Mapping the Distribution of Fluids in the Crust and Lithospheric Mantle Utilizing Geophysical Methods

  • Martyn UnsworthEmail author
  • Stéphane Rondenay
Part of the Lecture Notes in Earth System Sciences book series (LNESS)


Geophysical imaging provides a unique perspective on metasomatism, because it allows the present day fluid distribution in the Earth’s crust and upper mantle to be mapped. This is in contrast to geological studies that investigate mid-crustal rocks have been exhumed and fluids associated with metasomatism are absent. The primary geophysical methods that can be used are (a) electromagnetic methods that image electrical resistivity and (b) seismic methods that can measure the seismic velocity and related quantities such as Poisson’s ratio and seismic anisotropy. For studies of depths in excess of a few kilometres, the most effective electromagnetic method is magnetotellurics (MT) which uses natural electromagnetic signals as an energy source. The electrical resistivity of crustal rocks is sensitive to the quantity, salinity and degree of interconnection of aqueous fluids. Partial melt and hydrogen diffusion can also cause low electrical resistivity. The effects of fluid and/or water on seismic observables are assessed by rock and mineral physics studies. These studies show that the presence of water generally reduces the seismic velocities of rocks and minerals. The water can be present as a fluid, in hydrous minerals, or as hydrogen point defects in nominally anhydrous minerals. Water can further modify seismic properties such as the Poisson’s ratio, the quality factor, and anisotropy. A variety of seismic analysis methods are employed to measure these effects in situ in the crust and lithospheric mantle and include seismic tomography, seismic reflection, passive-source converted and scattered wave imaging, and shear-wave splitting analysis. A combination of magnetotelluric and seismic data has proven an effective tool to study the fluid distribution in zones of active tectonics such as the Cascadia subduction zone. In this location fluids can be detected as they diffuse upwards from the subducting slab and hydrate the mantle wedge. In a continent-continent collision, such as the Tibetan Plateau, a pervasive zone of partial melting and aqueous fluids was detected at mid-crustal depths over a significant part of the Tibetan Plateau. These geophysical methods have also been used to study past metasomatism ancient plate boundaries preserved in Archean and Proterozoic aged lithosphere.


Subduction Zone Apparent Resistivity Seismic Velocity Mantle Wedge Aqueous Fluid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors thank Michael Bostock and Nik Christensen for their reviews, and numerous colleagues for discussions on this topic over the year. We also thank the Editors for their great patience in waiting for this chapter.


  1. Abers GA (2005) Seismic low-velocity layer at the top of subducting slabs beneath volcanic arcs: observations, predictions, and systematics. Phys Earth Planet Inter 149:7–29Google Scholar
  2. Abers GA, MacKenzie LS, Rondenay S, Zhang Z, Wech AG, Creager KC (2009) Imaging the source region of Cascadia tremor and intermediate-depth earthquakes. Geology 37:1119–1122. doi: 10.1130/G30143A.1 Google Scholar
  3. Aizawa Y, Barnhoorn A, Faul UH, Gerald JDF, Jackson I, Kovács I (2008) Seismic properties of Anita Bay dunite: an exploratory study of the influence of water. J Petrol 49(4):841–855. doi: 10.1093/petrology/egn007 Google Scholar
  4. Albarède F (1998) The growth of continental crust. Tectonophysics 296:1–14Google Scholar
  5. Ammon CJ, Randall GE, Zandt G (1990) On the non-uniqueness of receiver function inversions. J Geophys Res 95:15303–15319Google Scholar
  6. Aprea CM, Unsworth MJ, Booker JR (1998) Resistivity structure of the Olympic mountains and Puget Lowlands. Geophys Res Lett 25:109–112Google Scholar
  7. Archie GE (1942) The electrical resistivity log as an aid in determining some reservoir characteristics. Trans Am Inst Min Metall Pet Eng 146:54–62Google Scholar
  8. Audet P, Bostock MG, Christensen NI, Peacock SM (2009) Seismic evidence for overpressured subducted oceanic crust and megathrust fault sealing. Nature 457:76–78. doi: 10.1038/nature07650 Google Scholar
  9. Aulbach S, Pearson NJ, O’Reilly SY, Doyle BJ (2007) Origins of xenolithic eclogites and pyroxenites from the central Slave Craton, Canada. J Petrol 48(10):1843–1873. doi: 10.1093/petrology/egm041 Google Scholar
  10. Austrheim H, Erambert M, Engvik AK (1997) Processing of crust in the root of the Caledonian continental collision zone: the role of eclogitization. Tectonophysics 273:129–153Google Scholar
  11. Auzende AL, Pellenq RJM, Devouard B, Baronnet A, Grauby O (2006) Atomistic calculations of structural and elastic properties of serpentine minerals: the case of lizardite. Phys Chem Miner 33:266–275. doi: 10.1007/s00269-006-0078-x Google Scholar
  12. Babuška V, Cara M (1991) Seismic anisotropy in the earth. Kluwer, Dodrecht, 217ppGoogle Scholar
  13. Bach W, Früh-Green G (2010) Alteration of the oceanic lithosphere and implications for seafloor processes. Elements 6:173–178Google Scholar
  14. Bank CG, Bostock MG, Ellis R, Cassidy J (2000) A reconnaissance teleseismic study of the upper mantle and transition zone beneath the Archean Slave Craton in Northwest Canada. Tectonophysics 319(3):151–166Google Scholar
  15. Beaumont C, Jamieson RA, Nguyen BH, Lee B (2001) Himalayan tectonics explained by extrusion of a low-viscosity crustal channel coupled to focused surface denudation. Nature 414:738–742Google Scholar
  16. Bercovici D, Karato S (2003) Whole mantle convection and the transition-zone water filter. Nature 425:39–44Google Scholar
  17. Berryman JG (1995) Mixture theories for rock properties. In: Ahrens TJ (ed) Rock physics and phase relations: a handbook of physics constants, vol 3, AGU reference shelf. AGU, Washington, DC, pp 205–228Google Scholar
  18. Berryman JG (2007) Seismic waves in rocks with fluids and fractures. Geophys J Int 171:954–974. doi: 10.1111/j.1365-246X.2007.03563.x Google Scholar
  19. Bertrand EA (2010) MT study of the Taiwan arc-continent collision, Ph.D. thesis, University of Alberta, EdmontonGoogle Scholar
  20. Bertrand EA, Unsworth MJ, Chiang CW, Chen CS, Chen CC, Wu F, Turkoglu E, Hsu HK, Hill G (2009) Magnetotelluric studies of the arc-continent collision in Central Taiwan. Geology 37:711–714Google Scholar
  21. Bezacier L, Reynard B, Bass JD, Sanchez-Valle C, de Moortèle BV (2010a) Elasticity of antigorite, seismic detection of serpentinites, and anisotropy in subduction zones. Earth Planet Sci Lett 289:198–208. doi: 10.1016/j/epsl.2009.11.009 Google Scholar
  22. Bezacier L, Reynard B, Bass JD, Wang J, Mainprice D (2010b) Elasticity of glaucophane, seismic velocities and anisotropy of the subducted oceanic crust. Tectonophysics 494:201–210. doi: 10.1016/j.tecto.2010.09.011 Google Scholar
  23. Bina CR, Helffrich GR (1992) Calculation of elastic properties from thermodynamic equation of state principles. Annu Rev Earth Planet Sci 20:527–552Google Scholar
  24. Birch F (1960) The velocity of compressional waves in rocks to 10 kilobars, Part 1. J Geophys Res 65(4):1083–1102Google Scholar
  25. Blakely RJ, Brocher TM, Wells RE (2005) Subduction-zone magnetic anomalies and implications for hydrated forearc mantle. Geology 33(6):445–448Google Scholar
  26. Block D (2001) Water resistivity Atlas of Western Canada Abstract, Paper presented at Rock the Foundation Convention of Canadian Society of Petroleum Geologists, Calgary, 18–22 June 2001Google Scholar
  27. Booker JR, Favetto A, Pomposiello MC (2004) Low electrical resistivity associated with plunging of the Nazca flat slab beneath Argentina. Nature 429:399–403Google Scholar
  28. Bostock MG (1997) Anisotropic upper-mantle stratigraphy and architecture of the Slave craton. Nature 390:392–395Google Scholar
  29. Bostock MG (1998) Mantle stratigraphy and evolution of the Slave province. J Geophys Res 103(B9):21183–21200Google Scholar
  30. Bostock MG, Rondenay S (1999) Migration of scattered teleseismic body waves. Geophys J Int 137:732–746Google Scholar
  31. Bostock MG, VanDecar JC (1995) Upper-mantle structure of the northern Cascadia subduction zone. Can J Earth Sci 32:1–12Google Scholar
  32. Bostock MG, Hyndman RD, Rondenay S, Peacock SM (2002) An inverted continental moho and serpentinization of the forearc mantle. Nature 417:536–538Google Scholar
  33. Bowring SA, Williams IS, Compston W (1989) 3.96 Ga gneisses from the Slave province, Northwest-Territories, Canada. Geology 17(11):971–975Google Scholar
  34. Bowring SA, Housh TB, Isachsen CE (1990) The Acasta gneisses: remnant of Earth’s early crust. In: Newsom HE, Jones JH (eds) Origin of the Earth. Oxford University Press, Oxford, UK, pp 319–343Google Scholar
  35. Brasse H, Kapinos Li Y, Mutschard SW, Eydam D (2009) Structural electrical aniostropy in the crust at the south-Central Chilean continental margin as inferred from geomagnetic transfer functions. Phys Earth Planet Inter 173:7–16Google Scholar
  36. Brenan JM, Watson EB (1988) Fluids in the lithosphere, 2. Experimental constraints on CO2 transport in dunite and quartzite at elevated P-T conditions with implications for mantle and crustal decarbonation processes. Earth Planet Sci Lett 91:141–158Google Scholar
  37. Brenders AJ, Pratt RG (2007) Full waveform tomography for lithospheric imaging: results from a blind test in a realistic crustal model. Geophys J Int 168:133–151. doi: 10.1111/j.1365-246X.2006.03,156.x Google Scholar
  38. Brocher T, Parsons T, Trehu AM, Snelson CM, Fisher MA (2003) Seismic evidence for widespread serpentinized forearc upper mantle along the Cascadia margin. Geology 31(3):267–270Google Scholar
  39. Brown LD, Zhao W, Nelson KD, Hauck M, Alsdorf D, Ross A, Cogan M, Clark M, Liu X, Che J (1996) Bright spots, structure and magmatism in southern Tibet from INDEPTH seismic reflection profiling. Science 274:1688–1690Google Scholar
  40. Brown JR, Beroza GC, Ide S, Ohta K, Shelly DR, Schwartz SY, Rabbel W, Thorwart M, Kao H (2009) Deep low-frequency earthquakes in tremor localize to the plate interface in multiple subduction zones. Geophys Res Lett 36:L19306. doi: 10.1029/2009GL040027 Google Scholar
  41. Brudzinski MR, Thurber CH, Hacker BR, Engdahl ER (2007) Global prevalence of double Benioff zones. Science 316:1472–1474. doi: 10.1126/science.1139204 Google Scholar
  42. Calvert AJ (1996) Seismic reflection constraints on imbrication and underplating of the northern Cascadia convergent margin. Can J Earth Sci 33:1294–1307Google Scholar
  43. Calvert AJ (2004) Seismic reflection imaging of two megathrust shear zones in the northern Cascadia subduction zone. Nature 428:163–167. doi: 10.1038/nature02372 Google Scholar
  44. Calvert AJ, Clowes RM (1990) Deep, high-amplitude reflections from a major shear zone above the subducting Juan de Fuca plate. Geology 18:1091–1094Google Scholar
  45. Calvert AJ, Sawyer EW, Davis WJ, Ludden JN (1995) Archaean subduction inferred from seismic images of a mantle suture in the Superior Province. Nature 375:670–673Google Scholar
  46. Cammarano F, Romanowicz B (2008) Radial profiles of seismic attenuation in the upper mantle based on physical models. Geophys J Int 175:116–134. doi: 10.1111/j.1365-246X.2008.03863.x Google Scholar
  47. Cassidy JF, Bostock MG (1996) Shear-wave splitting above the subducting Juan de Fuca plate. Geophys Res Lett 23:941–944Google Scholar
  48. Chen CW, Rondenay S, Weeraratne D, Snyder DB (2007) New constraints on the upper mantle structure of the slave craton from rayleigh wave inversion. Geophys Res Lett 34:L10301. doi: 10.1029/2007GL029535 Google Scholar
  49. Chen CW, Rondenay S, Evans RL, Snyder DB (2009) Geophysical detection of relict metasomatism from an Archean (ca 3.5 Ga) subduction zone. Science 326:1089–1091. doi: 10.1126/science.1178477 Google Scholar
  50. Christensen NI (1966) Elasticity of ultrabasic rocks. J Geophys Res 71(24):5921–5931Google Scholar
  51. Christensen NI (1984) Pore pressure and oceanic crustal seismic structure. Geophys J R Astr Soc 79:411–423Google Scholar
  52. Christensen NI (1989) Reflective and seismic properties of the deep continental crust. J Geophys Res 94:17793–17804Google Scholar
  53. Christensen NI (1996) Poisson’s ratio and crustal seismology. J Geophys Res 101:3139–3156Google Scholar
  54. Christensen NI (2004) Serpentinites, peridotites, and seismology. Int Geol Rev 46:795–816Google Scholar
  55. Clowes RM, Brandon MT, Green AG, Yorath CJ, Sutherland Brown A, Kanasewich ER, Spencer C (1987) Lithoprobe-southern Vancouver Island: cenozoic subduction complex imaged by deep seismic reflections. Can J Earth Sci 24:31–51Google Scholar
  56. Crampin S, Booth DC (1985) Shear-wave polarizations near the North Anatolian Fault – II. Interpretation in terms of crack-induced anisotropy. Geophys J R Astr Soc 83:75–92Google Scholar
  57. Currie CA, Cassidy JF, Hyndman RD, Bostock MG (2004) Shear wave anisotropy beneath the Cascadia subduction zone and western North American craton. Geophys J Int 157:341–353. doi: 10.1111/j.1365-246X.2004.02175.x Google Scholar
  58. de Wit M, Roehring C, Hart RJ, Armstrong RA, de Ronde CEJ, Green RWE, Tredoux M, Peberdy E, Hart RA (1992) Formation of an Archaean continent. Nature 357:553–562Google Scholar
  59. DeMets C, Gordon RG, Argus DF, Stein S (1994) Effect of recent revisions to the geomagnetic reversal time-scale on estimates of current plate motions. Geophys Res Lett 21(20):2191–2194Google Scholar
  60. Dueker KG, Sheehan AF (1997) Mantle discontinuity structure from midpoint stacks of converted p to s waves across the Yellowstone hotspot track. J Geophys Res 102:8313–8327Google Scholar
  61. Dunn RA, Toomey DR (2001) Crack-induced seismic anisotropy in the oceanic crust across the East Pacific rise (9°30′N). Earth Planet Sci Lett 189:9–17Google Scholar
  62. Dziewonski AM, Anderson DL (1981) Preliminary reference earth model. Phys Earth Planet Inter 25:297–356Google Scholar
  63. Eisel M, Haak V (1999) Macro-anisotropy of the electrical conductivity of the crust: a magnetotelluric study of the German continental deep drilling site (KTB). Geophys J Int 136:109–122Google Scholar
  64. Ellis DV, Singer JM (2008) Well logging for Earth scientists, 2nd edn. Springer, Berlin. ISBN 978-1-4020-3738-2Google Scholar
  65. Evans RL, Chave AD, Booker JR (2002) On the importance of offshore data for magnetotelluric studies of ocean-continent subduction systems. Geophys Res Lett 29(9):1302. doi: 10.1029/2001GL013960 Google Scholar
  66. Faul UH, Gerald JDF, Jackson I (2004) Shear wave attenuation and dispersion in melt-bearing olivine polycrystals: 2. Microstructural interpretation and seismological implications. J Geophys Res 109:B06202. doi: 10.1029/2003JB002407 Google Scholar
  67. Flueh ER, Fisher MA, Bialas J, Childs JR, Klaeschen D, Kukowski N, Parsons T, Scholl DW, ten Brink U, Tréhu AM, Vidal N (1998) New seismic images of the Cascadia subduction zone from cruise SO108 – ORWELL. Tectonophysics 293:69–84Google Scholar
  68. Fouch MJ, Rondenay S (2006) Seismic anisotropy beneath stable continental interiors. Phys Earth Planet In 158:292–320Google Scholar
  69. Frisillo AL, Barsch GR (1972) Measurement of single-crystal elastic constants of bronzite as a function of pressure and temperature. J Geophys Res 77(32):6360–6384Google Scholar
  70. Gaillard F (2004) Laboratory measurements of electrical conductivity of hydrous and dry silicic melts under pressure. Earth Planet Sci Lett 218:215–228Google Scholar
  71. Gao S, Rudnick RL, Carlson RW, McDonough WF, Liu YS (2002) Re-Os evidence for replacement of ancient mantle lithosphere beneath the North China craton. Earth Planet Sci Lett 198:307–322Google Scholar
  72. Gatzemeier A, Moorkamp M (2004) 3D modelling of electrical anisotropy from electromagnetic array data: hypothesis testing for different upper mantle conduction mechanisms. Phys Earth Planet Inter 149:225–242Google Scholar
  73. Gibert F, Guillaume D, Laporte D (1998) Importance of fluid immiscibility in the H2O- NaCl-CO2 system and selective CO2 entrapment in granulites: experimental phase diagram at 5–7 kbar, 900°C and wetting textures. Eur J Mineral 10:1109–1123Google Scholar
  74. Glover P, Hole MJ, Pous J (2000) A modified Archie’s Law for two conducting phases. Earth Planet Sci Lett 180:369–383Google Scholar
  75. Green HW, Houston H (1995) The mechanics of deep earthquakes. Annu Rev Earth Planet Sci 23:169–213Google Scholar
  76. Green AG, Clowes RM, Yorath CJ, Spencer C, Kanasewich ER, Brandon MT, Sutherland Brown A (1986) Seismic reflection imaging of the subducting Juan de Fuca plate. Nature 319:210–213Google Scholar
  77. Gribb TT, Cooper RF (2000) The effect of an equilibrated melt phase on the shear creep and attenuation behavior of polycrystalline olivine. Geophys Res Lett 27(15):2341–2344Google Scholar
  78. Grove TL, Chatterjee N, Parman SW, Médard E (2006) The influence of H2O on mantle wedge melting. Earth Planet Sci Lett 249:74–89Google Scholar
  79. Hacker BR (2008) H2O subduction beneath arcs. Geochem Geophys Geosyst 9. doi: 10.1029/2007GC001707
  80. Hacker BR, Abers GA (2004) Subduction factory 3. An excel worksheet and macro for calculating the densities, seismic wave speeds, and H2O contents of minerals and rocks at pressure and temperature. Geochem Geophys Geosyst 5:Q01005. doi: 10.1029/2003GC000614 Google Scholar
  81. Hacker B, Abers G, Peacock S (2003a) Subduction factory 1: theoretical mineralogy, density, seismic wave-speeds, and H2O content. J Geophys Res 108(B1):2029. doi: 10.1029/2001JB001127 Google Scholar
  82. Hacker BR, Peacock SM, Abers GA, Holloway SD (2003b) Subduction factory 2. Are intermediate-depth earthquakes in subducting slabs linked to metamorphic dehydration reactions? J Geophys Res 108(B1):2030. doi: 10.1029/2001JB001129 Google Scholar
  83. Hammond WC, Humphreys ED (2000a) Upper mantle seismic wave attenuation: effects of realistic partial melt distribution. J Geophys Res 105:10987–10999Google Scholar
  84. Hammond WC, Humphreys ED (2000b) Upper mantle seismic wave velocity: effects of realistic partial melt geometries. J Geophys Res 105:10975–10986Google Scholar
  85. Hasalová P, Schulmann K, Lexa O, Štípská P, Hrouda F, Ulrich S, Haloda J, Týcová P (2008) Origin of migmatites by deformation-enhanced melt infiltration of orthogneiss: a new model based on quantitative microstructural analysis. J Metamorph Geol 26:29–53Google Scholar
  86. Heaman LM, Kjarsgaard RA, Creaser RA, Cookenboo HO, Kretschmar U (1997) Multiple episodes of kimberlite magmatism in the Slave province, North America. In: Lithoprobe report vol 56, Lithoprobe Secretariat, Vancouver, pp 14–17Google Scholar
  87. Heise W, Pous J (2003) Anomalous phases exceeding 90o in magnetotellurics: anisotropic model studies and a field example. Geophys J Int 155:308–318Google Scholar
  88. Helffrich GR (1996) Subducted lithospheric slab velocity structure: observations and mineralogical inferences. In: Bebout G, Scholl D, Kirby S, Platt J (eds) Subduction top to bottom, vol 96, AGU geophysical monograph. AGU, Washington, DC, pp 215–222Google Scholar
  89. Helmstaedt H, Schulze DJ (1989) Southern African kimberlites and their mantle sample: implications for Archean tectonic and lithosphere evolution. In: Ross J (ed) Kimberlites and related rocks, vol 1, Their composition, occurrence, origin, and emplacement. Blackwell, Carlton, pp 358–368Google Scholar
  90. Hilairet N, Daniel I, Reynard B (2006) Equation of state of antigorite, stability field of serpentines, and seismicity in subduction zones. Geophys Res Lett 33:L02302. doi: 10.1029/2005GL024728 Google Scholar
  91. Holness MB (1992) Equilibrium dihedral angles in the system quartz-CO2–H2O-NaCl at 800°C and 1–15 kbar: the effects of pressure and fluid composition on the permeability of quartzites. Earth Planet Sci Lett 114:171–184Google Scholar
  92. Holness MB (1993) Temperature and pressure dependence of quartz-aqueous fluid dihedral angles: the control of adsorbed H2O on the permeability of quartzites. Earth Planet Sci Lett 117:363–377Google Scholar
  93. Holness MB (2006) Melt-solid dihedral angles of common minerals in natural rocks. J Petrol 47(4):791–800Google Scholar
  94. Hyndman RD (1988) Dipping seismic reflectors, electrically conductive zones, and trapped water in the crust over a subducting plate. J Geophys Res 93:13391–13405Google Scholar
  95. Hyndman RD, Klemperer SL (1989) Lower-crustal porosity from electrical measurements and inferences about composition from seismic velocities. Geophys Res Lett 16(3):255–258Google Scholar
  96. Hyndman RD, Peacock SM (2003) Serpentinization of the forearc mantle. Earth Planet Sci Lett 212:417–432Google Scholar
  97. Hyndman RD, Shearer PM (1989) Water in the lower continental crust: modelling magnetotelluric and seismic reflection results. Geophys J Int 98:343–365Google Scholar
  98. Hyndman RD, Wang K (1993) Thermal constraints on the zone of major thrust earthquake failure: the Cascadia subduction zone. J Geophys Res 98:2039–2060Google Scholar
  99. Ito K (1990) Effects of H2O on elastic velocities in ultrabasic rocks at 900°C under 1 GPa. Phys Earth Planet Inter 61:260–268Google Scholar
  100. Jackson I, Paterson MS, Gerald JDF (1992) Seismic wave dispersion and attenuation in Åheim dunite: an experimental study. Geophys J Int 108:517–534Google Scholar
  101. Jackson JA, Austrheim H, McKenzie D, Priestley K (2004) Metastability, mechanical strength, and the support of mountain belts. Geology 32(7):625–628Google Scholar
  102. Jodicke H, Jording A, Ferrari L, Arzate J, Mezger K, Rupke L (2006) Fluid release from the subducted Cocos Plate and partial melting of the crust deduced from magnetotelluric studies in Southern Mexico: implications for the generation of volcanism and subduction dynamics. J Geophys Res 111:B08102. doi: 10.1029/2005JB003739 Google Scholar
  103. Jones AG, Ferguson IJ (2001) The electric Moho. Nature 409:331–333Google Scholar
  104. Jones AG, Ferguson IJ, Chave AD, Evans RL, McNeice GW (2001) Electric lithosphere of the Slave craton. Geology 29(5):423–426Google Scholar
  105. Jordan TH (1978) Composition and development of the continental tectosphere. Nature 274:544–548Google Scholar
  106. Jung H, Karato S (2001) Water-induced fabric transitions in olivine. Science 293:1460–1463Google Scholar
  107. Kamiya S, Kobayashi Y (2000) Seismological evidence for the existence of serpentinized wedge mantle. Geophys Res Lett 27(6):819–822Google Scholar
  108. Karato S (1990) The role of hydrogen in the electrical conductivity of the upper mantle. Nature 347:272–273Google Scholar
  109. Karato S (1995) Effects of water on seismic wave velocities in the upper mantle. Proc Jpn Acad 71:61–66Google Scholar
  110. Karato S (2003) Mapping water content in the upper mantle. In: Eiler JM (ed) Inside the subduction factory, vol 138, AGU geophysical monograph. AGU, Washington, DC, pp 135–152Google Scholar
  111. Karato S (2006) Remote sensing of hydrogen in Earth’s mantle. Rev Mineral Geochem 62:343–375. doi: 10.2138/rmg.2006.62.15 Google Scholar
  112. Karato S, Jung H (1998) Water, partial melting and the origin of the seismic low velocity and high attenuation zone in the upper mantle. Earth Planet Sci Lett 157:193–207Google Scholar
  113. Karato S, Jung H (2003) Effects of pressure on high-temperature dislocation creep in olivine. Philos Mag 83(3):401–414. doi: 10.1080/0141861021000025829 Google Scholar
  114. Katayama I, Hirauchi K, Michibayashi K, Ando J (2009) Trench-parallel anisotropy produced by serpentine deformation in the hydrated mantle wedge. Nature 461:1114–1117. doi: 10.1038/nature08513 Google Scholar
  115. Kellett RL, Mareschal M, Kurtz RD (1992) A model of lower crustal electrical anisotropy for the Pontiac Subprovince of the Canadian shield. Geophys J Int 111:141–150Google Scholar
  116. Kern H, Liu B, Popp T (1997) Relation between anisotropy of P and S wave velocities and anisotropy of attenuation in serpentinite and amphibolite. J Geophys Res 102:3051–3065Google Scholar
  117. Kirby S, Engdahl ER, Denlinger R (1996) Intermediate-depth intraslab earthquakes and arc volcanism as physical expressions of crustal and uppermost mantle metamorphism in subducting slabs. In: Bebout G, Scholl D, Kirby S, Platt J (eds) Subduction top to bottom, vol 96, AGU geophysical monograph. AGU, Washington, DC, pp 195–214Google Scholar
  118. Kono Y, Ishikawa M, Arima M (2007) Effect of H2O released by dehydration of serpentine and chlorite on compressional wave velocities of peridotites at 1 GPa and up to 1000°C. Phys Earth Planet Inter 161:215–223. doi: 10.1016/j.pepi.2007.02.005 Google Scholar
  119. Kumazawa M, Anderson OL (1969) Elastic moduli, pressure derivatives, and temperature derivatives of single-crystal olivine and single-crystal forsterite. J Geophys Res 74(25):5961–5972Google Scholar
  120. Kurtz RD, Delaurier JM, Gupta JC (1986) A magnetotelluric sounding across Vancouver Island detects the subducting Juan-de-Fuca plate. Nature 321:596–599Google Scholar
  121. Kurtz RD, Delaurier JM, Gupta JC (1990) The electrical-conductivity distribution beneath Vancouver Island – a region of active plate subduction. J Geophys Res 95:10929–10946Google Scholar
  122. Langston CA (1977) Corvallis, Oregon, crustal and upper mantle receiver structure from teleseismic p and s waves. Bull Seismol Soc Am 67(3):713–724Google Scholar
  123. Langston CA (1979) Structure under Mount Rainier, Washington, inferred from teleseismic body waves. J Geophys Res 84:4749–4762Google Scholar
  124. Leaver DS, Mooney WD, Kohler WM (1984) A seismic refraction study of the Oregon Cascades. J Geophys Res 89:3121–3134Google Scholar
  125. Lee CTA (2003) Compositional variations of density and seismic velocities in natural peridotites at STP conditions: implications for seismic imaging of compositional heterogeneities in the upper mantle. J Geophys Res 108:2441. doi: 10.1029/2003JB002413 Google Scholar
  126. Lenardic A, Moresi L, Mühlhaus H (2000) The role of mobile belts for the longevity of deep cratonic lithosphere: the crumple zone model. Geophys Res Lett 27(8):1235–1238Google Scholar
  127. Lenardic A, Moresi LN, Mühlhaus H (2003) Longevity and stabilty of cratonic lithosphere: insights from numerical simulations of coupled mantle convection and continental tectonics. J Geophys Res 108(B6):2303. doi: 10.1029/2002JB001859 Google Scholar
  128. Levander A, Niu F, Lee CTA, Cheng X (2006) Imag(in)ing the continental lithosphere. Tectonophysics 416:167–185. doi: 10.1016/j/tecto.2005.11.018 Google Scholar
  129. Lewis C, Ray D, Chiu KK (2007) Primary geologic sources of arsenic in the Chianan plain (blackfoot disease area) and the Lanyang plain of Taiwan. Int Geol Rev 49:947–961Google Scholar
  130. Li S, Unsworth MJ, Booker JR, Wei W, Tan H, Jones AG (2003) Partial melt or aqueous fluid in the mid-crust of Southern Tibet? Constraints from INDEPTH magnetotelluric data. Geophys J Int 153:289–304Google Scholar
  131. Long MD, Silver PG (2008) The subduction zone flow field from seismic anisotropy: a global view. Science 319:315–318. doi: 10.1126/science.1150809 Google Scholar
  132. Ludden J, Hubert C (1986) Geologic evolution of the late Archean Abitibi greenstone belt of Canada. Geology 14:707–711Google Scholar
  133. Mainprice D, Ildefonse B (2009) Seismic anisotropy of subduction zone minerals – contribution of hydrous phases. In: Lallemand S, Funiciello F (eds) Subduction zone geodynamics. Springer, Berlin/Heidelberg, pp 63–84Google Scholar
  134. Mainprice D, Le Page Y, Rodgers J, Jouanna P (2008) Ab initio elastic properties of talc from 0 to 12 GPa: interpretation of seismic velocities at mantle pressures and prediction of auxetic behaviour at low pressure. Earth Planet Sci Lett 274:327–338. doi: 10.1016/j.epsl.2008.07.047 Google Scholar
  135. Mamaus J, Laporte D, Schiano P (2004) Dihedral angle measurements and infiltration property of SiO2 rich melts in mantle peridotite assemblages. Contrib Mineral Petrol 148:1–12Google Scholar
  136. Mareschal M, Kellett RL, Kurtz RD, Ludden JN, Ji S, Bailey RC (1995) Archaean cratonic roots, mantle shear zones and deep electrical anisotropy. Nature 375:134–137Google Scholar
  137. Matthews DH (1986) Seismic reflections from the lower crust around Britain. In: Dawson JB, Carswell DA, Hall J, Wedepohl KH (eds) The nature of the lower continental crust, vol 24, Special publication. Geological Society, London, pp 11–24Google Scholar
  138. Meju MA (2000) Geoelectric investigation of old/abandoned, covered landfill sites in urban areas: model development with a genetic diagnosis approach. J Appl Geophys 44:115–150Google Scholar
  139. Mercier JP, Bostock MG, Audet P, Gaherty JB, Garnero EJ, Revenaugh J (2008) The teleseismic signature of fossil subduction: Northwestern Canada. J Geophys Res 113:B04308. doi: 10.1029/2007JB005127 Google Scholar
  140. Miller KC, Keller GR, Gridley JM, Luetgert JH, Mooney WD, Thybo H (1997) Crustal structure along the west flank of the Cascades, western Washington. J Geophys Res 102:17857–17873Google Scholar
  141. Minster JB, Anderson DL (1981) A model of dislocation-controlled rheology for the mantle. Philos Trans R Soc Lond A 299:319–356Google Scholar
  142. Moorkamp M, Jones AG, Eaton DW (2007) Joint inversion of teleseismic receiver functions and magnetotelluric data using a genetic algorithm: are seismic velocities and electrical conductivities compatible? Geophys Res Lett 34:L16311. doi: 10.1029/2007GL030519 Google Scholar
  143. Moorkamp M, Jones AG, Fishwick S (2010) Joint inversion of receiver functions, surface wave dispersion, and magnetotelluric data. J Geophys Res 115:B04318. doi: 10.1029/2009JB006369 Google Scholar
  144. Murphy WF (1985) Sonic and ultrasonic velocities: theory versus experiment. Geophys Res Lett 12(2):85–88Google Scholar
  145. Nelson KD, Zhao W, Brown LD, Kuo J, Che J, Liu X, Klemperer SL, Makovsky Y, Meissner R, Mechie J, Kind R, Wenzel F, Ni J, Nablek J, Leshou C, Tan H, Wei W, Jones AG, Booker JR, Unsworth MJ, Kidd WSF, Hauck M, Alsdorf D, Ross A, Cogan M, Wu C, Sandvol E, Edwards M (1996) Partially molten Middle Crust Beneath Southern Tibet: synthesis of project INDEPTH results. Science 274:1684–1686Google Scholar
  146. Nesbitt B (1993) Electrical resistivities of crustal fluids. J Geophys Res 98:4301–4310Google Scholar
  147. Nicholson T, Bostock M, Cassidy J (2005) New constraints on subduction zone structure in northern Cascadia. Geophys J Int 161(3):849–859Google Scholar
  148. Nolet G (2008) A breviary of seismic tomography. Cambridge University Press, Cambridge, UKGoogle Scholar
  149. O’Connell RJ, Budiansky B (1974) Seismic velocities in dry and saturated cracked solids. J Geophys Res 79(35):5412–5426Google Scholar
  150. O’Connell RJ, Budiansky B (1977) Viscoelastic properties of fluid-saturated cracked solids. J Geophys Res 82(36):5719–5735Google Scholar
  151. O’Neill C, Jellinek AM, Lenardic A (2007) Conditions for the onset of plate tectonics on terrestrial planets and moons. Earth Planet Sci Lett 261:20–32Google Scholar
  152. Obara K (2002) Nonvolcanic deep tremor associated with subduction in Southwest Japan. Science 296:1679–1681Google Scholar
  153. Obara K, Hirose H, Yamamizu F, Kasahara K (2004) Episodic slow slip events accompanied by non-volcanic tremors in southwest Japan subduction zone. Geophys Res Lett 23:L23602. doi: 10.1029/2004GL020848 Google Scholar
  154. Park J, Yuan H, Levin V (2004) Subduction zone anisotropy beneath Corvallis, Oregon: a serpentinite skid mark of trench-parallel terrane migration? J Geophys Res 109:B10306. doi: 10.1029/2003JB002718 Google Scholar
  155. Parsons T, Blakely RJ, Brocher TM, Christensen NI et al (2005) Crustal structure of the Cascadia fore arc of Washington. USGS professional paper 1661-D, USGS, Denver, 45 ppGoogle Scholar
  156. Partzsch GM, Schilling FR, Arndt J (2000) The influence of partial melting on the electrical behavior of crustal rocks: laboratory examinations, model calculations and geological interpretations. Tectonophysics 317:189–203Google Scholar
  157. Payero JS, Kostoglodov V, Shapiro N, Mikumo T, Iglesias A, Perez-Campos X, Clayton RW (2008) Nonvolcanic tremor observed in the Mexican subduction zone. Geophys Res Lett 35:L07305. doi: 10.1029/2007GL032877 Google Scholar
  158. Peterson CL, Christensen DH (2009) Possible relationship between nonvolcanic tremor and the 1998–2001 slow slip event, south central Alaska. J Geophys Res 114:B06302. doi: 10.1029/2008JB006096 Google Scholar
  159. Pozgay SH, Wiens DA, Conder JA, Shiobara H, Sugioka H (2009) Seismic attenuation tomography of the Mariana subduction system: implications for thermal structure, volatile distribution, and slow spreading dynamics. Geochem Geophys Geosyst 10(4):Q04X05. doi: 10.1029/2008GC002313 Google Scholar
  160. Preston LA, Creager KC, Crosson RS, Brocher TM, Tréhu AM (2003) Intraslab earthquakes: dehydration of the Cascadia slab. Science 302:1197–1200Google Scholar
  161. Prouteau G, Scaillet B, Pichavant M, Maury R (2001) Evidence for mantle metasomatism by hydrous silicic melts derived from subducted oceanic crust. Nature 410:197–200Google Scholar
  162. Quist AS, Marshall WL (1968) Electrical conductances of aqueous sodium chloride solutions from 0–800°C and at pressures to 4000 Bars. J Phys Chem 72:684–703Google Scholar
  163. Ramachandran K, Hyndman RD, Brocher TM (2006) Regional P wave velocity structure of the Northern Cascadia subduction zone. J Geophys Res 111:B12301. doi: 10.1029/2005JB004108 Google Scholar
  164. Ranero CR, Morgan JP, McIntosh K, Reichert C (2003) Bending-related faulting and mantle serpentenization at the Middle America trench. Nature 425:367–373Google Scholar
  165. Rasmussen J, Humphreys E (1988) Tomographic image of the Juan de Fuca plate beneath Washington and western Oregon using teleseismic P-wave travel times. Geophys Res Lett 15:1417–1420Google Scholar
  166. Reynard B, Hilairet N, Balan E, Lazzeri M (2007) Elasticity of serpentines and extensive serpentinization in subduction zones. Geophys Res Lett 34:L13307. doi: 10.1029/2007GL030176 Google Scholar
  167. Roberts JJ, Tyburczy JA (1999) Partial-melt electrical conductivity: influence of melt composition. J Geophys Res 104:7055–7065Google Scholar
  168. Rodi W, Mackie RL (2001) Nonlinear conjugate gradients algorithm for 2-D magnetotelluric inversion. Geophysics 66:174–187Google Scholar
  169. Rogers G, Dragert H (2003) Episodic tremor and slip on the Cascadia subduction zone: the chatter of silent slip. Science 300:1942–1943Google Scholar
  170. Romanyuk TV, Blakely R, Mooney WD (1998) The Cascadia subduction zone: two contrasting models of lithospheric structure. Phys Chem Earth 23(3):297–301Google Scholar
  171. Rondenay S (2009) Upper mantle imaging with array recordings of converted and scattered teleseismic waves. Surv Geophys 30:377–405. doi: 10.1007/s10712-009-9071-5 Google Scholar
  172. Rondenay S, Bostock MG, Hearn TM, White DJ, Ellis RM (2000) Lithospheric assembly and modification of the SE Canadian Shield: Abitibi-Grenville teleseismic experiment. J Geophys Res 105(B6):13735–13754Google Scholar
  173. Rondenay S, Bostock MG, Shragge J (2000) Multiparameter two-dimensional inversion of scattered teleseismic body waves, 3, application to the Cascadia 1993 data set. J Geophys Res 106:30795–30808Google Scholar
  174. Rondenay S, Abers GA, van Keken PE (2008) Seismic imaging of subduction zone metamorphism. Geology 36:275–278Google Scholar
  175. Roth JB, Fouch MJ, James DE, Carlson RW (2008) Three-dimensional seismic velocity structure of the northwestern United States. Geophys Res Lett 35:L15304. doi: 10.1029/2008GL034669 Google Scholar
  176. Rüpke LH, Morgan JP, Hort M, Connolly JA (2004) Serpentine and the subduction zone water cycle. Earth Planet Sci Lett 223:17–34Google Scholar
  177. Rychert CA, Rondenay S, Fischer KM (2007) P-to-S and S-to-P imaging of a sharp lithosphere-asthenosphere boundary beneath eastern North America. J Geophys Res 112(B8):B08314. doi: 10.1029/2007GL029535 Google Scholar
  178. Savage MK (1999) Seismic anisotropy and mantle deformation: what have we learned from shear wave splitting? Rev Geophys 37(1):65–106Google Scholar
  179. Schilling FR, Sinogeikin SV, Bass JD (2003) Single-crystal elastic properties of lawsonite and their variation with temperature. Phys Earth Planet Inter 136:107–118. doi: 10.1016/S0031-9201(03), 00024-4Google Scholar
  180. Schmeling H (1985) Numerical models on the influence of partial melt on elastic, anelastic and electric properties of rocks. Part I: elasticity and anelasticity. Phys Earth Planet Inter 41:34–57Google Scholar
  181. Schulmann K, Martelat JE, Ulrich S, Lexa O, Štípská P, Becker JK (2008) Evolution of microstructure and melt topology in partially molten granitic mylonite: implications for rheology of felsic middle crust. J Geophys Res 113:B10406Google Scholar
  182. Shapiro NM, Campillo M, Stehly L, Ritzwoller MH (2005) High-resolution surface-wave tomography from ambient seismic noise. Science 307:1615–1618. doi: 10.1126/science.1108339 Google Scholar
  183. Shelly DR, Beroza GC, Ide S, Nakamula S (2006) Low-frequency earthquakes in Shikoku, Japan, and their relationship to episodic tremor and slip. Nature 442:188–191. doi: 10.1038/nature04931 Google Scholar
  184. Silver PG (1996) Seismic anisotropy beneath the continents: probing the depths of geology. Annu Rev Earth Planet Sci 24:385–432Google Scholar
  185. Simpson F (2001) Resistance to mantle flow inferred from the electromagnetic strike of the Australian upper mantle. Nature 412:632–635Google Scholar
  186. Simpson F, Bahr K (2005) Practical magnetotellurics. Cambridge University Press, Cambridge, UKGoogle Scholar
  187. Simpson F, Tommasi A (2005) Hydrogen diffusivity and electrical anisotropy of a peridotite mantle. Geophys J Int 160:1092–1102Google Scholar
  188. Siripunvaraporn W, Egbert GD, Lenbury Y, Uyeshima M (2005) Three dimensional magnetotelluric inversion: data subspace method. Phys Earth Planet Inter 150:3–14Google Scholar
  189. Snyder DB, Bostock MG, Lockhart GD (2003) Two anisotropic layers in the Slave craton. Lithos 71:529–539Google Scholar
  190. Snyder DB, Rondenay S, Bostock MG, Lockhart GD (2004) Mapping the mantle lithosphere for diamond potential. Lithos 77:859–872Google Scholar
  191. Soyer W, Unsworth M (2006) Deep electrical structure of the northern Cascadia (British Columbia, Canada) subduction zone: implications for the distribution of fluids. Geology 34(1):53–56. doi: 10.1130/G21951.1 Google Scholar
  192. Stachnik J, Abers G, Christensen D (2004) Seismic attenuation and mantle wedge temperatures in the Alaska subduction zone. J Geophys Res 109:B10304. doi: 10.1029/2004JB003018 Google Scholar
  193. Stetsky RM, Brace WF (1973) Electrical conductivity of serpentinized rocks to 6 kilobars. J Geophys Res 78:7614–7621Google Scholar
  194. Strack KM, Luschen E, Kotz AW (1990) Long-offset transient electromagnetic (LOTEM) depth soundings applied to crustal studies in the Black Forest and Swabian Alb, Federal Republic of Germany. Geophysics 55:834–842Google Scholar
  195. Suetnova EI, Carbonell R, Smithson SB (1994) Bright seismic reflections and fluid movement by porous flow in the lower crust. Earth Planet Sci Lett 126:161–169Google Scholar
  196. Takei Y (2002) Effect of pore geometry on VP/VS: from equilibrium geometry to crack. J Geophys Res 107:2043. doi: 10.1029/2001JB000522 Google Scholar
  197. Takei Y, Holtzman BK (2009a) Viscous constitutive relations of solid-liquid composites in terms of grain boundary contiguity: 1. Grain boundary diffusion control models. J Geophys Res 114:B06205. doi: 10.1029/2008JB005850 Google Scholar
  198. Takei Y, Holtzman BK (2009b) Viscous constitutive relations of solid-liquid composites in terms of grain boundary contiguity: 2. Compositional model for small melt fractions. J Geophys Res 114:B06206. doi: 10.1029/2008JB005851 Google Scholar
  199. Takei Y, Holtzman BK (2009c) Viscous constitutive relations of solid-liquid composites in terms of grain boundary contiguity: 3. Causes and consequences of viscous anisotropy. J Geophys Res 114:B06207. doi: 10.1029/2008JB005852 Google Scholar
  200. Tape C, Liu Q, Maggi A, Tromp J (2010) Seismic tomography of the southern California crust based on spectral-element and adjoint methods. Geophys J Int 180:433–462. doi: 10.1111/j.1365-246X.2009.04429.x Google Scholar
  201. ten Grotenhuis SM, Drury MR, Peach CJ, Spiers CJ (2004) Electrical properties of fine-grained olivine: evidence for grain boundary transport. J Geophys Res 109:B06203. doi: 10.1029/2003JB002799 Google Scholar
  202. ten Grotenhuis SM, Drury MR, Spiers CJ, Peach CJ (2005) Melt distribution in olivine rocks based on electrical conductivity measurements. J Geophys Res 110:B12201. doi: 10.1029/2004JB003462 Google Scholar
  203. Tréhu AM, Asudeh I, Brocher TM, Luetgert JH, Mooney WD, Nabelek JL, Nakamura Y (1994) Crustal architecture of the Cascadia forearc. Science 266:237–243Google Scholar
  204. Tullis J, Yund R, Farver J (1996) Deformation enhanced fluid distribution in feldspar aggregates and implications for ductile shear zones. Geology 24:63–66Google Scholar
  205. Ucok H, Ershaghi I, Olhoeft G (1980) Electrical resistivity of geothermal brines. J Petrol Technol 32:717–727, June 1980Google Scholar
  206. Unsworth MJ (2010) Geophysics 424 class notes at University of Alberta.
  207. Unsworth MJ, Jones AG, Wei W, Marquis G, Gokarn S, Spratt J (2005) Crustal rheology of the Himalaya and Southern Tibet inferred from magnetotelluric data. Nature 438:78–81. doi: 10.1038/nature04154 Google Scholar
  208. Ussher G, Harvey C, Johnstone R, Anderson E (2000) Understanding the resistivities observed in Geothermal systems. In: Proceedings World Geothermal Congress, KyushuGoogle Scholar
  209. VanDecar JC (1991) Upper-mantle structure of the Cascadia subduction zone from non-linear teleseismic travel-time inversion. Ph.D. thesis, University of Washington, SeattleGoogle Scholar
  210. Vanyan L (2002) A geoelectric model of the Cascadia Subduction zone. Izv Phys Solid Earth 38:816–845Google Scholar
  211. Vinnik L (1977) Detection of waves converted from P to SV in the mantle. Phys Earth Planet Inter 15:39–45Google Scholar
  212. Vry J, Powell R, Golden KM, Petersen K (2010) The role of exhumation in metamorphic dehydration and fluid production. Nat Geosci 3:31–35Google Scholar
  213. Wannamaker PE (1986) Electrical conductivity of water- undersaturated crustal melting. J Geophys Res 91:6321–6327Google Scholar
  214. Wannamaker PE (2000) Comment on “The petrologic case for a dry lower crust” by BWD Yardley and JW Valley. J Geophys Res 105(B3):6057–6064Google Scholar
  215. Wannamaker PE (2005) Anisotropy versus heterogeneity in continental solid earth electromagnetic studies: fundamental response characteristics and implications for physiochemical state. Surv Geophys 26:733–765Google Scholar
  216. Wannamaker PE (2010) Water from stone. Nat Geosci 3:10–11Google Scholar
  217. Wannamaker PE, Booker JR, Jones AG, Chave AD, Filloux JH, Waff HS, Law LK (1989) Resistivity cross section through the Juan de Fuca subduction system and its tectonic implications. J Geophys Res 94:14127–14144Google Scholar
  218. Wannamaker PE, Jiracek GR, Stodt JA, Caldwell TG, Gonzalez V, McKnight J, Porter AD (2002) Fluid generation and pathways beneath an active compressional orogen, the New Zealand Southern Alps, inferred from magnetotelluric data. J Geophys Res 107. doi: 2001JB000186
  219. Wannamaker PE, Caldwell TG, Jiracek GR, Maris V, Hill GJ, Ogawa Y, Bibby HM, Bennie SL, Heise W (2009) Fluid and deformation regime at an advancing subduction system at Marlborough, New Zealand. Nature 460:733–737Google Scholar
  220. Watson E, Brenan JM (1987) Fluids in the lithosphere, 1. Experimentally determined wetting characteristics of CO2-H2O fluids and their implications for fluid transport, host-rock physical properties and fluid inclusion formation. Earth Planet Sci Lett 85:497–515Google Scholar
  221. Wells RE, Blakely RJ, Weaver CS (2002) Cascadia microplate models and within-slab earthquakes. In: Kirby S,Wang K, Dunlop S (eds) The Cascadia subduction zone and related subduction systems – Seismic structure, intraslab earthquakes and processes, and earthquake hazards, Open-File Report, vol 02–328, US Geological Survey, Menlo Park, pp 17–23Google Scholar
  222. Wiens DA, Conder JA, Faul UH (2008) The seismic structure and dynamics of the mantle wedge. Annu Rev Earth Planet Sci 36:421–455Google Scholar
  223. Williams Q, Hemley RJ (2001) Hydrogen in the deep earth. Annu Rev Earth Planet Sci 29:365–418Google Scholar
  224. Wilson DS (2002) The Juan de Fuca plate and slab: Isochron structure and Cenozoic plate motions. In: Kirby S, Wang K, Dunlop S (eds) The Cascadia subduction zone and related subduction systems – Seismic structure, intraslab earthquakes and processes, and earthquake hazards, Open-File Report, vol 02–328, US Geological Survey, Menlo Park, pp 9–12Google Scholar
  225. Winkler KW, Murphy WF (1995) Acoustic velocity and attenuation in porous rocks. In: Ahrens TJ (ed) Rock physics and phase relations: a handbook of physics constants, vol 3, AGU reference shelf. AGU, Washington, DC, pp 20–34Google Scholar
  226. Worthington PF (1993) The uses and abuses of the Archie equations, 1: the formation factor-porosity relationship. J Appl Geophys 30:215–228Google Scholar
  227. Worzewski T, Jegen M, Kopp H, Brasse H, Castillo WT, Magnetotelluric image of the fluid cycle in the Costa Rican subduction zone, Nature Geoscience, 4, 108–111, 2010.Google Scholar
  228. Xue M, Allen RM (2007) The fate of the Juan de Fuca plate: implications for a Yellowstone plume head. Earth Planet Sci Lett 264:266–276. doi: 10.1016/j.epsl.2007.09.047 Google Scholar
  229. Yardley B, Valley J (1997) The petrologic case for a dry lower crust. J Geophys Res 102:12173–12185Google Scholar
  230. Zhao D, Wang K, Rogers GC, Peacock SM (2001) Tomographic image of low P velocity anomalies above slab in northern Cascadia subduction zone. Earth Planet Space 53:285–293Google Scholar
  231. Zhu L, Kanamori H (2000) Moho depth variation in southern California from teleseismic receiver functions. J Geophys Res 105:2969–2980Google Scholar

Copyright information

© Springer Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.University of AlbertaEdmontonCanada
  2. 2.University of BergenBergenNorway
  3. 3.Massachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations