Google Scholar 

  • Nagashima K, Krot AN, Huss GR, Yurimoto H (2010) Micron scale oxygen isotope heterogeneity in anorthite of A forsterite-bearing Type B CAI E60 from Efremovka (abstract). Lunar Planet Sci 41:2255

    Google Scholar 

  • Naumov GB, Ryzhenko BN, Khodakovki YL (1971) Handbook of thermodynamic quantities for geology. Atomic Press, Moscow, 240 p

    Google Scholar 

  • Nichols RH Jr, Hohenberg CM, Olinger CT (1990) Allende chondrules and rims: I-Xe systematics (abstract). Lunar Planet Sci 21:879–880

    Google Scholar 

  • Nomura K, Miyamoto M (1998) Hydrothermal experiments on alteration of Ca-Al-rich inclusions (CAIs) in carbonaceous chondrites: implication for aqueous alteration in parent asteroids. Geochem Cosmochim Acta 62:3575–3588

    Google Scholar 

  • Palme H, Wlotzka F (1981) Iridium-rich phases in Ornans (abstract). Meteoritics 16:373–374

    Google Scholar 

  • Paque JM, Cuzzi JN (1997) Physical characteristics of chondrules and rims, and aerodynamic sorting in the solar nebula (abstract). Lunar Planet Sci 28:1189

    Google Scholar 

  • Peck JA (1988) Primitive material surviving in chondrites: matrix. In: Kerridge JF, Matthews MS (eds) Meteorites and the early solar system. Arizona University Press, Tucson, pp 718–745

    Google Scholar 

  • Petaev MI, MFeenko MV (1997) Thermodynamic modeling of aqueous alteration in CV chondrites. In: Zolensky ME, Krot AN, Scott ERD (eds) Workshop on parent-body and nebular modification of chondritic materials, Maui, July 17−19, 1997, Hawai’i. LPI Technical Report, LPITR 97-02. Lunar and Planetary Institute, Houston TX, p 49

    Google Scholar 

  • Pravdivtseva OV, Krot AN, Hohenberg CM, Meshik AP, Weisberg MK, Keil K (2003a) The I-Xe record of alteration in the Allende CV chondrite. Geochim Cosmochim Acta 67:5011–5026

    Google Scholar 

  • Pravdivtseva OV, Hohenberg CM, Meshik AP, Krot AN, Brearley AJ (2003b) I-Xe ages of the dark inclusions from the reduced CV3 chondrites Leoville, Efremovka and Vigarano (abstract). Meteor Planet Sci 38(Suppl):A140

    Google Scholar 

  • Putnis A, Austrheim H (2010) Fluid-induced processes: metasomatism and metamorphism. Geofluids 10:254–269

    Google Scholar 

  • Rietmeijer FJM, MacKinnon IDR (1985) Poorly graphitized carbon as a new cosmothermometer for primitive extraterrestrial materials. Nature 315:733–736

    Google Scholar 

  • Rubin AE (1989) Size frequency distributions of chondrules in CO3 chondrites. Meteoritics 24:179–189

    Google Scholar 

  • Rubin AE (1998) Correlated petrologic and geochemical characteristics of CO3 chondrites. Meteor Planet Sci 33:383–391

    Google Scholar 

  • Rubin AE (2010) Petrologic, geochemical and experimental constraints on models of chondrule formation. Earth Planet Sci Lett 50:3–27

    Google Scholar 

  • Rubin AE, James JA, Keck BD, Weeks KS, Sears DWG, Jarosewich E (1985) The colony meteorite and variations in CO3 chondrite properties. Meteoritics 20:175–196

    Google Scholar 

  • Rubin AE, Wasson JT, Clayton RN, Mayeda TK (1990) Oxygen isotopes in chondrules and coarse-grained chondrule rims from the Allende meteorite. Earth Planet Sci Lett 96:247–255

    Google Scholar 

  • Russell SS, Huss GR, Fahey AJ, Greenwood RC, Hutchison R, Wasserburg GJ (1998) An isotopic and petrologic study of calcium-aluminum-rich inclusions from CO3 meteorites. Geochim Cosmochim Acta 62:689–714

    Google Scholar 

  • Ryerson FJ, McKeegan KD (1994) Determination of oxygen self-diffusion in akermanite, anorthite, diopside, and spinel: implications for oxygen isotopic anomalies and the thermal histories of Ca-Al-rich inclusions. Geochim Cosmochim Acta 58:3713–3734

    Google Scholar 

  • Ryerson FJ, Durham WB, Cherniak DJ, Lanford WA (1989) Oxygen diffusion in olivine: effect of oxygen fugacity and implication for creep. J Geophys Res 94:4105–4118

    Google Scholar 

  • Scott ERD, Jones RH (1990) Disentangling nebular and asteroidal features of CO3 carbonaceous chondrites. Geochim Cosmochim Acta 54:2485–2502

    Google Scholar 

  • Scott ERD, Krot AN (2005a) Chondritic meteorites and their components. In: Krot AN, Scott ERD, Reipurth B (eds) Chondrules and the protoplanetary disk, vol 341. ASP Conference Series, San Francisco, pp 15–54

    Google Scholar 

  • Scott ERD, Krot AN (2005b) Thermal processing of silicate dust in the solar nebula: clues from primitive chondrite matrices. Astrophys J 623:571–578

    Google Scholar 

  • Sears DWG, Batchelor DJ, Lu J, Keck BD (1991) Metamorphism of CO and CO-like chondrites and comparisons with type 3 ordinary chondrites. Proc NIPR Symp Antarct Meteor 4:319–343

    Google Scholar 

  • Shu FH, Shang H, Gounelle M, Glassgold AE (2001) The origin of chondrules and refractory inclusions in chondritic meteorites. Astrophys J 548:1029–1050

    Google Scholar 

  • Shukolyukov A, Lugmair GW, Irving AJ (2009) Mn–Cr isotope systematics of angrite North West Africa 4801 (abstract). Lunar PlanetSci 30:1381

    Google Scholar 

  • Simon SB, Grossman L, Casanova I, Symes S, Benoit P, Sears DWG, Wacker JF (1995) Axtell, a new CV3 chondrite find from Texas. Meteoritics 30:42–46

    Google Scholar 

  • Stolper E (1982) Crystallization sequences of Ca-Al-rich inclusions from Allende: an experimental study. Geochim Cosmochim Acta 46:2159–2180

    Google Scholar 

  • Stolper E, Paque JM (1986) Crystallization sequences of Ca-Al-rich inclusions from Allende: the effects of cooling rate and maximum temperature. Geochim Cosmochim Acta 50:1785–1806

    Google Scholar 

  • Swindle TD (1998) Implications of iodine-xenon studies for the dating and location of secondary alteration. Meteor Planet Sci 33:1147–1157

    Google Scholar 

  • Swindle TD, Podosek FA (1988) Iodine-xenon dating. In: Kerridge JF, Matthews MS (eds) Meteorites and the early solar system. Arizona University Press, Tucson, pp 1127–1146

    Google Scholar 

  • Swindle TD, Caffee MW, Hohenberg CM, Lindstrom MM (1983) I-Xe studies of individual Allende chondrules. Geochim Cosmochim Acta 47:2157–2177

    Google Scholar 

  • Swindle TD, Caffee MW, Hohenberg CM (1988) Iodine-xenon studies of Allende inclusions: EGGs and the Pink Angel. Geochim Cosmochim Acta 52:2215–2229

    Google Scholar 

  • Swindle TD, Cohen B, Li B, Olson E, Krot AN, Birjukov VV, Ulyanov AA (1998) Iodine – xenon studies of separated components of the Efremovka (CV3) meteorite (abstract). Lunar Planet Sci 29:1005

    Google Scholar 

  • Tomeoka K, Buseck PR (1990) Phyllosilicates in the Mokoia CV carbonaceous chondrite: evidence for aqueous alteration in an oxidizing environment. Geochim Cosmochim Acta 54:1745–1754

    Google Scholar 

  • Tomeoka K, Itoh D (2004) Sodium-metasomatism in chondrules in CO3 chondrites: relationship to parent body thermal metamorphism. Meteor Planet Sci 39:1359–1373

    Google Scholar 

  • Tomeoka K, Kojima H, Yanai K (1989) Yamato-86720: a CM carbonaceous chondrite having experienced extensive aqueous alteration and thermal metamorphism. Proc NIPR Symp Antarct Meteor 2:55–74

    Google Scholar 

  • Tomeoka K, Nomura K, Takeda H (1992) Na-bearing Ca-Al-rich inclusions in the Yamato-791717 CO carbonaceous chondrite. Meteoritics 27:136–143

    Google Scholar 

  • Travis BJ, Schubert G (2005) Hydrothermal convection in carbonaceous chondrite parent bodies. Earth Planet Sci Lett 240:234–250

    Google Scholar 

  • Ushikubo T, Guan Y, Hiyagon H, Sugiura N, Leshin LA (2007) 36Cl, 26Al, and O isotopes in an Allende type B2 CAI: implications for multiple secondary alteration events in the early solar system. Meteor Planet Sci 42:1267–1279

    Google Scholar 

  • Van Schmus WR, Wood JA (1967) A chemical-petrological classification for the chondritic meteorites. Geochim Cosmochim Acta 31:747–765

    Google Scholar 

  • Wark D (1987) Plagioclase-rich inclusions in carbonaceous chondrite meteorites − Liquid condensates? Geochim Cosmochim Acta 51:221–242

    Google Scholar 

  • Wasson JT, Yurimoto H, Russell SS (2001) 16O-rich melilite in CO3.0 chondrites. Possible formation of common, 16O-poor melilite by aqueous alteration. Geochim Cosmochim Acta 65:4539–4549

    Google Scholar 

  • Weinbruch S, Palme H, Muller WF, El Goresy A (1990) FeO-rich rims and veins in Allende forsterite: evidence for high temperature condensation at oxidizing conditions. Meteoritics 25:115–125

    Google Scholar 

  • Weisberg MK, Prinz M (1998) Fayalitic olivine in CV3 chondrite matrix and dark inclusions: a nebular origin. Meteor Planet Sci 33:1087–1111

    Google Scholar 

  • Weisberg MK, Prinz M, Clayton RN, Mayeda TK (1997) CV3 chondrites: three subgroups, not two (abstract). Meteor Planet Sci 32(Suppl):A138–A139

    Google Scholar 

  • Weisberg MK, McCoy TJ, Krot AN (2006) Systematics and evaluation of meteorite classification. In: Lauretta DS, McSween HY Jr (eds) Meteorites and the early solar system II. Arizona University Press, Tucson, pp 19–52

    Google Scholar 

  • Wick M (2010) Formation conditions of plagioclase-bearing type I chondrules in CO chondrites: a study of natural samples and experimental analogs. M.S. thesis, University of New Mexico

    Google Scholar 

  • Young ED, Ash RD, England P, Rumble D (1999) Fluid flow in chondritic parent bodies: deciphering the compositions of planetesimals. Science 286:1331–1335

    Google Scholar 

  • Young ED, Zhang KK, Schubert G (2003) Conditions for pore water convection within carbonaceous chondrite parent bodies — implications for planetesimal size and heat production. Earth Planet Sci Lett 213:249–259

    Google Scholar 

  • Yurimoto H, Morioka M, Nagasawa H (1989) Diffusion in single-crystals of melilite: I. Oxygen. Geochim Cosmochim Acta 53:2387–2394

    Google Scholar 

  • Yurimoto H, Ito M, Nagasawa H (1998) Oxygen isotope exchange between refractory inclusion in Allende and solar nebula gas. Science 282:1874–1877

    Google Scholar 

  • Yurimoto H, Krot AN, Choi B-G, Aléon J, Kunihiro T, Brearley AJ (2008) Oxygen isotopes of chondritic components. In: MacPherson GJ (ed) Oxygen in the solar system, vol 68, Reviews in mineralogy and geochemistry. Mineralogical Society of America, Chantilly, pp 141–187

    Google Scholar 

  • Zolensky M, McSween HY Jr (1988) Aqueous alteration. In: Matthews M, Kerridge JF (eds) Meteorites and the early solar system. Arizona University Press, Tucson, pp 114–143

    Google Scholar 

  • Zolensky ME, Krot AN, and Benedix G. (2008) Record of low-temperature alteration in asteroids. In Reviews in Mineralogy & Geochemistry, Vol. 68 (ed. G. MacPherson), pp. 429–462. Mineralogical Society of America.

    Google Scholar 

  • Zolotov MYu, MFeenko MV, Shock EL (2006) Thermodynamic constraints on fayalite formation on parent bodies of chondrites. Meteor Planet Sci 41:1775–1796

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrian J. Brearley .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Brearley, A.J., Krot, A.N. (2013). Metasomatism in the Early Solar System: The Record from Chondritic Meteorites. In: Metasomatism and the Chemical Transformation of Rock. Lecture Notes in Earth System Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28394-9_15

Download citation

Publish with us

Policies and ethics