Multiphoton Imaging

Chapter
Part of the Biological and Medical Physics, Biomedical Engineering book series (BIOMEDICAL)

Abstract

The nonlinear process of multiphoton imaging used in an optical microscope has inherent out-of-focus rejection of light and hence gives superior optical sectioning without a pinhole when compared with a confocal microscope. The lateral resolution remains close to the diffraction limit of the imaging optics. The flexibility of combining the various nonlinear contrast mechanisms, multiphoton microscopy is likely to become a major imaging modality in biomedical fields. With the current development of femtosecond pulsed laser technology, it is to be expected that multiphoton optical microscopes will continue to be advanced for high-resolution imaging in a variety of biomedical applications. This chapter will first discuss the principle of multiphoton process and then multiphoton imaging modes.

Keywords

Second Harmonic Generation Harmonic Generation Induce Polarization Third Harmonic Generation Lamina Cribrosa 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    M. Göppert-Mayer, Uber Elementarakte mit zwei Quantensprüngen. Ann. Phys. (Leipzig) 9, 273–294 (1931)Google Scholar
  2. 2.
    W. Denk, H.H. Strickler, W.W. Webb, Two photon laser microscopy USA Patent 5,034,613 (1991)Google Scholar
  3. 3.
    J. Gannaway, C.J.R. Sheppard, Second harmonic imaging in the scanning optical microscope. Opt. Quantum Electron. 10, 435–439 (1978)Google Scholar
  4. 4.
    R. Hellwarth, P. Christensen, Nonlinear optical microscopic examination of structure in polycrystalline ZnSe. Opt. Commun. 12(3), 318–322 (1974)Google Scholar
  5. 5.
    M.D. Duncan, J. Reintjes, T.J. Manuccia, Scanning coherent anti-Stokes Raman microscope. Opt. Lett. 7(8), 350–352 (1982)Google Scholar
  6. 6.
    Y. Denk, H.H. Strickler, W.W. Webb, Two-photon laser scanning fluorescence microscopy. Science 248, 73–76 (1990)Google Scholar
  7. 7.
    Y. Barad, H. Eisenberg, M. Horowitz, Y. Silberberg, Nonlinear scanning laser microscopy by third-harmonic generation. Appl. Phys. Lett. 70(8), 922–924 (1997)Google Scholar
  8. 8.
    S. Maiti, J.B. Shear, R.M. Williams, W.R. Zipfel, W.W. Webb, Measuring serotonin distribution in live cells with three-photon excitation. Science 275, 530–532 (1997)Google Scholar
  9. 9.
    M. Schrader, K. Bahlmann, S.W. Hell, Three-photon-excitation microscopy: theory, experiment and applications. Optik 104, 116–124 (1997)Google Scholar
  10. 10.
    P.J. Campagnola, M. Wei, A. Lewis, L.M. Loew, High-resolution nonlinear optical imaging of live cells by second harmonic generation. Biophys. J. 77(6), 3341–3349 (1999)Google Scholar
  11. 11.
    C.J.R. Sheppard, J. Gannaway, R. Kompfner, D.A. Walsh, The scanning harmonic optical microscope. IEEE J. Quantum Electron. 13(9), 912–912 (1977)Google Scholar
  12. 12.
    A. Zumbusch, G.R. Holtom, X.S. Xie, Three dimensional vibrational imaging by coherent anti-Stokes Raman scattering. Phys. Rev. Lett. 82, 4142–4145 (1999)Google Scholar
  13. 13.
    M. Müller, J. Squier, K.R. Wilson, G.J. Brakenhoff, 3D-microscopy of transparent objects using third-harmonic generation. J. Microsc. 191, 266–274 (1998)Google Scholar
  14. 14.
    J.A. Squier, M. Muller, G.J. Brakenhoff, Third harmonic generation microscopy. Opt. Express 3, 315–324 (1998)Google Scholar
  15. 15.
    D. Yelin, Y. Silberberg, Laser scanning third-harmonic-generation microscopy in biology. Opt. Express 5, 169–175 (1999)Google Scholar
  16. 16.
    R.W. Boyd, Nonlinear Optics (Academic Press, Boston, 1992)Google Scholar
  17. 17.
    G.H. Patterson, D.W. Piston, Photobleaching in two-photon excitation microscopy. Biophys. J. 78(4), 2159–2162 (2000)Google Scholar
  18. 18.
    K. Koenig, Multiphoton microscopy in life sciences. J. Microsc. 200(2), 83–104 (2000)Google Scholar
  19. 19.
    C. Xu, W.W. Webb, Measurement of two-photon excitation cross sections of molecular fluorophores with data from 690 to 1050 nm. JOSA B 13(3), 481–491 (1996)Google Scholar
  20. 20.
    B. Masters, P. So, E. Gratton, Multiphoton excitation fluorescence microscopy and spectroscopy of in vivo human skin. Biophys. J. 72(6), 2405–2412 (1997)Google Scholar
  21. 21.
    F. Helmchen, W. Denk, Deep tissue two-photon microscopy. Nat. Methods 2(12), 932–940 (2005)Google Scholar
  22. 22.
    P. Theer, W. Denk, On the fundamental imaging-depth limit in two-photon microscopy. JOSA A 23(12), 3139–3149 (2006)Google Scholar
  23. 23.
    N. Nishimura, C.B. Schaffer, B. Friedman, P.D. Lyden, D. Kleinfeld, Penetrating arterioles are a bottleneck in the perfusion of neocortex. PNAS 104(1), 365–370(2007)Google Scholar
  24. 24.
    W. Gobel, B.M. Kampa, F. Helmchen, Imaging cellular network dynamics in three dimensions using fast 3D laser scanning. Nat. Methods 4(1), 73–79 (2007)Google Scholar
  25. 25.
    F. Helmchen, W. Denk, New developments in multiphoton microscopy. Curr. Opin. Neurobiol. 12(5), 593–601 (2002)Google Scholar
  26. 26.
    J.C. Jung, M.J. Schnitzer, Multiphoton endoscopy. Opt. Lett. 28(11), 902–904 (2003)Google Scholar
  27. 27.
    W. Piyawattanametha, R.P.J. Barretto, T.H. Ko, B.A. Flusberg, E.D. Cocker, H. Ra, D. Lee, O. Solgaard, M.J. Schnitzer, Fast-scanning two-photon fluorescence imaging based on a microelectromechanical systems two- dimensional scanning mirror. Opt. Lett. 31(13), 2018–2020 (2006)Google Scholar
  28. 28.
    P.A. Franken, A.E. Hill, C.W. Peters, G. Weinreich, Generation of optical harmonics. Phys. Rev. Lett. 7, 118 (1961)Google Scholar
  29. 29.
    G. He, S.H. Liu, Physics of Nonlinear Optics (World Scientific Publications, Singapore, 1999)Google Scholar
  30. 30.
    C.J.R. Sheppard, J. Gannaway, R. Kompfner, D.A. Walsh, The scanning harmonic optical microscope. IEEE J. Quantum Electron. 13(9), 912–912 (1977)Google Scholar
  31. 31.
    I. Freund, M. Deutsch, Second-harmonic microscopy of biological tissue. Opt. Lett. 11, 94–96 (1986)Google Scholar
  32. 32.
    I. Freund, D. Deutsch, A. Sprecher, Connective tissue polarity: optical second-harmonic microscopy, crossed-beam summation, and small-angle scattering in rat-tail tendon. Biophys. J. 50, 693–712 (1986)Google Scholar
  33. 33.
    S.J. Lin, C.Y. Hsiao, Y. Sun, W. Lo, W.C. Lin, G.J. Jan, S.H. Jee, C.Y. Dong, Monitoring the thermally induced structural transitions of collagen by use of second-harmonic generation microscopy. Opt. Lett. 30, 622–624 (2005)Google Scholar
  34. 34.
    P.J. Campagnola, A.C. Millard, M. Terasaki, P.E. Hoppe, c.J. Malone, W.A. Mohler, Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues. Biophys. J. 82(1), 493–508 (2002)Google Scholar
  35. 35.
    S.W. Chu, S.P. Tai, M.C. Chan, S.K. Sun, I.C. Hsiao, C.H. Lin, Y.C. Chen, B.K. Lin, Thickness dependence of optical second harmonic generation in collagen fibrils. Opt. Express 15(19), 12005–12010 (2007)Google Scholar
  36. 36.
    V. Barzda, C. Greenhalgh, J. Ausder Au, S. Elmore, J. van Beek, J. Squier, Visualization of mitochondria in cardiomyocytes by simultaneous harmonic generation and fluorescence microscopy. Opt. Express 13, 8263–8276 (2005)Google Scholar
  37. 37.
    G. Mizutani, Y. Sonoda, H. Sano, M. Sakamoto, T. Takahashi, S. Ushioda, Detection of starch granules in a living plant by optical second harmonic microscopy. J. Luminescence 87, 824–826 (2000)Google Scholar
  38. 38.
    N. Prent, R. Cisek, C. Greenhalgh, R. Sparrow, N. Rohitlall, M.S. Milkereit, C. Green, V. Barzda, Application of nonlinear microscopy for studying the structure and dynamics in biological systems. Proc. SPIE 5971, 5971061–5971068 (2005)Google Scholar
  39. 39.
    L. Moreaux, O. Sandre, M. Blanchard-Desce, J. Mertz, Membrane imaging by simultaneous second-harmonic generation and two-photon microscopy. Opt. Lett. 25, 320–322 (2000)Google Scholar
  40. 40.
    S.W. Chu, I. Chen, T. Liu, C. Sun, S. Lee, B. Lin, P. Cheng, M. Kuo, D. Lin, H. Liu, Nonlinear bio-photonic crystal effects revealed with multimodal nonlinear microscopy. J. Microsc. 208(3), 190–200 (2002)Google Scholar
  41. 41.
    N. Bloembergen, Nonlinear Optics, 4th edn. (Benjamen W. A., New York, 1965)Google Scholar
  42. 42.
    Y.R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984)Google Scholar
  43. 43.
    D. Débarre, W. Suppato, A. Pena, A. Fabre, T. Tordgemann, L. Conbettes, M. Shane-Clein, E. Beaurepaire, Imaging in lipid bodies in cells and tissues using third-harmonic generation microscopy. Nat. Methods 3(1), 47–53 (2006)Google Scholar
  44. 44.
    C. Yu, S. Tai, C. Kung, W. Lee, Y. Chan, H. Liu, J. Lyu, C. Sun, Molecular third-harmonic-generation microscopy through resonance enhancement with absorbing dye. Opt. Lett. 33, 387–389 (2008)Google Scholar
  45. 45.
    S. Chu, I. Chen, T. Liu, P. C. Chen, C. Sun, B. Lin, Multimodal nonlinear spectral microscopy based on a femtosecond Cr:forsterite laser. Opt. Lett. 26, 1909–1911 (2001)Google Scholar
  46. 46.
    R.W. Terhune, P.D. Maker, C.M. Savage, Optical harmonic generation in calcite. Phys. Rev. Lett. 8(10), 404–406 (1962)Google Scholar
  47. 47.
    J. Cheng, X.S. Xie, Green’s function formulation for third-harmonic generation microscopy. JOSA B 19(7), 1604–1610 (2002)Google Scholar
  48. 48.
    R.W. Boyd, Nonlinear Optics (Academic Press, San Diego, 2003)Google Scholar
  49. 49.
    Y. Barad, H. Eisenberg, M. Horowitz, Y. Silberberg, Nonlinear scanning laser microscopy by third-harmonic generation. Appl. Phys. Lett. 70(8), 922–924 (1997)Google Scholar
  50. 50.
    M. Müller, J. Squier, K.R. Wilson, G.J. Brakenhoff, 3D-microscopy of transparent objects using third-harmonic generation. J. Microsc. 191, 266–274 (1998)Google Scholar
  51. 51.
    J.A. Squier, M. Muller, G.J. Brakenhoff, K.R. Wilson, Third harmonic generation microscopy. Opt. Express 3(9), 315–324 (1998)Google Scholar
  52. 52.
    D. Débarr, W. Supatto, E. Beaurepaire, Structure sensitivity in third-harmonic generation microscopy. Opt. Lett. 30, 2134–2136 (2005)Google Scholar
  53. 53.
    D. Debarre, W. Supatto, A. Pena, A. Fabre, T. Tordjmann, L. Combettes, M. Schanne-Klein, E. Beaurepaire, Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy. Nat. Methods 3(1), 47–53 (2006)Google Scholar
  54. 54.
    D. Oron, D. Yelin, E. Tal, S. Raz, R. Fachima, Y. Silberberg, Depth-resolved structural imaging by third-harmonic generation microscopy. J. Struct. Biol. 147(1), 3–11 (2004)Google Scholar
  55. 55.
    D. Oron, E. Tal, Y. Silberberg, Depth-resolved multiphoton polarization microscopy by third-harmonic generation. Opt. Lett. 28(23), 2315–2317 (2003)Google Scholar
  56. 56.
    V. Shcheslavskiy, G. Petrov, S. Saltiel, and V.V. Yakovlev, Quantitative characterization of aqueous solutions probed by the third-harmonic generation microscopy. J. Struct. Biol. 147(1), 42–49 (2004)Google Scholar
  57. 57.
    D. Débarre, N. Olivier, E. Beaurepaire, Signal epidetection in third-harmonic generation microscopy of turbid media. Opt. Express 15(15), 8913–8924 (2007)Google Scholar
  58. 58.
    E.J. Gualda, G. Filippidis, G. Voglis, M. Mari, C. Fotakis, N. Tavernarakis, In vivo imaging of cellular structures in Caenorhabditis elegans by combined TPEF, SHG and THG microscopy. J. Microsc. 229(1), 141–150 (2008)Google Scholar
  59. 59.
    F. Aptel, N. Olivier, A. Deniset-Besseau, J. Legeais, K. Plamann, M. Schanne-Klein, E. Beaurepaire, Multimodal nonlinear imaging of the human cornea. Invest. Ophthalmol. Vis. Sci. 51(5), 2459–2465 (2010)Google Scholar
  60. 60.
    S. Fine, W.P. Hansen, Optical second harmonic generation in biological systems. Appl. Opt. 10, 2350–2353 (1971)Google Scholar
  61. 61.
    M. Chan, S. Chu, C. Tseng, Y. Wen, Y. Chen, G. Su, C. Sun, Cr:Forsterite-laser-based fiber-optic nonlinear endoscope with higher efficiencies. Microsc. Res. Technol. 71(8), 559–563 (2008)Google Scholar
  62. 62.
    L. Canioni, S. Rivet, L. Sarger, R. Barille, P. Vacher, P. Voisin, Imaging of Ca2+ intracellular dynamics with a third-harmonic generation microscope. Opt. Lett. 26(8), 515–517 (2001)Google Scholar
  63. 63.
    A.C. Millard, P.W. Wiseman, D.N. Fittinghoff, K.R. Wilson, J.A. Squier, M. Müller, Third-harmonic generation microscopy by use of a compact, femtosecond fiber laser source. Appl. Opt. 38, 7393–7397 (1999)Google Scholar
  64. 64.
    W.R. Zipfel, R.M. Williams, W.W. Webb, Nonlinear magic: multiphoton microscopy in the biosciences. Nat. Biotechnol. 21(11), 1369–1377 (2003)Google Scholar
  65. 65.
    G. Cox, N. Moreno, J. Feijó, Second-harmonic imaging of plant polysaccharides. J. Biomed. Opt. 10, 0240131–0240136 (2005)Google Scholar
  66. 66.
    R. Carriles, D.N. Schafer, K.E. Sheetz, J.J. Field, R. Cisek, V. Barzda, A.W. Sylvester, J.A. Squier, Imaging techniques for harmonic and multiphoton absorption fluorescence microscopy. Rev. Sci. Instrum. 80, 081101 (2009)Google Scholar
  67. 67.
    C. Sun, Higher harmonic generation microscopy. Adv. Biochem. Eng. Biotechnol. 95, 17–56 (2005)Google Scholar
  68. 68.
    J.A. Squier, M. Muller, High resolution nonlinear microscopy. Rev. Sci. Instrum. 72(7), 2855–2867 (2001)Google Scholar
  69. 69.
    T.Y.F. Tsang, Optical third-harmonic generation at interfaces. Phys. Rev. A 52, 4116–4125 (1995)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Division of BioEngineeringNational University of SingaporeSingaporeSingapore
  2. 2.Singapore-MIT Alliance for Research and TechnologySingaporeSingapore
  3. 3.Department of Biological SciencesNational University of SingaporeSingaporeSingapore

Personalised recommendations