Metasomatism in the Early Solar System: The Record from Chondritic Meteorites

  • Adrian J. BrearleyEmail author
  • Alexander N. Krot
Part of the Lecture Notes in Earth System Sciences book series (LNESS)


Mineralogic, petrologic, and isotopic studies of chondritic meteorites have revealed a significant body of evidence of metasomatic processes during the earliest stages of Solar System evolution. The exact nature of these processes, as well as the conditions and environments where metasomatism occurred, are still the subject of vigorous debate. The interaction of aqueous fluids with early Solar System solids affected different chondrite groups to different degrees: even within a single chondrite group the effects of metasomatism can be highly variable. Among the carbonaceous chondrite groups, the CV (Vigarano-type) and CO (Ornans-type) chondrites show the best documented evidence of metasomatic effects. In the oxidized subgroup of the CV chondrites, Ca-Al-rich Inclusions (CAIs), Amoeboid Olivine Aggregates (AOAs), chondrules, and matrix have all been extensively affected by Fe-alkali-halogen metasomatism, that has resulted in the formation of a wide range of secondary, dominantly anhydrous minerals, including grossular, andradite, wollastonite, monticellite, anorthite, forsterite, ferroan olivine, corundum, Na-melilite, nepheline, sodalite, wadalite, Al-diopside, kushiroite, ferroan diopside − hedenbergite pyroxenes, ilmenite, phosphates, magnetite, awaruite, tetrataenite, and Fe,Ni sulfides. Hydrous phases are much rarer, but include, margarite, vesuvianite, and kaolinite. The mineral assemblages that form are highly dependent on the primary mineralogy of the host object: distinct mineral assemblages are produced by alteration of CAIs, chondrules, and matrix, for example. Nebular and asteroidal scenarios for these metasomatic effects have been extensively discussed in the literature for the metasomatism observed in the CV chondrites. Oxygen isotopic studies of the secondary minerals in CV chondrites, such as fayalite, magnetite and Ca, Fe-rich silicates, indicate formation at relatively low temperatures (<550 K) from aqueous solutions, consistent with an asteroidal environment. On the other hand, primary minerals in CAIs show oxygen isotopic heterogeneity, with melilite and anorthite exhibiting heavy isotope enrichments compared with spinel, hibonite, Al,Ti-diopside, and forsterite. The origin of this selective isotopic exchange is still the subject of debate; it may have occurred by gas–solid or gas–melt exchange in the solar nebula or by isotopic exchange with a 16O-depleted fluid in an asteroidal environment. The CO chondrites show significant evidence of metasomatic events, but the degree and extent of metasomatism is much less than that for the CV chondrites. Calcium-rich phases, such as melilite, plagioclase, and glassy mesostasis in CAIs, AOAs and chondrules have been affected the most and have been replaced by fine-grained alteration products. Although the secondary minerals in CO chondrites have not been characterized in as much detail as the CV chondrites, nepheline, sodalite, ilmenite, ferroan olivine, and ferroan diopside − hedenbergite pyroxenes have all been positively identified. Collectively the data indicate that Fe-alkali metasomatism has also affected the CO chondrites, but the involvement of halogens is much less extensive. Although the alteration of CAIs, AOAs and chondrules is extremely heterogeneous in CO chondrites, there is a general correlation between the degree of metasomatism and metamorphism, indicating that the metasomatism occurred dominantly within an asteroidal environment. However, some rare CAIs in type 3.0 CO chondrites and chondrules in higher petrologic CO3 subtypes contain metasomatic effects that may be best explained by alteration prior to asteroidal accretion. In comparison, the ordinary chondrites (H, L, and LL) show minimal evidence of metasomatic effects. Only a few unequilibrated ordinary chondrites show evidence of highly localized and minimal development of nepheline, sodalite, and scapolite that occurs only with chondrules that contain Al-rich phases such as plagioclase. The most extensively metasomatized ordinary chondrite is Tieschitz (H3.6), which contains a highly unusual component of matrix consisting of veins of nepheline and albite interstitial to chondrules. Chondrule glass in this meteorite has been leached extensively of alkalis and Al, indicating extensive interaction with an aqueous fluid. Finally, new evidence is coming to light which suggests that some more highly metamorphosed ordinary chondrites may have undergone metasomatism, indicated by partial albitization of plagioclase, formation of ferroan olivine replacing low-Ca pyroxene and remobilization of phosphate minerals. These limited data suggest that mineral-fluid interactions in the ordinary chondrites occurred late in the metamorphic history of these meteorites. Metasomatic effects may be much more extensively developed in the ordinary chondrites, but are cryptic in nature and have yet to be recognized. Research on the role of fluids in the geologic evolution of the ordinary chondrite parent bodies is therefore still in its infancy.


Oxygen Isotopic Composition Aqueous Fluid Parent Body Carbonaceous Chondrite Ordinary Chondrite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abreu NM, Brearley AJ (2010) Early solar system processes recorded in the matrices of two highly pristine CR3 carbonaceous chondrites, MET00426 and QUE99177. Geochim Cosmochim Acta 74:1146–1171Google Scholar
  2. Akai J (1988) Incompletely transformed serpentine-type phyllosilicates in the matrix of Antarctic CM chondrites. Geochim Cosmochim Acta 52:1593–1599Google Scholar
  3. Akai J (1992) T-T-T diagram of serpentine and saponite, and estimation of metamorphic heating degree of Antarctic carbonaceous chondrites. Proc NIPR Symp Antarct Meteor 5:120–135Google Scholar
  4. Aléon J, Krot AN, McKeegan KD, MacPherson GJ, Ulyanov AA (2005) Fine-grained, spinel-rich inclusions from the reduced CV chondrite Efremovka: II. Oxygen isotopic compositions. Meteor Planet Sci 40:1043–1058Google Scholar
  5. Alexander CMO’D, Hutchison RH, Graham AL, Yabuki H (1987) Discovery of scapolite in the Bishunpur (LL3) chondritic meteorite. Mineral Mag 51:733–735Google Scholar
  6. Alexander CMO’D, Barber DJ, Hutchison R (1989) The microstructure of Semarkona and Bishunpur. Geochim Cosmochim Acta 53:3045–3057Google Scholar
  7. Amelin Y, Irving AJ (2007) Seven million years of evolution of the angrite parent body from Pb-isotopic data (abstract). Workshop on chronology of meteorites and the early solar system, Kauai, p 4053Google Scholar
  8. Amelin Y, Krot AN, Hutcheon ID, Ulyanov AA (2002) Lead isotopic ages of chondrules and calcium-aluminum-rich inclusions. Science 297:1678–1683Google Scholar
  9. Amelin Y, Kaltenbach A, Iizuka T, Stirling CH, Ireland TR, Petaev MI, Jacobsen SB (2010) Importance of uranium isotope variations for chronology of the solar system’s first solids (abstract). Lunar Planet Sci 41:1648Google Scholar
  10. Ash RD, Young ED, Rumble D III, Alexander CMO’D, MacPherson GJ (1999) Oxygen isotope systematics in Allende chondrules (abstract). Lunar Planet Sci 30:1836Google Scholar
  11. Ashworth JR (1981) Fine structure in H-group chondrites. Proc R Soc Lond A374:179–194Google Scholar
  12. Beckett JR, Stolper E (2000) The partitioning of Na between melilite and liquid: part I. The role of crystal chemistry and liquid composition. Geochim Cosmochim Acta 64:2509–2517Google Scholar
  13. Beckett JR, Simon SB, Stolper E (2000) The partitioning of Na between melilite and liquid: part II. Applications to Type B inclusions from carbonaceous chondrites. Geochim Cosmochim Acta 64:2519–2534Google Scholar
  14. Birck J-L, Allègre CJ (1988) Manganese-chromium isotope systematics and the development of the early solar system. Nature 331:579–584Google Scholar
  15. Bischoff A (1998) Aqueous alteration of carbonaceous chondrites: evidence for preaccretionary alteration – A review. Meteor Planet Sci 33:1113–1122Google Scholar
  16. Bischoff A, Keil K (1984) Al-rich objects in ordinary chondrites: related origin of carbonaceous and ordinary chondrites and their constituents. Geochim Cosmochim Acta 48:693–709Google Scholar
  17. Bland PA, Jackson MD, Coker RF, Cohen BA, Webber JBW, Lee MR, Duffy CM, Chater RJ, Ardakani MG, McPhail DS, McComb DW, Benedix GK (2009) Why aqueous alteration in asteroids was isochemical: high porosity [≠] high permeability. Earth Planet Sci Lett 287:559–568Google Scholar
  18. Bonal L, Quirico E, Bourot-Denise M, Montagnac G (2006) Determination of the petrologic type of CV3 chondrites by Raman spectroscopy of included organic matter. Geochim Cosmochim Acta 70:1849–1863Google Scholar
  19. Bonal L, Bourot-Denise M, Quirico E, Montagnac G, Lewin E (2007) Organic matter and metamorphic history of CO chondrites. Geochim Cosmochim Acta 71:1605–1623Google Scholar
  20. Brazzle RH, Pravdivtseva OV, Meshik AM, Hohenberg CM (1999) Verification and interpretation of the I-Xe chronometer. Geochim Cosmochim Acta 63:739–760Google Scholar
  21. Brearley AJ (1993) Matrix and fine-grained rims in the unequilibrated CO3 chondrite, ALH A77307: origins and evidence for diverse, primitive nebular dust components. Geochim Cosmochim Acta 57:1521–1550Google Scholar
  22. Brearley AJ (1994) Metamorphic effects in the matrices of CO3 chondrites: compositional and mineralogical variations (abstract). Lunar Planet Sci 25:165–166Google Scholar
  23. Brearley AJ (1996) The nature of matrix in unequilibrated chondritic meteorites and its possible relationship to chondrules. In: Hewins RH, Jones RH, Scott ERD (eds) Chondrules and the protoplanetary disk. Cambridge University Press, Cambridge, pp 137–152Google Scholar
  24. Brearley AJ (1997a) Contrasting microstructures of fayalitic olivine in matrix and chondrules in the Allende CV3 chondrite (abstract). Lunar Planet Sci 28:151–152Google Scholar
  25. Brearley AJ (1997b) Disordered biopyriboles, amphibole, and talc in the Allende meteorite; products of nebular or parent body aqueous alteration? Science 276:1103–1105Google Scholar
  26. Brearley AJ (1999) Origin of graphitic carbon and pentlandite in matrix olivines in the Allende meteorite. Science 285:1380–1382Google Scholar
  27. Brearley AJ (2003) Nebular and parent body processing. In: Davis AM (ed) Treatise on geochemistry, vol 1, Meteorites, comets and planets. Elsevier, Oxford, pp 247–268Google Scholar
  28. Brearley AJ (2006) The action of water. In: Dante L, McSween HY Jr (eds) Meteorites and the early solar system II. Arizona University Press, Tucson, pp 587–624Google Scholar
  29. Brearley AJ, Burger PV (2007) Hydrothermal alteration behavior of Kainsaz (CO3) at low temperatures under reducing conditions: insights into incipient aqueous alteration of carbonaceous chondrites (abstract). Lunar Planet Sci 38:1687Google Scholar
  30. Brearley AJ, Jones RH (1998) Chondritic meteorites. In: Paprika JJ (ed) Planetary materials. Mineralogical Society of America, Washington, DC, pp 1–398Google Scholar
  31. Brearley AJ, Prinz M (1996) Dark inclusions in the Allende meteorite: new insights from transmission electron microscopy (abstract). Lunar Planet Sci 18:161–162Google Scholar
  32. Brearley AJ, Shearer CK (2000) Origin of calcium-Fe-rich pyroxenes in Allende matrix: clues from rare-earth-element abundances (abstract). Meteor Planet Sci 35(Suppl):A33Google Scholar
  33. Bridges JC, Alexander CMO’D, Hutchison R, Franchi IA, Pillinger CT (1997) Sodium, chlorine-rich mesostases in Chainpur (LL3) and Parnallee (LL3) chondrules. Meteor Planet Sci 32:555–565Google Scholar
  34. Brigham CA, Hutcheon ID, Papanastassiou DA, Wasserburg GJ (1986) Evidence for 26Al and Mg isotopic heterogeneity in a fine-grained CAI (abstract). Lunar Planet Sci 17:85–86Google Scholar
  35. Buchanan PC, Zolensky ME, Reid AM (1997) Petrology of Allende dark inclusions. Geochim Cosmochim Acta 61:1733–1743Google Scholar
  36. Burbine TH, McCoy TJ, Meibom A, Gladman B, Keil K (2002) Meteoritic parent bodies: their number and identification. In: Bottke WF Jr et al (eds) Asteroids III. Arizona University Press, Tucson, pp 653–667Google Scholar
  37. Burger PV, Brearley AJ (2005) Localized chemical redistribution during aqueous alteration in CR2 carbonaceous chondrites EET87770 and EET92105. Lunar and Planetary Science XXXVI CDROM abstract, p 2288Google Scholar
  38. Buseck PR, Huang B-J (1985) Conversion of carbonaceous material to graphite during metamorphism. Geochim Cosmochim Acta 49:2003–2016Google Scholar
  39. Busemann H, Alexander CMO’D, Nittler LR (2007) Characterization of insoluble organic matter in primitive meteorites by microRaman spectroscopy. Meteor Planet Sci 42:1387–1416Google Scholar
  40. Chizmadia LJ, Rubin AE, Wasson JT (2002) Mineralogy and petrology of amoeboid olivine inclusions in CO3 chondrites: relationship to parent body aqueous alteration. Meteor Planet Sci 37:1781–1796Google Scholar
  41. Choi B-G, McKeegan KD, Krot AN, Wasson JT (1998) Oxygen with high Δ17O in magnetite from unequilibrated ordinary chondrites. Nature 392:577–579Google Scholar
  42. Choi B-G, Krot AN, Wasson JT (2000) Oxygen-isotopes in magnetite and fayalite in CV chondrites Kaba and Mokoia. Meteor Planet Sci 35:1239–1249Google Scholar
  43. Christophe Michel-Lévy M (1976) La matrice noire et blanche de la chondrite de Tieschitz. Earth Planet Sci Lett 30:143–150Google Scholar
  44. Ciesla F (2005) Chondrule-forming processes–an overview. In: Krot AN, Scott ERD, Reipurth B (eds) Chondrites and the protoplanetary disk, vol 341, Astronomical Society of the Pacific conference series. Astronomical Society of the Pacific, San Francisco, pp 811–820Google Scholar
  45. Clayton RN, Mayeda TK (1999) Oxygen isotope studies of carbonaceous chondrites. Geochim Cosmochim Acta 63:2089–2104Google Scholar
  46. Clayton RN, Onuma N, Grossman L, Mayeda TK (1977) Distribution of the pre-solar component in allende and other carbonaceous chondrites. Earth Planet Sci Lett 34:209–224Google Scholar
  47. Clayton RN, Onuma N, Ikeda Y, Mayeda TK, Hutcheon I, Olsen EJ, Molini-Velsko C (1983) Oxygen isotopic compositions of chondrules in Allende and ordinary chondrites. In: King EA (ed) Chondrules and their origins. Lunar and Planetary Institute, HoustonGoogle Scholar
  48. Cody GD, Alexander CMO’D, Yabuta H, Kilcoyne ALD, Araki T, Ade H, Dera R, Fogel M, Militzer B, Mysen BO (2008) Organic thermometry for chondritic parent bodies. Earth Planet Sci Lett 272:446–455Google Scholar
  49. Cohen BA, Coker RF (2000) Modeling of liquid water on CM meteorite parent bodies and implications for amino acid racemization. Icarus 145:369–381Google Scholar
  50. Coker RF, Cohen BA (2001) The effect of liquid transport on the modelling of CM parent bodies. Meteor Planet Sci 36:A43–A44Google Scholar
  51. Cosarinsky M, Leshin LA, MacPherson GJ, Guan Y, Krot AN (2008) Chemical and oxygen isotopic compositions of accretionary rim and matrix olivine in CV chondrites: constraints on the evolution of nebular dust. Geochim Cosmochim Acta 72:1887–1913Google Scholar
  52. Desch SJ, Connolly HC Jr (2002) A thermal model of the processing of particles in solar nebula shocks: applications to the cooling rates of chondrules. Meteor Planet Sci 37:183–207Google Scholar
  53. Desch SJ, Ciesla FJ, Hood LL, Nakamoto T (2005) Heating of chondritic materials in solar nebula shocks. In: Krot AN, Scott ERD, Reipurth B (eds) Chondrites and the protoplanetary disk, vol 341, Astronomical Society of the Pacific Conference Series. Astronomical Society of the Pacific, San Francisco, pp 849–873Google Scholar
  54. Dodd RT, Van Schmus WR, Koffman DM (1967) A survey of the unequilibrated ordinary chondrites. Geochim Cosmochim Acta 31:921–951Google Scholar
  55. Dohmen R, Chakraborty S, Palme H, Rammensee W (1998) Solid-solid reactions mediated by a gas phase; an experimental study of reaction progress and the role of surfaces in the system olivine + Fe metal. Am Miner 83:970–984Google Scholar
  56. Fagan TJ, Krot AN, Keil K, Yurimoto H (2004) Oxygen isotopic compositions of amoeboid olivine aggregates in the reduced CV3 chondrites Efremovka, Vigarano and Leoville. Geochim Cosmochim Acta 68:2591–2611Google Scholar
  57. Fagan TJ, Guan Y, MacPherson GJ (2007) Al-Mg isotopic evidence for episodic alteration of Ca-Al-rich inclusions from Allende. Meteor Planet Sci 42:1221–1240Google Scholar
  58. Fahey AJ, Zinner E, Kurat K, Kracher A (1994) Hibonite-hercynite inclusion HH-1 from the Lance (CO3) meteorite: the history of an ultrarefractory CAI. Geochim Cosmochim Acta 58:4779–4793Google Scholar
  59. Fedkin AV, Grossman L (2010) Condensation of the high-FeO silicates in primitive chondrites: still a problem (abstract). Lunar Planet Sci 41:1448Google Scholar
  60. Ford RL, Brearley AJ (2008) Element exchange between matrix and CAIs in the Allende meteorite (abstract). Lunar Planet Sci 39:2399Google Scholar
  61. Ford RL, Brearley AJ (2010) Discovery of vesuvianite and kaolinite formed during the alteration of melilite in an Allende Type A CAI: characterization by FIB/TEM (abstract). Lunar Planet Sci 41:1402Google Scholar
  62. Fruland RM, King AE, McKay DS (1978) Allende dark inclusions. In: Proceedings of the 9th Lunar and Planetary Science Conference, Houston, pp 1305−1329Google Scholar
  63. Göpel C, Manhes G, Allegre CJ (1994) U-Pb systematics of phosphates from equilibrated ordinary chondrites. Earth Planet Sci Lett 121:153–171Google Scholar
  64. Greenwood RC, Franchi IA (2004) Alteration and metamorphism of CO3 chondrites: evidence from oxygen and carbon isotopes. Meteor Planet Sci 39:1823–1838Google Scholar
  65. Greenwood RC, Hutchison R, Huss GR, Hutcheon ID (1992) CAIs in CO3 meteorites: parent body or nebular alteration? (abstract). Meteoritics 27:229Google Scholar
  66. Grimm RE, McSween HY Jr (1989) Water and the thermal evolution of carbonaceous chondrite parent bodies. Icarus 82:244–280Google Scholar
  67. Grossman JN, Brearley AJ (2005) On the onset of metamorphism in ordinary and carbonaceous chondrites. Meteor Planet Sci 40:87–122Google Scholar
  68. Grossman J, Alexander CMO’D, Wang JH, Brearley AJ (2000) Bleached chondrules: evidence for widespread aqueous processes on the parent asteroids of ordinary chondrites. Meteor Planet Sci 35:467–486Google Scholar
  69. Grossman JN, Alexander CMO’D, Wang JH, Brearley AJ (2002) Zoned chondrules in Semarkona: evidence for high- and low-temperature processing. Meteor Planet Sci 37:49–73Google Scholar
  70. Guimon RK, Symes SJK, Sears DWG, Benoit PH (1995) Chemical and physical study of type 3 chondrites XII: the metamorphic history of CV chondrites and their components. Meteoritics 30:704–714Google Scholar
  71. Harlov DE, Förster H-J, Nijland TG (2002) Fluid-induced nucleation of REE-phosphate minerals in apatite: nature and experiment. Part I. Chlorapatite. Am Mineral 87:245–261Google Scholar
  72. Hashimoto A, Grossman L (1987) Alteration of Al-rich inclusions inside amoeboid olivine aggregates in the Allende meteorite. Geochim Cosmochim Acta 51:1685–1704Google Scholar
  73. Hashimoto A, Wood JA (1986) Enhanced volatility of CaO in H2O-rich gas environments as a factor in the alteration of Ca, Al-rich inclusions (abstract). Meteoritics 21:391–392Google Scholar
  74. Hayatsu R, Scott RG, Studier MH, Lewis RS, Anders E (1980) Carbynes in meteorites: detection, low-temperature origin, and implications for interstellar molecules. Science 209:1515–1518Google Scholar
  75. Holmberg AA, Hashimoto A (1992) A unique, (almost) unaltered spinel-rich fine-grained inclusion in Kainsaz. Meteoritics 27:149–153Google Scholar
  76. Housley RM, Cirlin EH (1983) On the alteration of Allende chondrules and formation of the matrix. In: King ED (ed) Chondrules and their origins. Lunar and Planetary Institute, Houston, pp 145–161Google Scholar
  77. Hsu W, Guan Y, Leshin LA, Ushikubo T, Wasserburg GJ (2006) A late episode of irradiation in the early solar system: evidence from extinct 36Cl and 26Al in meteorites. Astrophys J 640:525–529Google Scholar
  78. Hua X, Adam J, Palme H, El Goresy A (1988) Fayalite-rich rims, veins, and halos around and in forsteritic olivines in CAIs and chondrules in carbonaceous chondrites: types, compositional profiles and constraints on their formation. Geochim Cosmochim Acta 52:1389–1408Google Scholar
  79. Hua X, Huss GR, Tachibana S, Sharp TG (2005) Oxygen, silicon, and Mn–Cr isotopes of fayalite in the Kaba oxidized CV3 chondrite: constraints for its formation history. Geochim Cosmochim Acta 69:1333–1348Google Scholar
  80. Huckenholz HG, Lindhuber W, Springer J (1974) The join CaSiO3-Al2O3-Fe2O3 of the CaO-Al2O3-Fe2O3-SiO2 quaternary system and its bearing on the formation of granditic garnets and fassaitic pyroxenes. N Jb Miner Abh 121:160–207Google Scholar
  81. Huss GR, Lewis RS (1994a) Noble gases in presolar diamonds I: three distinct components and their implications for diamonds origins. Meteoritics 29:791–811Google Scholar
  82. Huss GR, Lewis RS (1994b) Noble gases in presolar diamonds II: component abundances reflect thermal processing. Meteoritics 29:811–829Google Scholar
  83. Huss GR, Lewis RS (1995) Presolar diamond, SiC and graphite in primitive chondrites: abundance as a function of meteorite class and petrologic type. Geochim Cosmochim Acta 59:115–160Google Scholar
  84. Huss GR, Lewis RS, Hemkin S (1996) The “normal planetary” noble gas component in primitive chondrites: compositions, carrier, and metamorphic history. Geochim Cosmochim Acta 60:3311–3340Google Scholar
  85. Huss GR, Alexander CMO’D, Palme H, Bland PA, Wasson JT (2005) Genetic relationships between chondrules, fine grained rims, and interchondrule matrix. In: Reiperth B, Krot AN, Scott ERD (eds) Chondrites and the protoplanetary disk, vol 341, AIP Conference Series. AIP, San Francisco, pp 701–731Google Scholar
  86. Huss GR, Rubin AE, Grossman JN (2006) Thermal metamorphism in chondrites. In: Lauretta D, McSween HY Jr (eds) Meteorites and the early solar system II. Arizona University Press, Tucson, pp 567–586Google Scholar
  87. Hutcheon ID, Newton RC (1981) Mg isotopes, mineralogy and mode of formation of secondary phases in C3 refractory inclusions (abstract). Lunar Planet Sci 12:491–493Google Scholar
  88. Hutcheon ID, Krot AN, Keil K, Phinney DL, Scott ERD (1998) 53Mn-53Cr dating of fayalite formation in the CV3 chondrite Mokoia: evidence for asteroidal alteration. Science 282:1865–1867Google Scholar
  89. Hutcheon ID, Marhas KK, Krot AN, Goswami JN, Jones RH (2009) 26Al in plagioclase-rich chondrules in carbonaceous chondrites: evidence of an extended duration of chondrule formation. Geochim Cosmochim Acta 73:5080–5099Google Scholar
  90. Hutchison R, Bevan AWR, Agrell SO, Ashworth JR (1979) Accretion temperature of Tieschitz H3, chondritic meteorite. Nature 280:116–119Google Scholar
  91. Hutchison R, Alexander CMO’D, Barber DJ (1987) The Semarkona meteorite: first recorded occurrence of smectite in an ordinary chondrite, and its implications. Geochim Cosmochim Acta 51:1875–1882Google Scholar
  92. Hutchison R, Alexander CMO’D, Bridges JC (1998) Elemental redistribution in Tieschitz and the origin of white matrix. Meteor Planet Sci 33:1169–1180Google Scholar
  93. Ikeda Y (1982) Petrology of the ALH-77003 chondrite (C3). In: Proceedings of the 7th symposium on Antarctic meteorites. Memoirs National Institute of Polar Research special issue, vol 25. Tokyo, pp 34−65Google Scholar
  94. Ikeda Y (1983) Alteration of chondrules and matrices in the four Antarctic carbonaceous chondrites ALH 77307 (C3), Y-790123 (C2), Y-75293(C2) and Y-74662(C2). In: Proceedings of the eighth symposium on Antarctic meteorites, Memoirs of the National Institute of Polar Research, vol 30. Tokyo, pp 93−108Google Scholar
  95. Ikeda Y, Kimura M (1995) Anhydrous alteration of Allende chondrules in the solar nebula I: Description and alteration of chondrules with known oxygen-isotopic compositions. In: Proceedings of the NIPR Symposium on Antarctic Meteorites, vol 8. Tokyo, pp 97−122Google Scholar
  96. Ishii HA, Krot AN, Bradley JP, Keil K, Nagashima K, Teslich N, Jacobsen B, Yin Q-Z (2010) Discovery, mineral paragenesis, and origin of wadalite in a meteorite. Am Mineral 95:440–448Google Scholar
  97. Ito M, Nagasawa H, Yurimoto H (2004) Oxygen isotopic SIMS analysis in Allende CAI: details of the very early thermal history of the solar system. Geochim Cosmochim Acta 68:2905–2923Google Scholar
  98. Itoh D, Tomeoka K (1998) Na-bearing Ca-Al-rich inclusions in four CO3 chondrites, Kainsaz, Ornans, Lancé, and Warrenton (abstract). Symp Antarct Meteorites 23:42–44Google Scholar
  99. Itoh D, Tomeoka K (2003) Dark inclusions in CO3 chondrites: new indicators of parent-body processes. Geochim Cosmochim Acta 67:153–169Google Scholar
  100. Itoh S, Kojima H, Yurimoto H (2004) Petrography and oxygen isotopic compositions in refractory inclusions from CO chondrites. Geochim Cosmochim Acta 68:183–194Google Scholar
  101. Jabeen I, Kusakabe M, Nakamura T, and Nagao K (1998a) Oxygen isotopic signature in Allende chondrules (abstract). Meteor Planet Sci 33 (Suppl):A76−A77Google Scholar
  102. Jabeen I, Kusakabe M, Nakamura T, Nagao K (1998b) Oxygen isotope study of Tsukuba chondrite, some HED meteorites and Allende chondrules. Antarct Meteor Res 11:122–135Google Scholar
  103. Jabeen I, Kusakabe M, Nakamura T, Nagao K (1999) Parent body processes in Allende: evidence from oxygen isotope study of the Allende chondrules (abstract). Symp Antarct Meteorites 24:59–61Google Scholar
  104. Jacobsen B, Yin Q-Z, Moynier F, Amelin Y, Krot AN, Nagashima K, Hutcheon ID, Palme H (2008) 26Al-26 Mg and 207Pb-206Pb systematics of Allende CAIs: Canonical solar initial 26Al/27Al ratio reinstated. Earth Planet Sci Lett 272:353–364Google Scholar
  105. Jogo K, Nakamura T, Noguchi T, Zolotov MYu (2009) Fayalite in the Vigarano CV3 carbonaceous chondrite: occurrences, formation age and conditions. Earth Planet Sci Lett 287:320–328Google Scholar
  106. Jogo K, Nakamura T, Ito M, Messenger S (2010) Mn-Cr systematics of secondary fayalites in the CV3 carbonaceous chondrites A 881317, MET 00430 and MET 01074 (abstract). Lunar Planet Sci 41:1573Google Scholar
  107. Johnson CA, Prinz M, Weisberg MK, Clayton RN, Mayeda TK (1990) Dark inclusions in Allende, Leoville, and Vigarano: evidence for nebular oxidation of CV3 constituents. Geochim Cosmochim Acta 54:819–831Google Scholar
  108. Jones RH (1997) Alteration of plagioclase-rich chondrules in CO3 chondrites: evidence for late-stage sodium and Fe metasomatism in a nebular environment. In: Zolensky ME, Krot AN, Scott ERD (eds) Workshop on parent-body and Nebular modification of chondritic materials (abstract). Lunar and Planetary Institute, Houston, pp 30−31Google Scholar
  109. Jones RH, Brearley AJ (2010a) Late-stage fluids on the LL chondrite parent body: evidence from feldspar in the LL4 chondrites Bo Xian and Bjurböle. LPI Contribution No. 1533:2133Google Scholar
  110. Jones RH, Brearley AJ (1994) Reduced plagioclase-rich chondrules in the Lance and Kainsaz CO3 chondrites (abstract). Lunar Planet Sci 25:641–642Google Scholar
  111. Jones CL, Brearley AJ (2006) Experimental aqueous alteration of the Allende meteorite under oxidizing conditions: constraints on asteroidal alteration. Geochim Cosmochim Acta 70:1040–1058Google Scholar
  112. Jones RH, Brearley AJ (2010b) Fluids on the LL chondrite parent body: evidence from the Bo Xian chondrites (abstract). Meteor Planet Sci 45(Suppl):A96Google Scholar
  113. Jones RH, Rubie DC (1991) Thermal histories of CO3 chondrites — application of olivine diffusion modelling to parent body metamorphism. Earth Planet Sci Lett 106:73–86Google Scholar
  114. Jones RH, Grossman JN, Rubin AE (2005) Chemical, mineralogical and isotopic properties of chondrules: clues to their origin. In: Reiperth B, Krot AN, Scott ERD (eds) Chondrites and the protoplanetary disk, vol 341. AIP Conference Series, San Francisco, pp 251–285Google Scholar
  115. Kallemeyn GW, Wasson JT (1981) The compositional classification of chondrites-I. The carbonaceous chondrite groups. Geochim Cosmochim Acta 45:1217–1230Google Scholar
  116. Keller LP, Buseck PR (1990a) Aqueous alteration in the Kaba CV3 carbonaceous chondrite. Geochim Cosmochim Acta 54:2113–2120Google Scholar
  117. Keller LP, Buseck PR (1990b) Matrix mineralogy of the Lancé CO3 carbonaceous chondrite: a transmission electron microscope study. Geochim Cosmochim Acta 54:1155–1163Google Scholar
  118. Keller LP, McKay DS (1993) Aqueous alteration of the Grosnaja CV3 carbonaceous chondrite (abstract). Meteoritics 28:378Google Scholar
  119. Keller LP, Thomas KL, Clayton RN, Mayeda TK, DeHart JM, McKay DS (1994) Aqueous alteration of the Bali CV3 chondrite: evidence from mineralogy, mineral chemistry, and oxygen isotopic compositions. Geochim Cosmochim Acta 58:5589–5598Google Scholar
  120. Kerridge JF (1972) Fe transport in chondrites: evidence from the Warrenton chondrite. Geochim Cosmochim Acta 36:913–916Google Scholar
  121. Kim GL, Yurimoto H, Sueno S (2002) Oxygen isotopic composition of a compound Ca-Al-rich inclusion from Allende meteorite: implications for origin of palisade bodies and O-isotopic environment in the CAI-forming region. J Mineral Petrol Sci 97:161–167Google Scholar
  122. Kimura M, Ikeda Y (1995) Anhydrous alteration of Allende chondrules in the solar nebula; II, Alkali-Ca exchange reactions and formation of nepheline, sodalite and Ca-rich phases in chondrules. Proc NIPR Symp Antarct Meteor 8:123–138Google Scholar
  123. Kimura M, Ikeda Y (1998) Hydrous and anhydrous alterations of chondrules in Kaba and Mokoia CV chondrites. Meteor Planet Sci 33:1139–1146Google Scholar
  124. Kimura M, Grossman JN, Weisberg MK (2008) Fe-Ni metal in primitive chondrites: indicators of classification and metamorphic conditions for ordinary and CO chondrites. Meteor Planet Sci 43:1161–1177Google Scholar
  125. Kirschbaum C (1988) Carrier phases for iodine in the Allende meteorite and their associated 129Xer/129I ratios; a laser microprobe study. Geochim Cosmochim Acta 52:679–699Google Scholar
  126. Kojima T, Tomeoka K (1996) Indicators of aqueous alteration and thermal metamorphism on the CV parent body: microtextures of a dark inclusion from Allende. Geochim Cosmochim Acta 60:2651–2666Google Scholar
  127. Kojima T, Yada S, Tomeoka K (1995) Ca-Al-rich inclusions in three Antarctic CO3 chondrites, Yamato-81020, Yamato-820050 and Yamato-790992: record of low-temperature alteration. Proc NIPR Symp Antarct Meteor 8:79–96Google Scholar
  128. Kovach HA, Jones RH (2010) Feldspar in type 4–6 ordinary chondrites: metamorphic processing on the H and LL chondrite parent bodies. Meteor Planet Sci 45:246–264Google Scholar
  129. Krot AN, Scott ERD, Zolensky ME (1995) Mineralogic and chemical variations among CV3 chondrites and their components: nebular and asteroidal processing. Meteoritics 30:748–775Google Scholar
  130. Krot AN, Scott ERD, Zolensky ME (1997a) Origin of fayalitic olivine rims and plate-like matrix olivine in the CV3 chondrite Allende and its dark inclusions. Meteoritics 32:31–49Google Scholar
  131. Krot AN, Zolensky ME, Wasson JT, Scott ERD, Keil K, Ohsumi K (1997b) Carbide-magnetite-bearing type 3 ordinary chondrites. Geochim Cosmochim Acta 61:219–237Google Scholar
  132. Krot AN, Petaev MI, Scott ERD, Choi B-G, Zolensky ME, Keil K (1998a) Progressive alteration in CV3 chondrites: more evidence for asteroidal alteration. Meteor Planet Sci 33:1065–1085Google Scholar
  133. Krot AN, Zolensky ME, Keil K, Scott ERD, Nakamura K (1998b) Secondary Ca-Fe-rich minerals in the Bali-like and Allende-like oxidized CV3 chondrites and Allende dark inclusions. Meteor Planet Sci 33:623–645Google Scholar
  134. Krot AN, Brearley AJ, Ulyanov AA, Biryukov VV, Swindle TD, Keil K, Mittlefehldt DW, Scott ERD, Clayton RN, Mayeda TK (1999) Mineralogy, petrography and bulk chemical, I-Xe, and oxygen isotopic compositions of dark inclusions in the reduced CV3 chondrite Efremovka. Meteor Planet Sci 34:67–89Google Scholar
  135. Krot AN, Meibom A, Keil K (2000a) A clast of Bali-like oxidized CV3 material in the reduced CV3 chondrite breccia Vigarano. Meteor Planet Sci 35:817–827Google Scholar
  136. Krot AN, Hiyagon H, Petaev MI, Meibom A (2000b) Oxygen isotopic compositions of secondary Ca-Fe-rich silicates from the Allende dark inclusions: Evidence against high-temperature formation (abstract). In: Lunar Planetary Science XXXI, Lunar Planetary Institute, Houston, CD ROM, No 1463Google Scholar
  137. Krot AN, Petaev MI, Meibom A, Keil K (2001) In situ growth of Ca-rich rims around Allende dark inclusions. Geochem Int 36:351–368Google Scholar
  138. Krot AN, Keil K, Goodrich CA, Scott ERD, Weisberg MK (2003) Classification of meteorites. In: Davis M (ed) Treatise on geochemistry, vol 1, Meteorites, comets and planets. Elsevier, Oxford, pp 143–200Google Scholar
  139. Krot AN, MacPherson GJ, Ulyanov AA, Petaev MI (2004a) Fine-grained, spinel-rich inclusions from the reduced CV chondrites Efremovka and Leoville: I. Mineralogy, petrology, and bulk chemistry. Meteor Planet Sci 39:1517–1553Google Scholar
  140. Krot AN, Petaev MI, Bland PA (2004b) Multiple formation mechanisms of ferrous olivine in CV3 carbonaceous chondrites during fluid-assisted metamorphism. Antarct Meteor Res 17:154–172Google Scholar
  141. Krot AN, Petaev MI, Russell SS, Itoh S, Fagan TJ, Yurimoto H, Chizmadia LJ, Weisberg MK, Komatsu M, Ulyanov AA, Keil K (2004c) Amoeboid olivine aggregates and related objects in carbonaceous chondrites: records of nebular and asteroid processes. Chem Erde 64:185–239Google Scholar
  142. Krot AN, Hutcheon ID, Brearley AJ, Pravdivtseva OV, Petaev MI, Hohenberg CM (2006) Timescales for secondary alteration of chondritic meteorites. In: Lauretta D, McSween HY Jr (eds) Meteorites and the early solar system II. Arizona University Press, Tucson, pp 525–555Google Scholar
  143. Krot AN, Yurimoto H, Hutcheon ID, Libourel G, Chaussidon M, Petaev MI, MacPherson GJ, Paque-Heather J, Wark D (2007) Anorthite-rich, igneous (Type C) Ca, Al-rich inclusions from the CV carbonaceous chondrite Allende: evidence for multistage formation history. Geochim Cosmochim Acta 71:4342–4364Google Scholar
  144. Krot AN, Chaussidon M, Yurimoto H, Sakamoto N, Nagashima K, Hutcheon ID, MacPherson GJ (2008) Oxygen isotopic compositions of Allende Type C CAIs: Evidence for isotopic exchange during nebular melting and asteroidal metamorphism. Geochim Cosmochim Acta 72:2534–2555Google Scholar
  145. Krot AN, Amelin Y, Bland PA, Ciesla FJ, Connelly J, Davis AM, Huss GR, Hutcheon ID, Makide K, Nagashima K, Nyquist LE, Russell SS, Scott ERD, Thrane K, Yurimoto H, Yin QZ (2009) Origin and chronology of chondritic components: a review. Geochim Cosmochim Acta 73:4963–4997Google Scholar
  146. Krot AN, Nagashima K, Hutcheon ID, Ishii HA, Jacobsen B, Yin Q-Z, Davis AM, Simon SB (2010) Mineralogy, petrography, oxygen and magnesium isotopic compositions and formation age of grossular-bearing assemblages in the Allende CAIs (abstract). Lunar Planet Sci 41:1441Google Scholar
  147. Krot A, Hutcheon I, Nagashima K, Crites S, Gasda P, Hallis L, Jilly C, Petaev M, Robertson K, Taylor G, Telus M (2011) Origin of ferroan olivine in matrices of unequilibrated chondrites (abstract). Meteor Planet Sci 45 (Suppl):2443–2464Google Scholar
  148. Kunihiro T, Rubin AE, McKeegan KD, Wasson JT (2004) Initial 26Al/27Al in carbonaceous-chondrite chondrules: too little 26Al to melt asteroids. Geochim Cosmochim Acta 68:2947–2957Google Scholar
  149. Kurahashi E, Kita NT, Nagahara H, Morishita Y (2008) 26Al–26 Mg systematics of chondrules in a primitive CO chondrite. Geochim Cosmochim Acta 72:3865–3883Google Scholar
  150. Kurat G (1969) The formation of chondrules and chondrites and some observations on chondrules from the Tieschitz meteorite. In: Millman PM (ed) Meteorite research. Reidel, Dordrecht, pp 185–190Google Scholar
  151. Kurat G (1975) De kohlige Chondrit Lance: Eine petrologische analyse der komplexen genese eines gchondriten. Tschermaks Min Petr Mitt 22:38–78Google Scholar
  152. Kurat G, Kracher A (1980) Basalts in the Lancé carbonaceous chondrite. Zeitschr Naturforsch 35a:180–190Google Scholar
  153. Kurat G, Palme H, Brandstätter F, Huth J (1989) Allende xenolith AF: undisturbed record of condensation and aggregation of matter in the solar nebula. Zeitschr Naturforsch 44a:988–1004Google Scholar
  154. Lavielle B, Marti K (1992) Trapped xenon in ordinary chondrites. J Cheochem Res 97:875–881Google Scholar
  155. Li CL, Bridges JC, Hutchison R, Franchi IA, Sexton AS, Ouyang ZY, Pillinger CT (2000) Bo Xian (LL3.9): oxygen-isotopic and mineralogical characterisation of separated chondrules. Meteor Planet Sci 35:561–568Google Scholar
  156. Lin Y, Guan Y, Leshin LA, Ouyang Z, Wang D (2005) Short-lived chlorine-36 in a Ca- and Al-rich inclusion from the Ningqiang carbonaceous chondrite. Proc Natl Acad Sci 102:1306–1311Google Scholar
  157. Lugmair GW, Shukolyukov A (1998) Early solar system timescales according to 53Mn-53Cr systematics. Geochim Cosmochim Acta 62:2863–2886Google Scholar
  158. MacPherson GJ (2003) Calcium–aluminum-rich inclusions in chondritic meteorites. In: Davis AM (ed) Meteorites, comets, and planets meteorites, comets, and planets, vol 1. Elsevier-Pergamon, Oxford, pp 201–241Google Scholar
  159. MacPherson GJ, Wark DA, Armstrong JT (1988) Primitive material surviving in chondrites: refractory inclusions. In: Kerridge JF, Matthews MS (eds) Meteorites and the early solar system. Arizona University Press, Tucson, pp 746–807Google Scholar
  160. MacPherson GJ, Davis AM, Zinner EK (1995) The distribution of aluminum-26 in the early solar system – a reappraisal. Meteoritics 30:365–386Google Scholar
  161. MacPherson GJ, Simon SB, Davis AM, Grossman L, Krot AN (2005) Calcium-Aluminum-rich inclusions: major unanswered questions. In: Reiperth B, Krot AN, Scott ERD (eds) Chondrules and the protoplanetary disk, vol 341. AIP Conference Series, San Francisco, pp 225–250Google Scholar
  162. Makide K, Nagashima K, Krot AN, Huss GR, Hutcheon ID, Bischoff A (2009) Oxygen− and magnesium-isotope compositions of calcium−aluminum-rich inclusions from CR2 carbonaceous chondrites. Geochim Cosmochim Acta 73:5018–5051Google Scholar
  163. McGuire AV, Hashimoto A (1989) Origin of zoned fine-grained inclusions in the Allende meteorite. Geochim Cosmochim Acta 53:1123–1133Google Scholar
  164. McSween HY Jr (1977a) Petrographic variations among carbonaceous chondrites of the Vigarano type. Geochim Cosmochim Acta 41:1777–1790Google Scholar
  165. McSween HY Jr (1977b) Carbonaceous chondrites of the Ornans type: a metamorphic sequence. Geochim Cosmochim Acta 44:477–491Google Scholar
  166. McSween HY Jr, Labotka TC (1993) Oxidation during metamorphism of the ordinary chondrites. Geochim Cosmochim Acta 57:1105–1114Google Scholar
  167. McSween HY Jr, Ghosh A, Grimm RE, Wilson L, Young ED (2002) Thermal evolution models of asteroids. In: Bottke WF Jr et al (eds) Asteroids III. University of Arizona, Tucson, pp 559–571Google Scholar
  168. Morimoto N, Fabries J, Ferguson AK, Ginzburg IV, Ross M, Seifert FA, Zussman J, Aoki K, Gottardi G (1988) Nomenclature of pyroxenes. Am Mineral 73:1123–1133Google Scholar
  169. Nagashima K, Krot AN, Hua X (2007) Common presence of 16O-rich melilite in calcium-aluminum-rich inclusions from the least metamorphosed CV carbonaceous chondrite Kaba (abstract). Lunar Planet Sci 38:2059Google Scholar
  170. Nagashima K, Krot AN, Huss GR, Yurimoto H (2010) Micron scale oxygen isotope heterogeneity in anorthite of A forsterite-bearing Type B CAI E60 from Efremovka (abstract). Lunar Planet Sci 41:2255Google Scholar
  171. Naumov GB, Ryzhenko BN, Khodakovki YL (1971) Handbook of thermodynamic quantities for geology. Atomic Press, Moscow, 240 pGoogle Scholar
  172. Nichols RH Jr, Hohenberg CM, Olinger CT (1990) Allende chondrules and rims: I-Xe systematics (abstract). Lunar Planet Sci 21:879–880Google Scholar
  173. Nomura K, Miyamoto M (1998) Hydrothermal experiments on alteration of Ca-Al-rich inclusions (CAIs) in carbonaceous chondrites: implication for aqueous alteration in parent asteroids. Geochem Cosmochim Acta 62:3575–3588Google Scholar
  174. Palme H, Wlotzka F (1981) Iridium-rich phases in Ornans (abstract). Meteoritics 16:373–374Google Scholar
  175. Paque JM, Cuzzi JN (1997) Physical characteristics of chondrules and rims, and aerodynamic sorting in the solar nebula (abstract). Lunar Planet Sci 28:1189Google Scholar
  176. Peck JA (1988) Primitive material surviving in chondrites: matrix. In: Kerridge JF, Matthews MS (eds) Meteorites and the early solar system. Arizona University Press, Tucson, pp 718–745Google Scholar
  177. Petaev MI, MFeenko MV (1997) Thermodynamic modeling of aqueous alteration in CV chondrites. In: Zolensky ME, Krot AN, Scott ERD (eds) Workshop on parent-body and nebular modification of chondritic materials, Maui, July 17−19, 1997, Hawai’i. LPI Technical Report, LPITR 97-02. Lunar and Planetary Institute, Houston TX, p 49Google Scholar
  178. Pravdivtseva OV, Krot AN, Hohenberg CM, Meshik AP, Weisberg MK, Keil K (2003a) The I-Xe record of alteration in the Allende CV chondrite. Geochim Cosmochim Acta 67:5011–5026Google Scholar
  179. Pravdivtseva OV, Hohenberg CM, Meshik AP, Krot AN, Brearley AJ (2003b) I-Xe ages of the dark inclusions from the reduced CV3 chondrites Leoville, Efremovka and Vigarano (abstract). Meteor Planet Sci 38(Suppl):A140Google Scholar
  180. Putnis A, Austrheim H (2010) Fluid-induced processes: metasomatism and metamorphism. Geofluids 10:254–269Google Scholar
  181. Rietmeijer FJM, MacKinnon IDR (1985) Poorly graphitized carbon as a new cosmothermometer for primitive extraterrestrial materials. Nature 315:733–736Google Scholar
  182. Rubin AE (1989) Size frequency distributions of chondrules in CO3 chondrites. Meteoritics 24:179–189Google Scholar
  183. Rubin AE (1998) Correlated petrologic and geochemical characteristics of CO3 chondrites. Meteor Planet Sci 33:383–391Google Scholar
  184. Rubin AE (2010) Petrologic, geochemical and experimental constraints on models of chondrule formation. Earth Planet Sci Lett 50:3–27Google Scholar
  185. Rubin AE, James JA, Keck BD, Weeks KS, Sears DWG, Jarosewich E (1985) The colony meteorite and variations in CO3 chondrite properties. Meteoritics 20:175–196Google Scholar
  186. Rubin AE, Wasson JT, Clayton RN, Mayeda TK (1990) Oxygen isotopes in chondrules and coarse-grained chondrule rims from the Allende meteorite. Earth Planet Sci Lett 96:247–255Google Scholar
  187. Russell SS, Huss GR, Fahey AJ, Greenwood RC, Hutchison R, Wasserburg GJ (1998) An isotopic and petrologic study of calcium-aluminum-rich inclusions from CO3 meteorites. Geochim Cosmochim Acta 62:689–714Google Scholar
  188. Ryerson FJ, McKeegan KD (1994) Determination of oxygen self-diffusion in akermanite, anorthite, diopside, and spinel: implications for oxygen isotopic anomalies and the thermal histories of Ca-Al-rich inclusions. Geochim Cosmochim Acta 58:3713–3734Google Scholar
  189. Ryerson FJ, Durham WB, Cherniak DJ, Lanford WA (1989) Oxygen diffusion in olivine: effect of oxygen fugacity and implication for creep. J Geophys Res 94:4105–4118Google Scholar
  190. Scott ERD, Jones RH (1990) Disentangling nebular and asteroidal features of CO3 carbonaceous chondrites. Geochim Cosmochim Acta 54:2485–2502Google Scholar
  191. Scott ERD, Krot AN (2005a) Chondritic meteorites and their components. In: Krot AN, Scott ERD, Reipurth B (eds) Chondrules and the protoplanetary disk, vol 341. ASP Conference Series, San Francisco, pp 15–54Google Scholar
  192. Scott ERD, Krot AN (2005b) Thermal processing of silicate dust in the solar nebula: clues from primitive chondrite matrices. Astrophys J 623:571–578Google Scholar
  193. Sears DWG, Batchelor DJ, Lu J, Keck BD (1991) Metamorphism of CO and CO-like chondrites and comparisons with type 3 ordinary chondrites. Proc NIPR Symp Antarct Meteor 4:319–343Google Scholar
  194. Shu FH, Shang H, Gounelle M, Glassgold AE (2001) The origin of chondrules and refractory inclusions in chondritic meteorites. Astrophys J 548:1029–1050Google Scholar
  195. Shukolyukov A, Lugmair GW, Irving AJ (2009) Mn–Cr isotope systematics of angrite North West Africa 4801 (abstract). Lunar PlanetSci 30:1381Google Scholar
  196. Simon SB, Grossman L, Casanova I, Symes S, Benoit P, Sears DWG, Wacker JF (1995) Axtell, a new CV3 chondrite find from Texas. Meteoritics 30:42–46Google Scholar
  197. Stolper E (1982) Crystallization sequences of Ca-Al-rich inclusions from Allende: an experimental study. Geochim Cosmochim Acta 46:2159–2180Google Scholar
  198. Stolper E, Paque JM (1986) Crystallization sequences of Ca-Al-rich inclusions from Allende: the effects of cooling rate and maximum temperature. Geochim Cosmochim Acta 50:1785–1806Google Scholar
  199. Swindle TD (1998) Implications of iodine-xenon studies for the dating and location of secondary alteration. Meteor Planet Sci 33:1147–1157Google Scholar
  200. Swindle TD, Podosek FA (1988) Iodine-xenon dating. In: Kerridge JF, Matthews MS (eds) Meteorites and the early solar system. Arizona University Press, Tucson, pp 1127–1146Google Scholar
  201. Swindle TD, Caffee MW, Hohenberg CM, Lindstrom MM (1983) I-Xe studies of individual Allende chondrules. Geochim Cosmochim Acta 47:2157–2177Google Scholar
  202. Swindle TD, Caffee MW, Hohenberg CM (1988) Iodine-xenon studies of Allende inclusions: EGGs and the Pink Angel. Geochim Cosmochim Acta 52:2215–2229Google Scholar
  203. Swindle TD, Cohen B, Li B, Olson E, Krot AN, Birjukov VV, Ulyanov AA (1998) Iodine – xenon studies of separated components of the Efremovka (CV3) meteorite (abstract). Lunar Planet Sci 29:1005Google Scholar
  204. Tomeoka K, Buseck PR (1990) Phyllosilicates in the Mokoia CV carbonaceous chondrite: evidence for aqueous alteration in an oxidizing environment. Geochim Cosmochim Acta 54:1745–1754Google Scholar
  205. Tomeoka K, Itoh D (2004) Sodium-metasomatism in chondrules in CO3 chondrites: relationship to parent body thermal metamorphism. Meteor Planet Sci 39:1359–1373Google Scholar
  206. Tomeoka K, Kojima H, Yanai K (1989) Yamato-86720: a CM carbonaceous chondrite having experienced extensive aqueous alteration and thermal metamorphism. Proc NIPR Symp Antarct Meteor 2:55–74Google Scholar
  207. Tomeoka K, Nomura K, Takeda H (1992) Na-bearing Ca-Al-rich inclusions in the Yamato-791717 CO carbonaceous chondrite. Meteoritics 27:136–143Google Scholar
  208. Travis BJ, Schubert G (2005) Hydrothermal convection in carbonaceous chondrite parent bodies. Earth Planet Sci Lett 240:234–250Google Scholar
  209. Ushikubo T, Guan Y, Hiyagon H, Sugiura N, Leshin LA (2007) 36Cl, 26Al, and O isotopes in an Allende type B2 CAI: implications for multiple secondary alteration events in the early solar system. Meteor Planet Sci 42:1267–1279Google Scholar
  210. Van Schmus WR, Wood JA (1967) A chemical-petrological classification for the chondritic meteorites. Geochim Cosmochim Acta 31:747–765Google Scholar
  211. Wark D (1987) Plagioclase-rich inclusions in carbonaceous chondrite meteorites − Liquid condensates? Geochim Cosmochim Acta 51:221–242Google Scholar
  212. Wasson JT, Yurimoto H, Russell SS (2001) 16O-rich melilite in CO3.0 chondrites. Possible formation of common, 16O-poor melilite by aqueous alteration. Geochim Cosmochim Acta 65:4539–4549Google Scholar
  213. Weinbruch S, Palme H, Muller WF, El Goresy A (1990) FeO-rich rims and veins in Allende forsterite: evidence for high temperature condensation at oxidizing conditions. Meteoritics 25:115–125Google Scholar
  214. Weisberg MK, Prinz M (1998) Fayalitic olivine in CV3 chondrite matrix and dark inclusions: a nebular origin. Meteor Planet Sci 33:1087–1111Google Scholar
  215. Weisberg MK, Prinz M, Clayton RN, Mayeda TK (1997) CV3 chondrites: three subgroups, not two (abstract). Meteor Planet Sci 32(Suppl):A138–A139Google Scholar
  216. Weisberg MK, McCoy TJ, Krot AN (2006) Systematics and evaluation of meteorite classification. In: Lauretta DS, McSween HY Jr (eds) Meteorites and the early solar system II. Arizona University Press, Tucson, pp 19–52Google Scholar
  217. Wick M (2010) Formation conditions of plagioclase-bearing type I chondrules in CO chondrites: a study of natural samples and experimental analogs. M.S. thesis, University of New MexicoGoogle Scholar
  218. Young ED, Ash RD, England P, Rumble D (1999) Fluid flow in chondritic parent bodies: deciphering the compositions of planetesimals. Science 286:1331–1335Google Scholar
  219. Young ED, Zhang KK, Schubert G (2003) Conditions for pore water convection within carbonaceous chondrite parent bodies — implications for planetesimal size and heat production. Earth Planet Sci Lett 213:249–259Google Scholar
  220. Yurimoto H, Morioka M, Nagasawa H (1989) Diffusion in single-crystals of melilite: I. Oxygen. Geochim Cosmochim Acta 53:2387–2394Google Scholar
  221. Yurimoto H, Ito M, Nagasawa H (1998) Oxygen isotope exchange between refractory inclusion in Allende and solar nebula gas. Science 282:1874–1877Google Scholar
  222. Yurimoto H, Krot AN, Choi B-G, Aléon J, Kunihiro T, Brearley AJ (2008) Oxygen isotopes of chondritic components. In: MacPherson GJ (ed) Oxygen in the solar system, vol 68, Reviews in mineralogy and geochemistry. Mineralogical Society of America, Chantilly, pp 141–187Google Scholar
  223. Zolensky M, McSween HY Jr (1988) Aqueous alteration. In: Matthews M, Kerridge JF (eds) Meteorites and the early solar system. Arizona University Press, Tucson, pp 114–143Google Scholar
  224. Zolensky ME, Krot AN, and Benedix G. (2008) Record of low-temperature alteration in asteroids. In Reviews in Mineralogy & Geochemistry, Vol. 68 (ed. G. MacPherson), pp. 429–462. Mineralogical Society of America.Google Scholar
  225. Zolotov MYu, MFeenko MV, Shock EL (2006) Thermodynamic constraints on fayalite formation on parent bodies of chondrites. Meteor Planet Sci 41:1775–1796Google Scholar

Copyright information

© Springer Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Earth and Planetary Sciences, MSC03-2040University of New MexicoAlbuquerqueUSA
  2. 2.Hawai‘i Institute of Geophysics and Planetology, School of Ocean, Earth Science and TechnologyUniversity of Hawai’i at MānoaHonoluluUSA

Personalised recommendations