Prograde, Peak and Retrograde Metamorphic Fluids and Associated Metasomatism in Upper Amphibolite to Granulite Facies Transition Zones

  • J. L. R. TouretEmail author
  • T. G. Nijland
Part of the Lecture Notes in Earth System Sciences book series (LNESS)


Granulites constitute a major part of the (lower) continental crust, occurring on a regional scale in many metamorphic belts. Their origin is generally discussed in terms of vapour-absent melting and fluid-assisted dehydration. This last model is notably supported by the occurrence of two immiscible free fluids at peak- and retrograde conditions, viz. CO2 and highly saline brines. Evidence includes fluid remnants preserved in mineral inclusions, but also large scale metasomatic effects. The current paper discusses the presence and action of these fluids in granulites, with special attention to amphibolite to granulite facies transition zones (e.g. the Bamble sector, south Norway). Metasomatic effects induced by fluid percolation at different scales and stages include: (1) Control of state variables (H2O activity or O2 fugacity), regional oxidation and so-called ‘granulite facies’ islands. (2) Small scale metasomatism at mineral intergrain boundaries (e.g. K-feldspar microveins and/or myrmekites). (3) Large scale metasomatism at the amphibolite to granulite facies transition zone, evidenced by: (a) Incipient charnockites, (b) Metasomatic redistribution of elements traditionally considered as immobile (e.g. Zr, Th, REE), (c) Peak metamorphic to retrograde bulk chemical processes (scapolitization, albitization), (d) Long distance action of granulite fluids. The importance and widespread occurrence of these effects call for large fluid quantities stored in the lower crust at peak metamorphic conditions, later expelled towards shallower crustal levels during retrogradation. Fluid origin, only briefly discussed in this paper, is complicated, not unique. Some fluids are crustal, either far remnants of sedimentary waters (brines) or linked to metamorphic/melt reactions. But, especially for high-temperature granulites, the greatest amount, notably for CO2, is issued from the upper mantle, which contain also the same fluid remnants as those found in the lower crust.


Fluid Inclusion Mineral Assemblage Lower Crust Granulite Facies Dharwar Craton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Successive versions of this paper have benefited from comments and/or discussions and/or (in)formal reviews by H. Austrheim T. Andersen, M. Cuney, D.E. Harlov, W.L. Griffin, R.C. Newton, D. Rumble and O. Safonov, as well as by careful editorial work by the editors of this volume. The senior author wants to acknowledge the constant support and inspiration he has got from Bob Newton during more than 40 years, as well as the technical support of the ENS team (C. Chopin, E. Charon) for a number of microphotographs.


  1. Abramov SS, Kurdyukov EB (1997) The origin of charnockite-enderbite complexes by magmatic replacement: geochemical evidence. Geochem Int 35:219–226Google Scholar
  2. Ague JJ (2003) Fluid flow in the deep crust. In: Rudnick RL (ed) Treatise on geochemistry, vol 3, The crust. Elsevier, Amsterdam, pp 195–228CrossRefGoogle Scholar
  3. Aitken BG (1983) T-XCO2 stability relations and phase equilibria of a calcic carbonate scapolite. Geochim Cosmochim Acta 47:351–362CrossRefGoogle Scholar
  4. Amundsen HEF, Griffin WL, O’Reilly SY (1988) The nature of the lithosphere beneath northwestern Spitsbergen: xenolith evidence. In: Kristoffersen Y (ed) Progress in studies of the lithosphere in Norway, vol. 3, Norges Geologiske Undersøkelse Special Publication. Norges Geologiske Undersøkelse, Trondheim pp 58–65Google Scholar
  5. Aranovich LY, Shmulovich KI, Fedkin VV (1987) The H2O and CO2 regime in regional metamorphism. Int Geol Rev 29:1379–1401CrossRefGoogle Scholar
  6. Araujo DP, Griffin WL, O’Reilly SY (2009) Mantle melts, metasomatism and diamond formation: insights from melt inclusions in xenoliths from Diavik, Slave craton. Lithos 112(suppl 2):675–682CrossRefGoogle Scholar
  7. Baker JH (1985) Rare earth and other trace element mobility accompanying albitization in a Proterozoic granite, W Bergslagen, Sweden. Mineral Mag 49:107–115CrossRefGoogle Scholar
  8. Ballèvre M, Hensen BJ, Reynard B (1997) Orthopyroxene-andalusite symplectites replacing cordierite in granulites from the Strangways range (Arunta block, central Australia): a new twist to the pressure-temperature history. Geology 25:215–218CrossRefGoogle Scholar
  9. Baltybaev SK, Levchenkov OA, Glebovitskii VA, Rizvanova NG, Yakubovich OV, Fedoseenko AM (2010) Timing of the regional postmigmatitic K-feldspar mineralization on the base of U-Pb dating of monazite (metamorphic complex of the northern Ladoga region). Doklady Earth Sci 430:186–189CrossRefGoogle Scholar
  10. Becke F (1908) Ueber Myrmekite. Schweiz Mineral Petrograph Mitt 27:377–390Google Scholar
  11. Beloussov VV (1966) Modern concepts of the structure and development of the earth’s crust and the upper mantle of continents. J Geol Soc Lond 122:293–314CrossRefGoogle Scholar
  12. Bingen B (1989) Geochemistry of Sveconorwegian augen gneisses from SW Norway at the amphibolite-granulite transition. Norsk Geol Tidsskr 69:177–189Google Scholar
  13. Bingen B, Demaiffe D, Hertogen J (1996) Redistribution of rare earth elements, thorium, and uranium over accessory minerals in the course of amphibolite to granulite metamorphism: the role of apatite and monazite in orthogneisses from southwestern Norway. Geochim Cosmochim Acta 60:1341–1354CrossRefGoogle Scholar
  14. Binns RA (1964) Zones of progressive regional metamorphism in the Willyama complex, Broken Hill district, New South Wales. J Geol Soc Aust 11:283–330CrossRefGoogle Scholar
  15. Bodart DE (1968) On the paragenesis of albitites. Norsk Geol Tidsskr 48:269–280Google Scholar
  16. Bohlen SR (1991) On the formation of granulites. J Metamorph Geol 9:223–229CrossRefGoogle Scholar
  17. Bohlen SR, Mezger K (1989) Origin of granulite terranes and the formation of the lowermost continental crust. Science 244:326–329CrossRefGoogle Scholar
  18. Bol LCGM, Maijer C, Jansen JBH (1989) Premetamorphic lateritization in Proterozoic metabasites of Rogaland, SW Norway. Contrib Mineral Petrol 103:299–309CrossRefGoogle Scholar
  19. Bol LCGM, Nijland TG, Sauter PCC, Jansen JBH, Valley JW (1995) Preservation of premetamorphic oxygen and carbon isotopic trends in granulite facies marbles from Rogaland, SW Norway. Am J Sci 295:1179–1219CrossRefGoogle Scholar
  20. Bolder-Schrijver L, Kriegsman L, Touret JLR (2000) Primary carbonate/CO2 inclusions in sapphirine-bearing granulites from central Sri Lanka. J Metamorph Geol 18:259–269CrossRefGoogle Scholar
  21. Boles JR (1982) Active albitization of plagioclase, Gulf Coast Tertiary. Am J Sci 282:165–180CrossRefGoogle Scholar
  22. Boulvais P, Fourcade S, Gruau G, Moine B, Cuney M (1998) Persistence of pre-metamorphic C and O isotopic signatures in marbles subject to Pan-African granulite-facies metamorphism and U-Th mineralization (Tranomaro, southeast Madagascar). Chem Geol 150:247–262CrossRefGoogle Scholar
  23. Boulvais P, Fourcade S, Moine B, Gruau G, Cuney M (2000) Rare-earth elements distribution in granulite-facies marbles: a witness of fluid-rock interaction. Lithos 53:117–126CrossRefGoogle Scholar
  24. Boulvais P, Ruffet G, Cornichet J, Mermet M (2007) Cretaceous albitization and dequartzification of Hercynian peraluminous granite in the Salvezines massif (French Pyrénées). Lithos 93:89–106CrossRefGoogle Scholar
  25. Bowers TS, Helgeson HC (1983) Calculation of the thermodynamic and geochemical consequences of nonideal mixing in the system H2O-CO2-NaCl on phase relations in geologic systems: metamorphic equilibria at high pressures and temperatures. Am Mineral 68:1059–1075Google Scholar
  26. Bradshaw JY (1989) Early Cretaceous vein-related garnet granulite in Fiordland, southwest New Zealand: a case for infiltration of mantle-derived CO2-rich fluids. J Geol 97:697–717CrossRefGoogle Scholar
  27. Broekmans MATM, Nijland TG, Jansen JBH (1994) Are stable isotopic trends in amphibolite to granulite facies transitions metamorphic or diagenetic ? – an answer for the Arendal area (Bamble sector, SE Norway) from Mid-Proterozoic carbon-bearing rocks. Am J Sci 294:1135–1165CrossRefGoogle Scholar
  28. Brøgger WC (1934) On several Archaean rocks from the south coast of Norway. II the South Norwegian hyperites and their metamorphism, vol 1, Det Norske Videnskaps-Akademi i Oslo Skrifter, Matematisk-Naturvidenskapelig Klasse. I kommisjon hos J. Dybwad, OsloGoogle Scholar
  29. Brøgger WC, Reusch HH (1875) Vorkommen des Apatit in Norwegen. Z deutsch geol Gesell 27:646–702Google Scholar
  30. Brown M, White RW (2008) Processes in granulite metamorphism. J Metamorph Geol 26:121–124CrossRefGoogle Scholar
  31. Budzyn B, Michalik M, Malata T, Poprawa P (2005) Primary and secondary monazite in a calcitized gneiss clast from Bukowiec (the Silesian unit, western outer Carpathians). Mineral Pol 36:161–165Google Scholar
  32. Bugge A (1965) Iakttagelser fra rektangelbladet Kragerö og den store grunnfjellbreksje. vol 229, Norges Geologiske Undersøkelse Bulletin, Norges Geologiske Undersøkelse, TrondheimGoogle Scholar
  33. Bugge C (1922) Statens apatitdrift i rationeringstiden, vol 110, Norges Geologiske Undersøkelse Bulletin, Norges Geologiske Undersøkelse, TrondheimGoogle Scholar
  34. Bugge JAW (1945) The geological importance of diffusion in the solid state. vol 13, Norske Videnskaps-Akademi i Oslo Skrifter, Matematisk-Naturvidenskapelig Klasse, Det Norske Videnskaps-Akademi, OsloGoogle Scholar
  35. Bugge JAW (1978) Kongsberg – Bamble complex. In: Bowie SHO, Kvalheim A, Haslam MW (eds) Mineral deposits of Europe, vol 1, Northwest Europe. Institution of Mining and Metallurgy and Mineralogical Society, London, pp 213–217Google Scholar
  36. Burgess R, Cartigny P, Harrison D, Hobson E, Harris J (2009) Volatile composition of microinclusions in diamonds from the Panda kimberlite, Canada: implications for chemical and isotopic heterogeneity in the mantle. Geochim Cosmochim Acta 73:1779–1794CrossRefGoogle Scholar
  37. Cabella R, Luccheti G, Marescotti P (2001) Authigenic monazite and xenotime from pelitic metacherts in pumpellyite-actinolite-facies conditions, Sestri-Voltaggio zone, central Liguria, Italy. Can Mineral 39:717–727CrossRefGoogle Scholar
  38. Cameron EM (1988) Archean gold: relation to granulite formation and redox zoning in the crust. Geology 16:109–112CrossRefGoogle Scholar
  39. Cameron EM (1989a) Derivation of gold by oxidative metamorphism of a deep ductile shear zone. Part 1. Conceptual model. J Geochem Explor 31:135–147CrossRefGoogle Scholar
  40. Cameron EM (1989b) Derivation of gold by oxidative metamorphism of a deep ductile shear zone. Part 2. Evidence from the Bamble belt, south Norway. J Geochem Explor 31:149–169CrossRefGoogle Scholar
  41. Cameron EM (1994) Depletion of gold and LILE in the lower crust: Lewisian complex, Scotland. J Geol Soc Lond 151:747–775CrossRefGoogle Scholar
  42. Cameron EM, Hattori K (1994) Highly oxidized deep metamorphic zones: occurrence and origin. Mineral Mag 58A:142–143CrossRefGoogle Scholar
  43. Cathelineau M (1985) Épisénitisation ou déquartzification hydrothermale: une typologie basée sur les successions minérales et sur le comportement différentiel de Si, Na et K. Comptes Rendus de l’Académie des Sciences Paris, série II 300:677–680Google Scholar
  44. Cathelineau M (1986) The hydrothermal alkali metasomatism effects on granitic rocks: quartz dissolution and related subsolidus changes. J Petrol 27:945–965CrossRefGoogle Scholar
  45. Chamberlain CP, Rumble D III (1989) The influence of fluids on the thermal history of a metamorphic terrain: new Hampshire, USA. In: Daly JS, Cliff RA, Yardley BWD (eds) Evolution of metamorphic belts, vol 43, Geological Society Special Publication. Blackwell Science, Oxford, pp 203–213Google Scholar
  46. Chi G, Dube B, Williamson K, Williams-Jones AE (2006) Formation of the campbell-red lake gold deposit by H2O-poor, CO2-dominated fluids. Miner Deposita 40:726–741CrossRefGoogle Scholar
  47. Clemens JD (2006) Melting of the continental crust: fluid regimes, melting reactions and source-rock fertility. In: Brown M, Rushmer T (eds) Evolution and differentiation of the continental crust. Cambridge University Press, Cambridge, pp 297–331Google Scholar
  48. Coolen JJMMM (1980) Chemical petrology of the Furua granulite complex, southern Tanzania. Ph.D. thesis, GUA Papers of Geology vol 13, GUA Papers of Geology, Free University, AmsterdamGoogle Scholar
  49. Coolen JJMMM (1982) Carbonic fluid inclusions in granulites from Tanzania: a comparison of geobarometric methods based on fluid density and mineral chemistry. Chem Geol 37:59–77CrossRefGoogle Scholar
  50. Cuney M, Coulibaly Y, Boiron MC (2007) High-density early CO2 fluids in the ultrahigh temperature granulites of Ihouhaouene (In Ouzzal, Algeria). Lithos 96:402–414CrossRefGoogle Scholar
  51. Cuney M, Kyzer K (2009) Recent and not-so-recent developments in uranium deposits and implication for exploration. Mineralogical Association of Canada Short Course Series vol 39, Mineralogical Association of Canada Short Course Series, Mineralogical Association of Canada, OttawaGoogle Scholar
  52. Dahanayake K, Ranasinghe AP (1981) Source rocks of gem minerals. a case study from Sri Lanka. Miner Deposita 16:103–111CrossRefGoogle Scholar
  53. Dahlgren S, Bogoch R, Magaritz M, Michard A (1993) Hydrothermal dolomite marbles associated with charnockitic magmatism in Proterozoic Bamble shear belt, south Norway. Contrib Mineral Petrol 113:394–409CrossRefGoogle Scholar
  54. Dam BP (1995) Geodynamics in the Bamble area during Gothian- and Sveconorwegian times, vol 117, Geologica Ultraiectina, Utrecht University, UtrechtGoogle Scholar
  55. Della Giustina MES, Pimental MM, Ferreira Filho CF, Maia de Hollanda MHB (2010) Dating coeval mafic magmatism and ultrahigh-temperature metamorphism in the Anápolis-Itauçu Complex, central Brazil. In: Della Giustina MES (ed) Geocronologia e significado tectônico de rochas máficas de alto grau metamórfico da Faixa Brasília. Ph.D. thesis, Universidade de Brasília, Brasília, pp 18–56Google Scholar
  56. De Haas GJLM, Nijland TG, Valbracht PJ, Maijer C, Verschure R, Andersen T (2002) Magmatic versus metamorphic origin of olivine-plagioclase coronas. Contrib Mineral Petrol 143:537–550CrossRefGoogle Scholar
  57. Dunai TJ, Touret JLR (1993) A noble-gas study of a granulite sample from the Nilgiri Hills, southern India: implications for granulite formation. Earth Planet Sci Lett 119:271–281CrossRefGoogle Scholar
  58. Eggenkamp HGM, Schuiling RD (1995) δ37Cl variations in selected minerals: a possible tool for exploration. J Geochem Explor 55:249–255CrossRefGoogle Scholar
  59. Eggler DH, Kadik AA (1979) The system NaAlSi3O8-H2O-CO2 to 20 kbars pressure: 1. Compositional and thermodynamic relations of liquids and vapors coexisting with albite. Am Mineral 64:1036–1048Google Scholar
  60. Eisenlohr BN, Groves D, Partington GA (1989) Crustal-scale shear zones and their significance to Archaean gold mineralization in western Australia. Miner Deposita 24:1–8CrossRefGoogle Scholar
  61. Elliott RB (1966) The association of amphibolite and albitite, Kragerö, south Norway. Geol Mag 103:1–7CrossRefGoogle Scholar
  62. Engel AEJ, Engel CG (1958) Progressive metamorphism and granitization of the major paragneiss, northwest Adirondack Mountains, New York. I. Bull Geol Soc Am 69:1369–1414CrossRefGoogle Scholar
  63. Engel AEJ, Engel CG (1960) Progressive metamorphism and granitization of the major paragneiss, northwest Adirondack Mountains, New York. II. Bull Geol Soc Am 71:1–58CrossRefGoogle Scholar
  64. Engvik AK, Austrheim H (2010) Formation of sapphirine and corundum in scapolitised and Mg-metasomatised gabbro. Terra Nova 22:166–171CrossRefGoogle Scholar
  65. Engvik AK, Golla-Schindler U, Berndt J, Austrheim H, Putnis A (2009) Intragranular replacement of chlorapatite by hydroxy-fluor-apatite during metasomatism. Lithos 112:236–246CrossRefGoogle Scholar
  66. Engvik AK, Mezger K, Wortelkamp S, Bast R, Corfu F, Korneliussen A, Ihlen P, Bingen B, Austrheim H (2011) Metasomatism of gabbro-mineral replacement and element mobilization during the Sveconorwegian metamorphic event. J Metamorph Geol 29:399–423CrossRefGoogle Scholar
  67. Engvik AK, Putnis A, Fitzgerald JD, Austrheim H (2008) Albitization of granitic rocks: the mechanism of replacement of oligoclase by albite. Can Mineral 46:1401–1415CrossRefGoogle Scholar
  68. Eskola P (1914) On the petrology of the Orijärvi region in southwestern Finland, vol 40, Commision Géologique de Finlande Bulletin, ommision GÕologique de Finlande, HelsinkiGoogle Scholar
  69. Etheridge MA, Wall VJ, Vernon RH (1983) The role of the fluid phase during regional metamorphism and deformation. J Metamorph Geol 1:205–226CrossRefGoogle Scholar
  70. Evans J, Zalasiewicz J (1996) U-Pb, Pb-Pb and Sm-Nd dating of authigenic monazite: implications for the diagenetic evolution of the Welsh basin. Earth Planet Sci Lett 144:421–433CrossRefGoogle Scholar
  71. Farquhar J, Chacko T (1991) Isotopic evidence for involvement of CO2-bearing magmas in granulite formation. Nature 354:60–63CrossRefGoogle Scholar
  72. Field D, Drury SA, Cooper DC (1980) Rare-earth and LIL element fractionation in high grade charnockitic gneisses, south Norway. Lithos 13:281–289CrossRefGoogle Scholar
  73. Fonarev VI, Santosh M, Filimorov MB, Vasiukova OV (2001) Pressure-temperature fluid history and exhumation path of a Gondwana fragment: Trivandrum granulite block, southern India. Gondwana Res 4:615–616CrossRefGoogle Scholar
  74. Fonteilles M (1970) Géologie des terrains métamorphiques et granitiques du Massif de l’Agly (Pyrénées Orientales). Bulletin B R G M Sect IV 3:21–72Google Scholar
  75. Force ER (1991) Geology of titanium-mineral deposits, vol 259, Geological society of america special paper. Geological Society of America, BoulderGoogle Scholar
  76. Franz L, Harlov DE (1998) High grade K-feldspar veining in granulites from the Ivrea-Verbano zone, northern Italy: fluid flow in the lower crust and implications for granulite facies genesis. J Geol 106:455–472CrossRefGoogle Scholar
  77. Friend CRL (1981) Charnockite and granite formation and influx of CO2 at Kabbaldurga. Nature 294:550–552CrossRefGoogle Scholar
  78. Frietsch R, Tuisku P, Martinsson O, Perdahl JA (1997) Early Proterozoic Cu-(Au) and Fe ore deposits associated with regional Na-Cl metasomatism in northern Fennoscandia. Ore Geol Rev 12:1–34CrossRefGoogle Scholar
  79. Frost BR (1991) Introduction to oxygen fugacity and its petrologic importance. In: Lindsley DH (ed) Oxide minerals: petrologic and magnetic significance, vol 25, Reviews in mineralogy. Mineralogical Society of America, Washington, DC, pp 1–9Google Scholar
  80. Frost BR, Frost CD (1987) CO2, melts and granulite metamorphism. Nature 327:503–506CrossRefGoogle Scholar
  81. Frost BR, Frost CD (2008) On charnockites. Gondwana Res 13:30–44CrossRefGoogle Scholar
  82. Frost BR, Frost CD, Touret JLR (1989) Magmas as a source of heat and fluids in granulite metamorphism. In: Bridgwater D (ed) Fluid movements-element transport and the composition of the deep crust. Kluwer, Dordrecht, pp 1–18CrossRefGoogle Scholar
  83. Frost BR, Touret J (1989) Magmatic CO2 and saline melts from the Sybille monzosyenite, Laramie anorthosite complex, Wyoming. Contrib Mineral Petrol 103:178–186CrossRefGoogle Scholar
  84. Fyfe WS (1973) The granulite facies, partial melting and the Archean crust. Philos Trans R Soc Lond A273:457–461Google Scholar
  85. Fyfe WS, Prince NJ, Thompson AB (1978) Fluids in the Earth’s crust. Elsevier, AmsterdamGoogle Scholar
  86. Girault JP (1952) Kornerupine from Lac Ste-Marie, Quebec, Canada. Am Mineral 37:531–541Google Scholar
  87. Gibert F, Guillaume D, Laporte D (1998) Importance of fluid immiscibility in the H2O-NaCl-CO2 system and selective CO2 entrapment in granulites: experimental phase diagram at 5–7 kbar, 900°C and wetting textures. Eur J Mineral 10:1109–1123Google Scholar
  88. Godard G, Smith D (1999) Preiswerkite and Na-(Mg, Fe)-margarite in eclogites. Contrib Mineral Petrol 136:20–32CrossRefGoogle Scholar
  89. Goldschmidt VM (1922) On the metasomatic processes in silicate rocks. Econ Geol 17:105–123CrossRefGoogle Scholar
  90. Goldsmith JR (1976) Scapolites, granulites, and volatiles in the lower crust. Geol Soc Am Bull 87:161–168CrossRefGoogle Scholar
  91. Green JC (1956) Geology of the Storkollen-Blankenberg area, Kragerö, Norway. Nor Geol Tidsskr 36:89–140Google Scholar
  92. Grew ES, Chernosky JH, Werding G, Abraham K, Marquez N, Hinthorne JR (1990) Chemistry of kornerupine and associated minerals, wet chemical, ion microprobe, and X-ray study emphasizing Li, Be, B, and F contents. J Petrol 31:1025–1070CrossRefGoogle Scholar
  93. Guillot S, Le Fort P, Pecher A, Roy Barman M, Apphrahamian J (1995) Contact metamorphism and depth of emplacement of the Manaslu granite (central Nepal): implications for Himalayan orogenesis. Tectonophysics 241:99–119CrossRefGoogle Scholar
  94. Guzmics T, Mitchell R, Szabó C, Berkesi M, Milke R, Abart R (2011) Carbonatite melt inclusions in coexisting magnetite, apatite and monticellite in Kerimasi calciocarbonatite, Tanzania: melt inclusions and petrogenesis. Contrib Mineral Petrol 161:177–196CrossRefGoogle Scholar
  95. Hålenius U, Smellie JAT (1983) Mineralisations of the Arjeplog-Arvidsjaur-Sorsele uranium province: mineralogical studies of selected uranium occurrences. N Jahrb Mineral Abh 147:229–252Google Scholar
  96. Hansen EC, Harlov DE (2007) Whole rock, phosphate, and silicate compositions across an amphibolite- to granulite-facies transition, Tamil Nadu, India. J Petrol 48:1641–1680CrossRefGoogle Scholar
  97. Hansen EC, Janardhan AS, Newton RC, Prame WKBN, Ravindra Kumar GR (1987) Arrested charnockite formation in southern India and Sri Lanka. Contrib Mineral Petrol 96:225–244CrossRefGoogle Scholar
  98. Hansen EC, Newton RC, Janardhan AS (1984) Fluid inclusions in rocks from amphibolite-facies gneiss to charnockite progression in southern Karnataka, India: direct evidence concerning the fluids of granulite metamorphism. J Metamorph Geol 2:249–264CrossRefGoogle Scholar
  99. Hansen EC, Newton RC, Janardhan AS, Lindenberg S (1995) Differentiation of late Archean crust in the eastern Dharwar craton, south India. J Geol 103:629–651CrossRefGoogle Scholar
  100. Harley SL (1989) The origin of granulites: a metamorphic perspective. Geol Mag 126:215–247CrossRefGoogle Scholar
  101. Harley SL (1993) Proterozoic granulite terranes. In: Condie KC (ed) Proterozoic crustal growth. Elsevier, Amsterdam, pp 301–359Google Scholar
  102. Harley SL (2008) Refining the P-T records of UHT crustal metamorphism. J Metamorph Geol 26:125–154CrossRefGoogle Scholar
  103. Harley SL, Santosh M (1995) Wollastonite at Nuliyam, Kerala, southern India: a reassessment of CO2-infiltration and charnockite formation at a classic locality. Contrib Mineral Petrol 120:83–94CrossRefGoogle Scholar
  104. Harlov DE (1992) Comparative oxygen barometry in granulites, Bamble sector, SE Norway. J Geol 100:447–464CrossRefGoogle Scholar
  105. Harlov DE (2000) Titaniferous magnetite-ilmenite thermometry/titaniferous magnetite-ilmenite-orthopyroxene-quartz oxygen barometry in orthopyroxene-bearing granulite facies gneisses, Bamble sector, SE Norway: implications for the role of high grade CO2-rich fluids during granulite genesis. Contrib Mineral Petrol 139:180–197CrossRefGoogle Scholar
  106. Harlov DE, Dunkley D (2010) Experimental high-grade alteration of zircon using akali- and Ca-bearing solutions: resetting geochronometer during metasomatism. AGU Fall meeting, San Francisco, abstract V41D-2301Google Scholar
  107. Harlov DE, Förster HJ (2002) High-grade fluid metasomatism on both a local and a regional scale: the Seward peninsula, Alaska, and the Val Strona di Omegna, Ivrea-Verbano zone, northern Italy. Part I: petrography and silicate mineral chemistry. J Petrol 43:769–799CrossRefGoogle Scholar
  108. Harlov DE, Förster HJ (2003) Fluid-induced nucleation of (Y + REE)-phosphate minerals within apatite: nature and experiment. Part II. Fluorapatite. Am Mineral 88:1209–1229Google Scholar
  109. Harlov D, Förster HJ, Nijland TG (2002) Fluid-induced nucleation of (Y + REE)-phosphate minerals within apatite: nature and experiment. Part I. Chlorapatite. Am Mineral 87:245–261Google Scholar
  110. Harlov DE, Hansen EC (2005) Oxide and sulphide isograds along a late Archean, deep-crustal profile in Tamil Nadu, south India. J Metamorph Geol 23:241–259CrossRefGoogle Scholar
  111. Harlov DE, Hansen EC, Bigler C (1998) Petrologic evidence for K-feldspar metasomatism in granulite facies rocks. Chem Geol 151:373–386CrossRefGoogle Scholar
  112. Harlov DE, Hetherington CJ (2010) Partial high-grade alteration of monazite using alkali-bearing fluids: experiment and nature. Am Mineral 95:1105–1108CrossRefGoogle Scholar
  113. Harlov DE, Johansson L, Van den Kerkhof A, Förster HJ (2006) The role of advective fluid flow and diffusion during localized, solid-state dehydration: Söndrum Stenhuggeriet, Halmstad, SW Sweden. J Petrol 47:3–33CrossRefGoogle Scholar
  114. Harlov DE, Newton RC, Hansen EC, Janardhan AS (1997) Oxide and sulphide minerals in highly oxidized, Rb-depleted, Archaean granulites of the Shevaroy Hills massif, south India: oxidation states and the role of metamorphic fluids. J Metamorph Geol 15:701–717CrossRefGoogle Scholar
  115. Harlov DE, Wirth R (2000) K-feldspar-quartz and K-feldspar-plagioclase phase boundary interactions in garnet-orthopyroxene gneisses from the Val Strona di Omegna, Ivrea-Verbano zone, northern Italy: a case for high grade emplacement under relatively dry conditions. Contrib Mineral Petrol 140:148–162CrossRefGoogle Scholar
  116. Harlov DE, Wirth R, Förster HJ (2005) An experimental study of dissolution-reprecipitation in fluorapatite: fluid infiltration and the formation of monazite. Contrib Mineral Petrol 150:268–286CrossRefGoogle Scholar
  117. Harlov DE, Wirth R, Hetherington C (2011) Fluid-mediated partial alteration of monazite: the role of coupled dissolution-reprecipitation during apparent solid-state element mass transfer. Contrib Mineral Petrol 162:329–348CrossRefGoogle Scholar
  118. Hayden LA, Manning CE (2011) Rutile solubility in supercritical NaAlSi3O8-H2O fluids. Chem Geol 284:74–81CrossRefGoogle Scholar
  119. Heier KS (1965) Metamorphism and the chemical differentiation of the crust. GFF 87:249–256Google Scholar
  120. Heier KS (1973) Geochemistry of granulite facies rocks and problems of their origin. Philos Trans R Soc Lond A273:429–442Google Scholar
  121. Hellman PL, Smith RE, Henderson P (1979) The mobility of the rare earth elements: evidence and implications from selected terrains effected by burial metamorphism. Contrib Mineral Petrol 71:23–44CrossRefGoogle Scholar
  122. Hinchey AM, Carr SD (2007) Protolith composition of cordierite-gedrite basement rocks and garnet amphibolite of the Bearpaw Lake area of the Thor-Odin dome, Monashee complex, British Columbia, Canada. Can Mineral 45:607–629CrossRefGoogle Scholar
  123. Hoefs J, Coolen JJM, Touret J (1981) The sulfur and carbon isotope composition of scapolite-rich granulites from southern Tanzania. Contrib Mineral Petrol 78:332–336CrossRefGoogle Scholar
  124. Hoeve J (1974) Soda metasomatism and radioactive mineralization in the Västervik area, southeastern Sweden. Ph.D. thesis, Free University, AmsterdamGoogle Scholar
  125. Holland TH (1900) The charnockite series, a group of Archean hypersthenic rocks in peninsular India. vol 28, Memoir of the Geological Survey of India, Geological Survey of India, Kolkata, pp 192-249Google Scholar
  126. Holness MB (1992) Equilibrium dihedral angles in the system quartz-CO2-H2O-NaCl at 800°C and 1–15 kb – The effects of pressure and fluid composition on the permeability of quartzites. Earth Planet Sci Lett 114:171–184CrossRefGoogle Scholar
  127. Huizenga JM (2005) COH, an excel spreadsheet for composition calculations in the C-O-H fluid system. Comput Geosci 31:797–800CrossRefGoogle Scholar
  128. Huizenga JM, Touret JLR (2012) Granulites, CO2 and graphite. Gondwana Research, submittedGoogle Scholar
  129. Humphries S (1984) The mobility of the rare earth elements in the crust. In: Henderson P (ed) Rare earth geochemistry. Elsevier, Amsterdam, pp 317–342Google Scholar
  130. Izraeli ES, Harris JW, Navon O (2001) Brine inclusions in diamonds; a new upper mantle fluid. Earth Planet Sci Lett 187:323–332CrossRefGoogle Scholar
  131. Janardhan AS, Newton RC, Hansen EC (1982) The transformation of amphibolite facies gneiss to charnockite in southern Karnataka and northern Tamil Nadu, India. Contrib Mineral Petrol 79:130–149CrossRefGoogle Scholar
  132. Janardhan AS, Newton RC, Smith JV (1979) Ancient crustal metamorphism at low PH2O: charnockite formation at Kabbaldurga, south India. Nature 278:511–514CrossRefGoogle Scholar
  133. Joesten R (1986) The role of magmatic reaction, diffusion and annealing in the evolution of coronitic microstructure in troctolitic gabbro from Risör, Norway. Mineral Mag 50:441–467CrossRefGoogle Scholar
  134. Johnson EL (1991) Experimentally determined limits for H2O-CO2-NaCl immiscibility in granulites. Geology 19:925–928CrossRefGoogle Scholar
  135. Jøsang O (1966) Geologiske og petrografiske undersøkelser i Modumfeltet, vol 235, Norges Geologiske Undersøkelse Bulletin, Norges Geologiske Undersøkelse, TrondheimGoogle Scholar
  136. Judd JW (1889) On the processes by which a plagioclase feldspar is converted into scapolite. Mineral Mag 8:186–198CrossRefGoogle Scholar
  137. Kadik AA, Lukanin OA, Lebedev YB, Korovushkina EY (1972) Solubility of H2O and CO2 in granite and basalts at high pressures. Geochem Int 9:1041–1050Google Scholar
  138. Katz MB (1987) Graphite deposits of Sri Lanka: a consequence of granulite facies metamorphism. Miner Deposita 22:18–25CrossRefGoogle Scholar
  139. Kelsey DE (2008) On ultra-high temperature crustal metamorphism. Gondwana Res 13:1–29CrossRefGoogle Scholar
  140. Kilpatrick JA, Ellis DJ (1992) C-type magmas: igneous charnockites and their extrusive equivalents. Trans R Soc Edin Earth Sci 83:155–164CrossRefGoogle Scholar
  141. Klein-BenDavid O, Izraeli ES, Hauri E, Navon O (2004) Mantle fluid evolution – a tale of one diamond. Lithos 77:243–253CrossRefGoogle Scholar
  142. Klimov LV, Ravich MG, Solovjev DS (1964) East Antarctic charnockites. In: Proceedings of the 22nd international geological congress, vol 13, Proceedings of the 22nd international geological congress, New Delhi, pp 79–85Google Scholar
  143. Knudsen TL, Andersen T (1999) Petrology and geochemistry of the Tromøy gneiss complex, south Norway, an alleged exampled of Proterozoic depleted lower continental crust. J Petrol 40:909–933CrossRefGoogle Scholar
  144. Knudsen TL, Lidwin A (1996) Magmatic CO2, brine and nitrogen inclusions in Sveconorwegian enderbitic dehydration veins and a gabbro from the Bamble sector, southern Norway. Eur J Mineral 8:1041–1064Google Scholar
  145. Korneliussen A, Dormann P, Erambert M, Furuhaug L, Mathiesen CO (1992) Rutilforekomster tilknyttet eklogitt-bergarter på Vestlandet of metasomatiske omvandlede bergarter of metasedimenter i Bamble-Arendal regionen. report 92.234, Norges Geologiske Undersøkelse, TrondheimGoogle Scholar
  146. Kontak DJ, Morteani G (1983) On the geochemical fractionation of rare earth elements during the formation of Ca-minerals and its application to problems of the genesis of ore deposits. In: Augustithis SS (ed) Trace elements in petrogenesis: the significance of trace elements in solving petrogenetic problems and controversies. Theophrastus Publications S.A, Athens, pp 147–791Google Scholar
  147. Korzhinskii DS (1940) Factors in mineral equilibria and mineralogical depth facies. Trudy Akademii Nauk SSSR, MoscowGoogle Scholar
  148. Korzhinskii DS (1959) Physicochemical basis of the analysis of the paragenesis of minerals. Consultant Bureau, New YorkGoogle Scholar
  149. Korzhinskii DS (1962) The role of alkalinity in the formation of charnockitic gneisses. In: Precambrian geology and petrology: general and regional problems. vol 5. Trudy Vostochono-Sibirskogo Geologicheskogo Institute, Geological Series Izd-vo Akademii nauk SSSR, Moskva, pp 50–61Google Scholar
  150. Korzhinskii DS (1968) The theory of metasomatic zoning. Miner Deposita 3:222–231CrossRefGoogle Scholar
  151. Kovacs I, Szabó C (2005) Petrology and geochemistry of granulite xenoliths beneath the Nógrád-Gömör volcanic field, Carpathian-Pannonian region (N-Hungary S-Slovakia). Mineral Petrol 85:269–290CrossRefGoogle Scholar
  152. Kullerud K (1996) Chlorine-rich amphiboles: interplay between amphibole composition and an evolving fluid. Eur J Mineral 8:355–370Google Scholar
  153. Lacroix A (1893) Les enclaves des roches volcaniques. Ann Acad Mâcon 10:17–697Google Scholar
  154. Lacroix A (1910) Sur l’existence à la Côte d’Ivoire d’une série pétrographique comparable à celle de la charnockite. CR Acad Sci II 150:18–22Google Scholar
  155. Lacroix A (1920) Les roches éruptive du Crétacé pyrénéen et la nomenclature des roches éruptives modifiées. CR Acad Sci II 170:690–695Google Scholar
  156. Lamb W, Valley JW (1984) Metamorphism of reduced granulites in low-CO2 vapour-free environment. Nature 312:56–58CrossRefGoogle Scholar
  157. Lamb WM, Valley JW, Brown PE (1987) Post-metamorphic CO2-rich inclusions in granulites. Contrib Mineral Petrol 96:485–494CrossRefGoogle Scholar
  158. Le Breton N, Thompson AB (1988) Fluid-absent (dehydration) melting of biotites in metapelites in the early stages of crustal anatexis. Contrib Mineral Petrol 99:226–237CrossRefGoogle Scholar
  159. Lemmlein GG (1951) The fissure-healing process in crystals and changes in cavity shape in secondary liquid inclusions. Dokl Akad Nauk SSSR 1(78):685–688 (in Russian)Google Scholar
  160. Lieftink DJ, Nijland TG, Maijer C (1993) Cl-rich scapolite from Ødegårdens Verk, Bamble, Norway. Nor Geol Tidsskr 73:55–57Google Scholar
  161. Lieftink DJ, Nijland TG, Maijer C (1994) The behavior of rare-earth elements in high temperature Cl-bearing aqueous fluids: results from the Ødegårdens Verk natural laboratory. Can Mineral 32:149–158Google Scholar
  162. Lobato LM, Forman JMA, Fyfe WS, Kerrich R, Barnett RL (1983) Uranium enrichment in Archaean crustal basement associated with overthrusting. Nature 303:235–237CrossRefGoogle Scholar
  163. Lovering JF, White AJR (1964) The significance of primary scapolite in granulitic inclusions from deep-seated pipes. J Petrol 5:195–218CrossRefGoogle Scholar
  164. Lovering JF, White AJR (1969) Granulitic and eclogitic inclusions from basic pipes at Delegate, Australia. Contrib Mineral Petrol 21:9–52CrossRefGoogle Scholar
  165. Luke FJ, Pasteris JD, Wopenka B, Rodas M, Barrenechea JF (1998) Natural fluid-deposited graphite: mineralogical characteristics and mechanisms of formation. Am J Sci 298:471–498CrossRefGoogle Scholar
  166. Mark G, Foster DRW (2000) Magmatic-hydrothermal albite-actinolite-apatite-rich rocks from the Cloncurry district, NW Queensland, Australia. Lithos 51:223–245CrossRefGoogle Scholar
  167. Markl G, Ferry J, Bucher K (1998) Formation of saline brines and salt in the lower crust by hydration reactions in partially retrogressed granulites from the Lofoten islands, Norway. Am J Sci 298:705–757CrossRefGoogle Scholar
  168. Michard A, Albarède F (1986) The REE content of some hydrothermal fluids. Chem Geol 55:51–60CrossRefGoogle Scholar
  169. Mishraa B, Saravanana CS, Bhattacharyaa A, Goona S, Mahatoa S, Bernhard HJ (2007) Implications of super dense carbonic and hypersaline fluid inclusions in granites from the Ranchi area, Chottanagpur gneissic complex, Eastern India. Gondwana Res 11:504–515CrossRefGoogle Scholar
  170. Moecher DP (1993) Scapolite phase equilibria and carbon isotopes – constraints on the nature and distribution of CO2 in the lower continental crust. Chem Geol 108:163–174CrossRefGoogle Scholar
  171. Moecher DP, Essene EJ (1990) Scapolite phase equilibria: additional constraints on the role of CO2 in granulite genesis. In: Vielzeuf D, Vidal P (eds) Granulites and crustal evolution. Kluwer, Dordrecht, pp 385–396CrossRefGoogle Scholar
  172. Moecher DP, Essene EJ (1992) Calculation of CO2 activities using scapolite phase equilibria: constraints on the presence and composition of a fluid phase during high-grade metamorphism. Contrib Mineral Petrol 108:219–240CrossRefGoogle Scholar
  173. Mohan A, Singh PK, Sachan HK (2003) High-density carbonic fluid inclusions in charnockites from eastern Ghats, India: petrologic implications. J Asian Earth Sci 22:101–113CrossRefGoogle Scholar
  174. Moine B, De la Roche H, Touret J (1972) Structures géochimique et zonéographie métamorphique dans le Précambrien catazonal du sud de la Norvège. Sci Terre 17:131–164Google Scholar
  175. Moine B, Rakotondratsima C, Cuney M (1985) Les pyroxénites à uranothorianite de sud-est de Madagascar: conditions physico-chimiques de la métasomatose. Bull Minéral 108:325–340Google Scholar
  176. Montanini A, Harlov D (2006) Petrology and mineralogy of granulite-facies mafic xenoliths (Sardinia, Italy): evidence for KCl metasomatism in the lower crust. Lithos 92:588–608CrossRefGoogle Scholar
  177. Morshuis J (1991) Albietpegmatieten in Bamble (zuid-Noorwegen). Unpublished M.Sc. thesis, Utrecht University, UtrechtGoogle Scholar
  178. Munz IA (1990) Whiteschists and orthoamphibole-cordierite rocks and the P-T-t path of the Modum complex, south Norway. Lithos 24:181–200CrossRefGoogle Scholar
  179. Munz IA, Wayne D, Austrheim H (1994) Retrograde fluid infiltration in the high-grade Modum complex, south Norway: evidence for age, source and REE mobility. Contrib Mineral Petrol 116:32–46CrossRefGoogle Scholar
  180. Munz IA, Yardley BWD, Banks DA, Wayne D (1995) Deep penetration of sedimentary fluids in basement rocks from southern Norway: evidence from hydrocarbon and brine inclusions in quartz veins. Geochim Cosmochim Acta 59:239–254CrossRefGoogle Scholar
  181. Naumann CF (1826) Lehrbuch der mineralogie. Engelman, LeipzigGoogle Scholar
  182. Newton RC (1989) Metamorphic fluids in the deep crust. Annu Rev Earth Planet Sci 17:385–412CrossRefGoogle Scholar
  183. Newton RC (1990) Fluids and shear zones in the deep crust. Tectonophysics 182:21–37CrossRefGoogle Scholar
  184. Newton RC (1992a) An overview of charnockite. Precambrian Res 55:399–405CrossRefGoogle Scholar
  185. Newton RC (1992b) Charnockitic alteration: evidence for CO2 infiltration in granulite facies metamorphism. J Metamorph Geol 10:383–400CrossRefGoogle Scholar
  186. Newton RC, Aranovich LY, Hansen EC, Vandenheuvel BA (1998) Hypersaline fluids in precambrian deep-crustal metamorphism. Precambrian Res 91:41–63CrossRefGoogle Scholar
  187. Newton RC, Manning CE (2002) Experimental determination of calcite solubility in H2O-NaCl solutions at deep crust/upper mantle pressures and temperatures: implications for metasomatic processes in shear zones. Am Mineral 87:1401–1409Google Scholar
  188. Newton RC, Manning CE (2005) Solubility of anhydrite, CaSO4, in NaCl-H2O solutions at high pressures and temperatures: applications to fluid-rock interaction. J Petrol 46:701–716CrossRefGoogle Scholar
  189. Newton RC, Manning CE (2006) Solubilities of corundum, wollastonite quartz in H2O-NaCl solutions at 800°C and 10 kbar: interaction of simple minerals with brines at high pressure and temperature. Geochim Cosmochim Acta 70:5571–5582CrossRefGoogle Scholar
  190. Newton RC, Manning CE (2007) Solubility of grossular, Ca3Al2Si3O12, in H2O-NaCl solutions at 800°C and 10 kbar, and the stability of garnet in the system CaSiO3-Al2O3-H2O-NaCl. Geochim Cosmochim Acta 71:5191–5202CrossRefGoogle Scholar
  191. Newton RC, Manning CE (2008) Solubility of corundum in the system Al2O3-SiO2-H2O-NaCl at 800°C and 10 kbar. Chem Geol 249:250–261CrossRefGoogle Scholar
  192. Newton RC, Manning CE (2010) Role of saline fluids in deep-crustal and upper-mantle metasomatism: insights from experimental studies. Geofluids 10:58–72Google Scholar
  193. Newton RC, Smith JV, Windley BF (1980) Carbonic metamorphism, granulites and crustal growth. Nature 288:45–50CrossRefGoogle Scholar
  194. Nijland TG, Maijer C (1991) Primary sedimentary structures and infiltration metamorphism in the Håvatn-Bårlindåsen-Tellaugstjern area, Froland. In: Abstract of the 2nd SNF Excursion, BambleGoogle Scholar
  195. Nijland TG, Maijer C (1993) The regional amphibolite to granulite facies transition at Arendal, Norway: evidence for a thermal dome. N Jahrb Mineral Abh. 165:191–221Google Scholar
  196. Nijland TG, Maijer C, Senior A, Verschure RH (1993) Primary sedimentary structures and composition of the high-grade metamorphic Nidelva quartzite complex (Bamble, Norway), and the origin of nodular gneisses. In: Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen 96:217–232Google Scholar
  197. Nijland TG, Touret JLR (2000) Brine control of ‘apparent’ metamorphic grade: a case from the Ubergsmoen augen gneiss, south Norway. In: Volume of abstracts, 24th nordic geological winter Meeting, Trondheim, pp 126–127Google Scholar
  198. Nijland TG, Touret JLR (2001) Replacement of graphic pegmatite by graphic albite-actinolite-clinopyroxene intergrowths (Mjåvatn, southern Norway). Eur J Mineral 13:41–50CrossRefGoogle Scholar
  199. Nijland TG, Touret JLR, Visser D (1998) Anomalously low temperature orthopyroxene, spinel and sapphirine occurrences in metasediments from the Bamble amphibolite to granulite facies transition zone (South Norway): possible evidence for localized action of saline fluids. J Geology 106:575–590CrossRefGoogle Scholar
  200. Nixon PH (1987) Mantle xenoliths. Wiley, New YorkGoogle Scholar
  201. Novgorodov PG (1977) On the solubility of quartz in H2O + CO2 and H2O + NaCl at 700 °C and 1.5 kb pressure. Geochem Int 14:191–193Google Scholar
  202. Nuutilainen J (1968) On the geology of the Misi ore province, northern Finland, vol 96, Annales Academia Scientiae Fennicae, series A III. Suomalainen tiedeakatemie, HelsinkiGoogle Scholar
  203. Oen IS (1968) Magnesium-metasomatism in basic hornfelses near Farminhao, Viseu district (northern Portugal). Chem Geol 3:249–279CrossRefGoogle Scholar
  204. Oliver NHS (1995) Hydrothermal history of the Mary Kathleen fold belt, Mt. Isa block, Queensland. Aust J Earth Sci 42:267–280CrossRefGoogle Scholar
  205. Oliver NHS, Bons PD (2001) Mechanism of fluid flow and fluid-rock interaction in fossil metamorphic hydrothermal systems inferred from vein-wallrock patterns, geometry and microstructure. Geofluids 1:137–162CrossRefGoogle Scholar
  206. Oliver NHS, Rawling TJ, Cartwright I, Pearson PJ (1994) High temperature fluid-rock interaction and scapolitization in a large extension-related hydrothermal system, Mary Kathleen, Australia. J Petrol 35:1455–1491CrossRefGoogle Scholar
  207. Oliver NHS, Valenta RK, Wall VJ (1990) The effect of heterogeneous stress and strain on metamorphic fluid flow, Mary, Kathleen, Australia, and a model for large-scale fluid circulation. J Metamorph Geol 8:311–331CrossRefGoogle Scholar
  208. Oliver N, Wall V (1987) Metamorphic plumbing system in Proterozoic calc-silicates, Queensland, Australia. Geology 15:793–796CrossRefGoogle Scholar
  209. O’Nions RK, Oxburgh ER (1988) Helium, volatile fluxes and the development of continental crust. Earth Planet Sci Lett 90:331–347CrossRefGoogle Scholar
  210. Owen JV, Greenough JD (1995) Petrology of cordierite + gedrite-bearing sodic granulite from the Grenvillian Long Range inlier, New Foundland. Can J Earth Sci 32:1035–1045CrossRefGoogle Scholar
  211. Owen JV, Longstaffe FJ, Greenough JD (2003) Petrology of sapphirine granulite and associated sodic gneisses from the Indian head range, Newfoundland. Lithos 68:91–114CrossRefGoogle Scholar
  212. Paquette JL, Nédélec A, Moine B, Rakotondrazafy M (1994) U-Pb single zircon Pb evaporation, and Sm-Nd isotopic study of a granulite domain in SE Madagascar. J Geol 102:523–538CrossRefGoogle Scholar
  213. Parfenova OV, Guseva EV (2000) Feldspars of enderbite-charnockite complexes as indicators of alkalinity during the charnockitization of schists. Geochem Int 38:856–866Google Scholar
  214. Park AF, Dash B (1984) Charnockite and related neosome development in the eastern Ghats, Orissa, India: petrographic evidence. Trans R Soc Edin Earth Sci 75:341–352CrossRefGoogle Scholar
  215. Parras K (1958) On the charnockites in the light of a highly metamorphic rock complex in southwestern Finland. Bulletin de la Commission Géoloqiue de Finlande, vol 181, Commision Géologique du Finlande Bulletin, Commision Géologique du Finlande, HelsinkiGoogle Scholar
  216. Perchuk LL, Aranovich LY, Podlesskii KK, Lavrenteva IV, Gerasimov VY, Fedkin VV, Kitsul VI, Karsakov LP, Berdnikov NV (1985) Precambrian granulites of the Aldan shield, eastern Siberia, USSR. J Metamorph Geol 3:265–310CrossRefGoogle Scholar
  217. Perchuk LL, Gerya TV (1992) The fluid regime of metamorphism and the charnockite reaction in granulites: a review. Int Geol Rev 34:1–58CrossRefGoogle Scholar
  218. Perchuk LL, Gerya TV (1993) Fluid control of charnockitization. Chem Geol 108:175–186CrossRefGoogle Scholar
  219. Perchuk LL, Gerya TV (1995) Evidence for potassium mobility in the charnockitization of gneisses. Dokl Rossiiskoi Akad Nauk 331:86–91Google Scholar
  220. Perchuk LL, Safonov OG, Gerya TV, Fu B, Harlov DE (2000) Mobility of components in metasomatic transformation and partial melting of gneisses: an example from Sri Lanka. Contrib Mineral Petrol 140:212–232CrossRefGoogle Scholar
  221. Petersson J, Eliasson T (1997) Mineral evolution and element mobility during episyenitization (dequartzification) and albitization in the postkinematic Bohus granite, southwest Sweden. Lithos 42:123–146CrossRefGoogle Scholar
  222. Phillips GN (1980) Water activity changes across an amphibolite-granulite facies transition, Broken Hill, Australia. Contrib Mineral Petrol 75:377–386CrossRefGoogle Scholar
  223. Pichamuthu CS (1953) The charnockite problem. Mysore Geologists’ Association, BangaloreGoogle Scholar
  224. Pichamuthu CS (1960) Charnockite in the making. Nature 188:135–136CrossRefGoogle Scholar
  225. Pichamuthu CS (1961) Transformation of peninsular gneisses into charnockites in Mysore state. J Geol Soc India 2:46–49Google Scholar
  226. Pili E, Sheppard SMF, Lardeaux JM (1999) Fluid-rock interaction in the granulites of Madagascar and lithospheric-scale transfer of fluids. Gondwana Res 2:341–350CrossRefGoogle Scholar
  227. Pili E, Sheppard SMF, Lardeaux JM, Martelat JE, Nicollet C (1997) Fluid flow vs. scale of shear zones in the lower continental crust and the granulite paradox. Geology 25:15–18CrossRefGoogle Scholar
  228. Pineau F, Javoy M, Behar F, Touret JLR (1981) La géochimie isotopique du faciès granulite du Bamble (Norvège) et l’origine des fluides carbonés dans la croûte profonde. Bull Minéral 104:630–641Google Scholar
  229. Podlesskii KK, Kurdyukov YB (1992) The association sapphirine + quartz in the Chogar and Sharyzhalgay complexes, east Siberia. Int Geol Rev 34:611–616CrossRefGoogle Scholar
  230. Porto da Silveira CL, Schorscher HD, Mickeley N (1991) The geochemistry of albitization and related uranium mineralization, Espinhares, Paraiba (P), Brazil. J Geochem Explor 40:329–347CrossRefGoogle Scholar
  231. Poty B, Leroy J, Cathelineau M, Cuney M, Friedrich M, Lespinasse M, Turpin L (1986) Uranium deposits spatially related to granites in the french part of the hercynian orogen. In: Fuchs HD (ed) Vein type uranium deposits. IAEA, Vienna, TEC-DOC 361 pp 215–246Google Scholar
  232. Putnis A (2002) Mineral replacement reactions: from macroscopic observations to microscopic mechanisms. Mineral Mag 66:689–708CrossRefGoogle Scholar
  233. Putnis A (2009) Mineral replacement reactions. Thermodynamics and kinetics of water-rock interaction. vol 70, Reviews in mineralogy and geochemistry, Mineralogical Society of America, Washington, DC, pp. 87-124CrossRefGoogle Scholar
  234. Putnis A, Austrheim H (2010) Fluid-induced processes: metasomatism and metamorphism. Geofluids 10:254–269Google Scholar
  235. Quensel P (1952) The charnockite series of the Varberg district on the south-western coast of Sweden. Ark Mineral Geol 1:227–332Google Scholar
  236. Raith M, Srikantappa C (1993) Arrested charnockite formation at Kottavattam, southern India. J Metamorph Geol 11:815–832CrossRefGoogle Scholar
  237. Rakotondrazafy AFM, Moine B, Cuney M (1996) Mode of formation of hibonite (CaAl12O19) within the U-Th skarns from the granulites of SE Madagascar. Contrib Mineral Petrol 123:190–201CrossRefGoogle Scholar
  238. Ramambazafy A, Moine B, Rakotondrazafy M, Cuney M (1998) Signification des fluides carboniques dans les granulites et skarns du Sud-Est de Madagascar. CR Acad Sci IIa 327:743–748Google Scholar
  239. Ramberg H (1951) Remarks on the average chemical composition of granulite and amphibilite-to-epidote amphibolite facies gneisses in west Greenland. Medd Dan Geol Foren 12:27–34Google Scholar
  240. Ramberg H (1952) The origin of metamorphic and metasomatic rocks. University of Chicago Press, ChicagoGoogle Scholar
  241. Read HH (1957) The granite controversy. Thomas Murby, LondonGoogle Scholar
  242. Rehtijärvi P, Saastamoinen J (1985) Tectonized actinolite-albite rocks from the Outokumpu district, Finland: field and geochemical evidence for mafic extrusive origin. Bull Geol Soc Finland 57:47–54Google Scholar
  243. Reinhardt J (1987) Cordierite-anthophyllite rocks from north-west Queensland, Australia: metamorphosed magnesian pelites. J Metamorph Geol 5:451–472CrossRefGoogle Scholar
  244. Respaut JP, Cathelineau M, Lancelot JR (1991) Multistage evolution of the Pierres-Plantées uranium ore deposit (Margeride, France): evidence from mineralogy and U-Pb systematics. Eur J Mineral 3:85–103Google Scholar
  245. Rigby MJ, Droop GTR (2011) Fluid-absent melting versus CO2 streaming during the formation of metapelitic granulites: a review of insights from the cordierite fluid monitor. In: Van Reenen DD, Kramers JD, McCourt S, Perchuk LL (eds) Origin and evolution of Precambrian high-grade gneiss terranes, with special emphasis of Limpopo complex of southern Africa, vol 207, Geological Society of America Memoir. Geological Society of America, Boulder, pp 39–60CrossRefGoogle Scholar
  246. Rinne F (1928) La science des roches. 3rd French edition, 8th German edition: (trans: Bertrand L). J. Lamarre, Paris, 616 ppGoogle Scholar
  247. Robinson P, Jaffe HW (1969) Aluminous enclaves in gedrite-cordierite gneiss from southwestern New Hampshire. Am J Sci 267:389–421CrossRefGoogle Scholar
  248. Rollinson HR, Tarney J (2005) Adakites – the key to understanding LILE depletion in granulites. Lithos 79:61–81CrossRefGoogle Scholar
  249. Rötzler J (1992) Zur petrogenese im sächsischen Granulitgebirge. Geotektonische Forschungen 72:1–114Google Scholar
  250. Rudnick R, Fountain DM (1995) Nature and composition of the continental crust: a lower crustal perspective. Rev Geophys 33:267–309CrossRefGoogle Scholar
  251. Rudnick RL, McLennan SM, Taylor SR (1985) Large ion lithophile elements in rocks from high pressure granulite-facies terrains. Geochim Cosmochim Acta 49:1645–1655CrossRefGoogle Scholar
  252. Rumble D III, Chamberlain CP, Zeitler PK, Barreiro B (1989) Hydrothermal graphite veins and Acadian granulite metamorphism, new Hampshire, USA. In: Bridgwater D (ed) Fluid movements – element transport and the composition of the deep crust. Kluwer, Dordrecht, pp 117–119CrossRefGoogle Scholar
  253. Safonov OG (1999) The role of alkalis in the formation of coronitic textures in metamangerites and metaanorthosites from the Adirondack complex, United States. Petrology 7:102–121Google Scholar
  254. Santosh M (1992) Carbonic fluids in granulites: cause or consequence ? J Geol Soc India 39:375–399Google Scholar
  255. Santosh M, Jackson DH, Harris NBW (1993) The significance of channel and fluid-inclusion CO2 in cordierite: evidence from carbon isotopes. J Petrol 34:233–258CrossRefGoogle Scholar
  256. Santosh M, Jackson DH, Harris NBW, Mattey DP (1991) Carbonic fluid inclusions in south Indian granulites: evidence for entrapment during charnockite formation. Contrib Mineral Petrol 108:318–330CrossRefGoogle Scholar
  257. Santosh M, Tagawa M, Taguchi S, Yoshikura S (2003) The Nagercoil granulite block, southern India: petrology, fluid inclusions and exhumation history. J Asian Earth Sci 22:131–155CrossRefGoogle Scholar
  258. Santosh M, Tanaka K, Yoshimura Y (2005) Carbonic fluid inclusions in ultrahigh-temperature granitoids from Southern India. CR Geosci 337:327–335CrossRefGoogle Scholar
  259. Santosh M, Tsunogae T (2003) Extremely high-density pure CO2 fluid inclusions in a garnet granulite from southern India. J Geol 111:1–16CrossRefGoogle Scholar
  260. Schreyer W (1974) Whiteschist, a new type of metamorphic rock formed at high pressures. Geol Rundsch 63:597–609CrossRefGoogle Scholar
  261. Giustina MESD, Martins Pimentel M, Ferreira Filho CF, Fuck RA, Andrade S (2011) U-Pb-Hf-trace element systematics and geochronology of zircon from a granulite-facies metamorphosed mafic–ultramafic layered complex in central Brazil. Precambrian Res 189:176–192CrossRefGoogle Scholar
  262. Shmulovich KI, Graham CM (2004) An experimental study of phase equilibria in the systems H2O-CO2-CaCl2 and H2O-CO2-NaCl at high pressures and temperatures (500–800°C, 0.5–0.9 GPa): geological and geophysical applications. Contrib Mineral Petrol 146:450–462CrossRefGoogle Scholar
  263. Simpson C, Wintsch RP (1989) Evidence for deformation-induced K-feldspar replacement by myrmekite. J Metamorph Geol 7:261–275CrossRefGoogle Scholar
  264. Słaby E, Martin H, Hamada M, Schmigielski M, Domonik A, Götze J, Hoefs J, Hałas S, Simon K, Devidal JL, Moyen JF, Jayananda M (2011) Evidence in Archaean alkali feldspar megacrysts for high-temperature interaction with mantle fluids. J Petrol (58:67–98)Google Scholar
  265. Smith MS, Dymek RF, Schneidermann JS (1992) Implications of trace element geochemistry for the origin of cordierite-orthoamphibole rocks from Orijärvi, SW Finland. J Geol 100:543–559CrossRefGoogle Scholar
  266. Sørensen BE (2007) Metamorphic refinement of quartz under influence of fluids during exhumation with reference to the metamorphic/metasomatic evolution observed in amphibolites. Ph.D. thesis, NTNU, TrondheimGoogle Scholar
  267. Srikantappa C, Arash Zargar S (2009) First report on the halite-bearing fluid inclusions in the Precambrian granulites around Halaguru, Dharwar craton, India. Indian Mineral 43:77–80Google Scholar
  268. Srikantappa C, Malathi MN (2008) Solid inclusions of magmatic halite and CO2-H2O inclusions in closepet granite from Ramanagaram, Dharwar craton, India. Indian Mineral 42:84–98Google Scholar
  269. Srikantappa C, Raith M, Touret JLR (1992) Synmetamorphic high-density carbonic fluids in the lower crust: evidence from the Nilgiri granulites, southern India. J Petrol 33:733–760CrossRefGoogle Scholar
  270. Stanislawska M, Michalik M (2008) Xenotime-(Y) veins in a Neoproterozoic metamudstone (Malopolska block, S Poland). Mineralogia 39:105–113CrossRefGoogle Scholar
  271. Stähle HJ, Raith M, Hoernes S, Delfs A (1987) Element mobility during incipient granulite formation at Kabbaldurga, southern India. J Petrol 28:803–834CrossRefGoogle Scholar
  272. St Onge MR, Lucas SB (1995) Large-scale fluid infiltration, metasomatism and re-equilibration of Archaean basement granulites during Palaeoproterozoic thrust belt construction, Ungava orogen, Canada. J Metamorph Geol 13:509–535CrossRefGoogle Scholar
  273. Sukumaran S, Ravindra Kumar GR (2000) K-feldspar metasomatism in granulite-facies rocks of Palghat region, Kerala: evidence and implications of brines in charnockite-forming metamorphism. Curr Sci 79:1594–1958Google Scholar
  274. Ter Haar JH (1988) De sub-solidus geschiedenis van actinoliet uit een actinoliet-amfibool (Alb.-Act.-Qtz.) gesteente van Bamble, SE-Noorwegen. Unpublished M.Sc. thesis, Utrecht University, UtrechtGoogle Scholar
  275. Thompson AB (1982) Dehydration melting of pelitic rocks and the generation of H2O undersaturated granitic liquids. Am J Sci 282:1567–1595CrossRefGoogle Scholar
  276. Thompson AB (1983) Fluid-absent metamorphism. J Geol Soc Lond 140:533–547CrossRefGoogle Scholar
  277. Tichomirova M, Whitehouse MJ, Nasdala L (2005) Resorption, growth, solid-state recrystallization and annealing of granulite facies zircon – a case study from the central Erzgebirge, Bohemian massif. Lithos 82:25–50CrossRefGoogle Scholar
  278. Tilley CE (1937) Anthophyllite-cordierite granulites in the Lizard. Geol Mag 74:300–309CrossRefGoogle Scholar
  279. Tobi AC, Hermans GAEM, Maijer C, Jansen JBH (1985) Metamorphic zoning in the high-grade Proterozoic of Rogaland-Vest Agder. In: Tobi AC, Touret JLR (eds) The deep Proterozoic crust in the North Atlantic provinces. Reidel, Dordrecht, pp 499–516CrossRefGoogle Scholar
  280. Touret JLR (1966) Sur l’origine supracrustale des gneiss rubanés de Selås (formation de Bamble, Norvège méridionale). CR Acad Sci 262:9–12Google Scholar
  281. Touret JLR (1971) Le faciès granulite en Norvège méridionale. II Les inclusions fluides. Lithos 4:423–436CrossRefGoogle Scholar
  282. Touret JLR (1972) Le faciès granulite en Norvège méridionale et les inclusions fluides: paragneiss et quartzites. Science de la Terre 17:179–193Google Scholar
  283. Touret JLR (1973) Minerais de fer-titane, roches plutoniques et zonéographie métamorphique dans le sud de la Norvège. In: Raguin Colloquium E (ed) Les roches plutoniques dans leurs rapports avec les gîtes minéraux. Masson, Paris, pp 249–260Google Scholar
  284. Touret JLR (1979) Les roches à tourmaline-cordiérite-disthène de Bjordammen (Norvège méridionale) sont-elles liées a d’anciennes évaporites ? Sci Terre 23:95–97Google Scholar
  285. Touret JLR (1985) Fluid regime in southern Norway: the record of fluid inclusions. In: Tobi AC, Touret JLR (eds) The deep Proterozoic crust in the North Atlantic provinces. Reidel, Dordrecht, pp 517–549CrossRefGoogle Scholar
  286. Touret JLR (1996) LILE-depletion in granulites: myth or reality ? In: Demaiffe D (ed) Petrology and geochemistry of magmatic suites of rocks in the continental and oceanic crusts. Université Libre de Bruxelles, Brussels & Royal Museum for Central Africa, Tervuren, pp 53–72Google Scholar
  287. Touret JLR (2001) Fluids in metamorphic rocks. Lithos 55:1–25CrossRefGoogle Scholar
  288. Touret JLR (2009) Mantle to lower-crust fluid/melt transfer through granulite metamorphism. Russ Geol Geophys 50:1–11CrossRefGoogle Scholar
  289. Touret JLR, Dietvorst P (1983) Fluid inclusions in high-grade anatectic metamorphites. J Geol Soc Lond 140:635–649CrossRefGoogle Scholar
  290. Touret JLR, Hansteen TH (1988) Geothermobarometry and fluid inclusions in a rock from the DoddaBetta charnockite complex. Rend Soc Ital Mineral Petrol vol 43. pp 65–82Google Scholar
  291. Touret JLR, Hartel THD (1990) Synmetamorphic fluid inclusions in granulites. In: Vielzeuf D, Vidal P (eds) Granulites and crustal evolution. Reidel, Dordrecht, pp 397–417CrossRefGoogle Scholar
  292. Touret JLR, Huizenga JM (2011) Fluids in granulites. In: Van Reenen DD, Kramers JD, McCourt S, Perchuk LL (eds) Origin and evolution of Precambrian high-grade gneiss terranes, with special emphasis on the Limpopo complex of southern Africa, vol 207, Geological Society of America Memoir. Geological Society of America, Boulder, pp 25–37CrossRefGoogle Scholar
  293. Touret JLR, Huizenga JM (2012) Fluid-assisted granulite metamorphism: a continental journey. Gondwana Res 21:224–235CrossRefGoogle Scholar
  294. Tracy RJ, Robinson P (1983) Acadian migmatite types in pelitic rocks of central Massachusetts. In: Atherton MP, Gribble CD (eds) Migmatites, melting and metamorphism. Shiva, Nantwich, pp 163–173Google Scholar
  295. Trommsdorff V, Skippen G (1986) Vapour loss (‘boiling’) as a mechanism for fluid evolution in metamorphic rocks. Contrib Mineral Petrol 94:317–322CrossRefGoogle Scholar
  296. Tropper P, Manning CE, Harlov DE (2011) Solubility of CePO4 monazite and YPO4 xenotime in H2O and H2O-NaCl at 800°C and 1 GPa: implications for REE and Y transport during high-grade metamorphism. Lithos 282:58–66Google Scholar
  297. Tsunogae T, Santosh M, Osanai Y, Owada M, Toyoshima T (2002) Very high-density carbonic fluid inclusions in sapphirine-bearing granulites from Tonagh island in the Napier complex, Antarctica: implications for CO2 infiltration during ultrahigh-T (T > 1100°C) metamorphism. Contrib Mineral Petrol 143:279–299CrossRefGoogle Scholar
  298. Turner FJ, Verhoogen J (1960) Igneous and metamorphic petrology, 2nd edn. McGraw Hill, New YorkGoogle Scholar
  299. Vallance TG (1967) Mafic rock alteration and isochemical development of some cordierite-anthophyllite rocks. J Petrol 8:84–96CrossRefGoogle Scholar
  300. VanderAuwera J (1993) Diffusion controlled growth of pyroxene-bearing margins on amphibolite bands in the granulite facies of Rogaland (southwestern Norway): implications for granulite formation. Contrib Mineral Petrol 114:203–220CrossRefGoogle Scholar
  301. Van den Kerkhof AM, Olsen SN (1990) A natural example of superdense CO2 inclusions: microthermometry and Raman analysis. Geochim Cosmochim Acta 54:895–901CrossRefGoogle Scholar
  302. Vernon RH (2004) A practical guide to rock microstructures. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  303. Van Reenen DD (1986) Hydration of cordierite and hypersthene and a description of the retrograde orthoamphibole isograd in the Limpopo belt, South Africa. Am Mineral 71:900–915Google Scholar
  304. Van Reenen DD, Smit CA, Perchuk LL, Roering C, Boshoff R (2011) Thrust exhumation of the Neoarchean UHT Southern Marginal Zone, Limpopo complex: convergence of decompression-cooling paths in the hanging wall and prograde P-T paths in the footwall. In: Van Reenen DD, Kramers JD, McCourt S, Perchuk LL (eds) Origin and evolution of Precambrian high-grade gneiss terranes, with special emphasis on the Limpopo complex of southern Africa, vol 207, Geological Society of America Memoir. Geological Society of America, Boulder, pp 189–212CrossRefGoogle Scholar
  305. Van Schalkwyk JF, Van Reenen DD (1992) High-temperature hydration of ultramafic granulites from the southern marginal zone of the Limpopo belt by infiltration of CO2-rich fluid. Precambrian Res 55:337–352CrossRefGoogle Scholar
  306. Vielzeuf D, Pin C (1989) Geodynamic implications of granitic rocks in the Hercynian belt. In: Daly JS, Cliff RA, Yardley BWD (eds) Evolution of metamorphic belts. Geological Society London Special Publication, vol 43, Geological Society London Special publication. Blackwell Science, Oxford, pp. 343–348Google Scholar
  307. Vielzeuf D, Clemens JD, Pin C, Moinet E (1990) Granites, granulites, and crustal differentiation. In: Vielzeuf D, Vidal P (eds) Granulites and crustal evolution. Kluwer, Dordrecht, pp 59–83CrossRefGoogle Scholar
  308. Villaseca C, Orejana D, Paterson BA (2007) Zr-LREE rich minerals in residual peraluminous granulites, another factor in the origin of low Zr-LREE granitic melts. Lithos 96:375–386CrossRefGoogle Scholar
  309. Visser D (1995) Kornerupine in a biotite-spinel-garnet schist near Böylefossbru, Bamble sector, south Norway: implications for early and late metamorphic fluid activity. N Jahrb Mineral Abh. 169:1–34Google Scholar
  310. Visser D, Nijland TG, Lieftink DJ, Maijer C (1999) The occurrence of preiswerkite in a tourmaline-biotite-scapolite rock (Blengsvatn, Bamble, Norway). Am Mineral 84:977–982Google Scholar
  311. Visser D, Senior A (1990) Aluminous reaction textures in orthoamphibole bearing rocks: the P-T path of the high grade Proterozoic of the Bamble sector, south Norway. J Metamorph Geol 8:231–246CrossRefGoogle Scholar
  312. Von Knorring O, Kennedy WQ (1958) The mineral paragenesis and metamorphic states of garnet-hornblende-pyroxene-scapolite-gneiss from Ghana (Gold Coast). Mineral Mag 31:846–859CrossRefGoogle Scholar
  313. Wang RC, Xu SJ, Xu SJ (2000) First occurrence of preiswerkite in the Dabie Shan UHP metamorphic belt. Chinese Sci Bull 45–8:748–750CrossRefGoogle Scholar
  314. Waters DJ (1988) Partial melting and the formation of granulite facies assemblages in Namaqualand, South Africa. J Metamorph Geol 6:387–404CrossRefGoogle Scholar
  315. Watson EB, Brenan JM (1987) Fluids in the lithosphere 1. Experimentally determined wetting characteristics of CO2-H2O fluids and their implication for fluid transport, host-rock physical properties and fluid inclusion formation. Earth Planet Sci Lett 85:497–515CrossRefGoogle Scholar
  316. Watson LT (1912) Krageroite, a rutile-bearing rock from Kragerö, Norway. Am J Sci 24:509–514CrossRefGoogle Scholar
  317. Wielens JBW (1979) Morphology and U-Pb ages of zircons from the high-grade metamorphic Precambrian in the Sirdal-Ørsdal area, SW Norway. ZWO Laboratory for Isotope Geology, vol 4, Verhandeling ZWO Laboratory for Isotope Geology, ZWO Laboratory for Isotope Geology, AmsterdamGoogle Scholar
  318. Wilkinson JJ, Nolan J, Rankin AH (1996) Silicothermal fluid: a novel medium for mass transport in the lithosphere. Geology 24:1059–1062CrossRefGoogle Scholar
  319. Yardley BWD (1989) An introduction to metamorphic petrology. Longman, HarlowGoogle Scholar
  320. Yardley BWD (1997) The evolution of fluids through the metamorphic cycle. In: Jamtveit B, Yardley BWD (eds) Fluid flow and transport in rocks. Mechanisms and effects. Chapman & Hall, London, pp 99–121CrossRefGoogle Scholar
  321. Yardley BWD, Graham JT (2002) The origins of salinity in metamorphic fluids. Geofluids 2:249–256CrossRefGoogle Scholar
  322. Yoshino T, Satish-Kumar M (2001) Origin of scapolite in deep-seated metagabbros of the Kohistan arc, NW Himalayas. Contrib Mineral Petrol 140:511–531CrossRefGoogle Scholar
  323. Young DA (2002) Norman Levi Bowen (1887–1956) and igneous rock diversity. In: Oldroyd DR (ed) The earth inside and out: some major contributions to geology in the twentieth century, vol 192, Geological Society Special Publication. Geological Society, London, pp 99–111Google Scholar
  324. Zaleski I, Pattison DRM (1993) Metasomatism in the generation of granulite veins: mass balance, mass transfer, and reference frames. J Petrol 34:1303–1323CrossRefGoogle Scholar
  325. Zhang Z, Shen K, Santosh M, Dong X (2011) High density carbonic fluids in a slab window: evidence from the Gangdese charnockite, Lhasa terrane, southern Tibet. J Asian Earth Sci 42:515–524CrossRefGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Musée de Minéralogie, Mines-ParisTechParisFrance
  2. 2.TNOAA DelftThe Netherlands

Personalised recommendations