Fluorescence Microscopy Imaging in Biomedical Sciences

Chapter
Part of the Biological and Medical Physics, Biomedical Engineering book series (BIOMEDICAL)

Abstract

Fluorescence microscopy is an important tool in biological sciences which provides excellent sensitivity for detecting very low concentrations of molecules over broad spatial and temporal dimensions. With fast developments of new fluorescent probes, advanced electronic and optical devices, and sophisticated data acquisition and analysis software, fluorescence microscopy resides on the central stage of life-sciences research. This chapter covers several commonly used and advanced fluorescence microscopy techniques and focuses on fluorescence lifetime imaging microscopy (FLIM). A number of FLIM systems and their applications are reviewed. As an example, we describe how we built and calibrated a two-photon excitation time-correlated single-photon counting (TPE-TCSPC) FLIM system and employed the system to investigate protein-protein interactions in living cells.

Keywords

Fluorescence Lifetime Fluorescence Recovery After Photobleaching Fluorescence Correlation Spectroscopy Fluorescence Lifetime Imaging Microscopy Total Internal Reflection Fluorescence Microscopy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors greatly acknowledge the finance support provided by the National Center for Research Resources (NCRR) – National Institutes of Health (NIH) RR025616, RR027409, P01HL101871 and the University of Virginia. The authors would like to thank Mr. Horst Wallrabe for his critical reading of our manuscript and helpful suggestions.

References

  1. 1.
    A.H. Coons, H.J. Creech, R.N. Jones, E. Berliner, The demonstration of pneumococcal antigen in tissues by the use of fluorescent antibody. J. Immunol. 45(3), 159–70 (1942)Google Scholar
  2. 2.
    O. Shimomura, F.H. Johnson, Y. Saiga, Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, aequorea. J. Cell Comp. Physiol. 59, 223–39 (1962)Google Scholar
  3. 3.
    D.C. Prasher, V.K. Eckenrode, W.W. Ward, F.G. Prendergast, M.J. Cormier, Primary structure of the aequorea victoria green-fluorescent protein. Gene 111(2), 229–33 (1992)Google Scholar
  4. 4.
    M. Chalfie, Y. Tu, G. Euskirchen, W.W. Ward, D.C. Prasher, Green fluorescent protein as a marker for gene expression. Science 263(5148), 802–805 (1994)Google Scholar
  5. 5.
    R.Y. Tsien, The green fluorescent protein. Annu. Rev. Biochem. 67, 509–544 (1998)Google Scholar
  6. 6.
    N.C. Shaner, P.A. Steinbach, R.Y. Tsien, A guide to choosing fluorescent proteins. Nat. Methods 2(12), 905–909 (2005)Google Scholar
  7. 7.
    R.N. Day, M.W. Davidson, The fluorescent protein palette: Tools for cellular imaging. Chem. Soc. Rev. 38(10), 2887–2921 (2009)Google Scholar
  8. 8.
    D.J. Stephens, V.J. Allan, Light microscopy techniques for live cell imaging. Science 300(5616), 82–86 (2003)Google Scholar
  9. 9.
    W.A. Hing, C.A. Poole, C.G. Jensen, M. Watson, An integrated environmental perfusion chamber and heating system for long-term, high resolution imaging of living cells. J. Microsc. 199(Pt 2), 90–95 (2000)Google Scholar
  10. 10.
    C.L. Rieder, A. Khodjakov, Mitosis through the microscope: Advances in seeing inside live dividing cells. Science 300(5616), 91–96 (2003)Google Scholar
  11. 11.
    P.J. Davis, E.A. Kosmacek, Y. Sun, F. Ianzini, M.A. Mackey, The large-scale digital cell analysis system: An open system for nonperturbing live cell imaging. J. Microsc. 228(Pt 3), 296–308 (2007)Google Scholar
  12. 12.
    P. Gross, G. Farge, E.J. Peterman, G.J. Wuite, Combining optical tweezers, single-molecule fluorescence microscopy, and microfluidics for studies of DNA-protein interactions. Methods Enzymol. 475, 427–453 (2010)Google Scholar
  13. 13.
    J.R. Lakowicz, Principles of Fluorescence Spectroscopy (Springer, New York, 2006)Google Scholar
  14. 14.
    T. Nagai, K. Ibata, E.S. Park, M. Kubota, K. Mikoshiba, A. Miyawaki, A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications. Nat. Biotechnol. 20(1), 87–90 (2002)Google Scholar
  15. 15.
    G.H. Patterson, J. Lippincott-Schwartz, A photoactivatable GFP for selective photolabeling of proteins and cells. Science 297(5588), 1873–1877 (2002)Google Scholar
  16. 16.
    J. Zhang, R.E. Campbell, A.Y. Ting, R.Y. Tsien, Creating new fluorescent probes for cell biology. Nat. Rev. Mol. Cell Biol. 3(12), 906–918 (2002)Google Scholar
  17. 17.
    J. Lippincott-Schwartz, G.H. Patterson, Development and use of fluorescent protein markers in living cells. Science 300(5616), 87–91 (2003)Google Scholar
  18. 18.
    N.C. Shaner, R.E. Campbell, P.A. Steinbach, B.N. Giepmans, A.E. Palmer, R.Y. Tsien, Improved monomeric red, orange and yellow fluorescent proteins derived from discosoma sp. red fluorescent protein. Nat. Biotechnol. 22(12), 1567–1572 (2004)Google Scholar
  19. 19.
    M.A. Rizzo, G.H. Springer, B. Granada, D.W. Piston, An improved cyan fluorescent protein variant useful for FRET. Nat. Biotechnol. 22(4), 445–449 (2004)Google Scholar
  20. 20.
    H.W. Ai, J.N. Henderson, S.J. Remington, R.E. Campbell, Directed evolution of a monomeric, bright and photostable version of clavularia cyan fluorescent protein: Structural characterization and applications in fluorescence imaging. Biochem. J. 400(3), 531–540 (2006)Google Scholar
  21. 21.
    N.C. Shaner, M.Z. Lin, M.R. McKeown, P.A. Steinbach, K.L. Hazelwood, M.W. Davidson, R.Y. Tsien, Improving the photostability of bright monomeric orange and red fluorescent proteins. Nat. Methods 5(6), 545–551 (2008)Google Scholar
  22. 22.
    M. Yang, E. Baranov, P. Jiang, F.X. Sun, X.M. Li, L. Li, S. Hasegawa, M. Bouvet, M. Al-Tuwaijri, T. Chishima, H. Shimada, A.R. Moossa, S. Penman, R.M. Hoffman, Whole-body optical imaging of green fluorescent protein-expressing tumors and metastases. Proc. Natl. Acad. Sci. 97(3), 1206–1211 (2000)Google Scholar
  23. 23.
    D.M. Chudakov, S. Lukyanov, K.A. Lukyanov, Fluorescent proteins as a toolkit for in vivo imaging. Trends Biotechnol. 23(12), 605–613 (2005)Google Scholar
  24. 24.
    B.N. Giepmans, S.R. Adams, M.H. Ellisman, R.Y. Tsien, The fluorescent toolbox for assessing protein location and function. Science 312(5771), 217–224 (2006)Google Scholar
  25. 25.
    R.N. Day, F. Schaufele, Fluorescent protein tools for studying protein dynamics in living cells: a review. J. Biomed. Opt. 13(3), 031202 (2008)Google Scholar
  26. 26.
    X. Gao, W.C. Chan, S. Nie, Quantum-dot nanocrystals for ultrasensitive biological labeling and multicolor optical encoding. J. Biomed. Opt. 7(4), 532–537 (2002)Google Scholar
  27. 27.
    X. Gao, S. Nie, Molecular profiling of single cells and tissue specimens with quantum dots. Trends Biotechnol. 21(9), 371–373 (2003)Google Scholar
  28. 28.
    T.M. Jovin, Quantum dots finally come of age. Nat. Biotechnol. 21(1), 32–33 (2003)Google Scholar
  29. 29.
    A.P. Alivisatos, W. Gu, C. Larabell, Quantum dots as cellular probes. Annu. Rev. Biomed. Eng. 7, 55–76 (2005)Google Scholar
  30. 30.
    F. Pinaud, X. Michalet, L.A. Bentolila, J.M. Tsay, S. Doose, J.J. Li, G. Iyer, S. Weiss, Advances in fluorescence imaging with quantum dot bio-probes. Biomaterials 27(9), 1679–1687 (2006)Google Scholar
  31. 31.
    U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, T. Nann, Quantum dots versus organic dyes as fluorescent labels. Nat. Methods 5(9), 763–775 (2008)Google Scholar
  32. 32.
    W. Zhong, Nanomaterials in fluorescence-based biosensing. Anal. Bioanal. Chem. 394(1), 47–59 (2009)Google Scholar
  33. 33.
    I.L. Medintz, H. Mattoussi, Quantum dot-based resonance energy transfer and its growing application in biology. Phys. Chem. Chem. Phys. 11(1), 17–45 (2009)Google Scholar
  34. 34.
    W.C. Chan, D.J. Maxwell, X. Gao, R.E. Bailey, M. Han, S. Nie, Luminescent quantum dots for multiplexed biological detection and imaging. Curr. Opin. Biotechnol. 13(1), 40–46 (2002)Google Scholar
  35. 35.
    D.K. Bird, L. Yan, K.M. Vrotsos, K.W. Eliceiri, E.M. Vaughan, P.J. Keely, J.G. White, N. Ramanujam, Metabolic mapping of MCF10A human breast cells via multiphoton fluorescence lifetime imaging of the coenzyme NADH. Cancer Res. 65(19), 8766–8773 (2005)Google Scholar
  36. 36.
    A. Miyawaki, O. Griesbeck, R. Heim, R.Y. Tsien, Dynamic and quantitative Ca2+ measurements using improved chameleons. Proc. Natl. Acad. Sci. USA 96(5), 2135–2140 (1999)Google Scholar
  37. 37.
    A. Miyawaki, J. Llopis, R. Heim, J.M. McCaffery, J.A. Adams, M. Ikura, R.Y. Tsien, Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature 388(6645), 882–887 (1997)Google Scholar
  38. 38.
    T. Nagai, S. Yamada, T. Tominaga, M. Ichikawa, A. Miyawaki, Expanded dynamic range of fluorescent indicators for ca(2+) by circularly permuted yellow fluorescent proteins. Proc. Natl. Acad. Sci. USA 101(29), 10554–10559 (2004)Google Scholar
  39. 39.
    D.A. Agard, J.W. Sedat, Three-dimensional architecture of a polytene nucleus. Nature 302(5910), 676–681 (1983)Google Scholar
  40. 40.
    J.G. McNally, T. Karpova, J. Cooper, J.A. Conchello, Three-dimensional imaging by deconvolution microscopy. Methods 19(3), 373–385 (1999)Google Scholar
  41. 41.
    J.R. Swedlow, M. Platani, Live cell imaging using wide-field microscopy and deconvolution. Cell Struct. Funct. 27(5), 335–341 (2002)Google Scholar
  42. 42.
    Y. Sun, P. Davis, E.A. Kosmacek, F. Ianzini, M.A. Mackey, An open-source deconvolution software package for 3-D quantitative fluorescence microscopy imaging. J. Microsc. 236(3), 180–193 (2009)Google Scholar
  43. 43.
    Y. Sun, H. Wallrabe, S.A. Seo, A. Periasamy, FRET microscopy in 2010: The legacy of theodor forster on the 100th anniversary of his birth. Chemphyschem 12(3), 462–474 (2011)Google Scholar
  44. 44.
    G. Cox, Biological confocal microscopy. Mater. Today 5(3), 34–41 (2002)Google Scholar
  45. 45.
    W.B. Amos, J.G. White, How the confocal laser scanning microscope entered biological research. Biol. Cell 95(6), 335–342 (2003)Google Scholar
  46. 46.
    S. Paddock, Over the rainbow: 25 years of confocal imaging. BioTechniques 44(5), 643,4, 646, 648 (2008)Google Scholar
  47. 47.
    Y. Sun, C.F. Booker, S. Kumari, R.N. Day, M. Davidson, A. Periasamy, Characterization of an orange acceptor fluorescent protein for sensitized spectral fluorescence resonance energy transfer microscopy using a white-light laser. J. Biomed. Opt. 14(5), 054009 (2009)Google Scholar
  48. 48.
    A. Periasamy, P. Skoglund, C. Noakes, R. Keller, An evaluation of two-photon excitation versus confocal and digital deconvolution fluorescence microscopy imaging in xenopus morphogenesis. Microsc. Res. Technol. 47(3), 172–181 (1999)Google Scholar
  49. 49.
    J.A. Conchello, J.W. Lichtman, Optical sectioning microscopy. Nat. Methods 2(12), 920–931 (2005)Google Scholar
  50. 50.
    E. Wang, C.M. Babbey, K.W. Dunn, Performance comparison between the high-speed yokogawa spinning disc confocal system and single-point scanning confocal systems. J. Microsc. 218(Pt 2), 148–159 (2005)Google Scholar
  51. 51.
    R. Graf, J. Rietdorf, T. Zimmermann, Live cell spinning disk microscopy. Adv. Biochem. Eng. Biotechnol. 95, 57–75 (2005)Google Scholar
  52. 52.
    H. Wallrabe, M. Elangovan, A. Burchard, A. Periasamy, M. Barroso, Confocal FRET microscopy to measure clustering of ligand-receptor complexes in endocytic membranes. Biophys. J. 85(1), 559–571 (2003)Google Scholar
  53. 53.
    H. Wallrabe, Y. Chen, A. Periasamy, M. Barroso, Issues in confocal microscopy for quantitative FRET analysis. Microsc. Res. Technol. 69(3), 196–206 (2006)Google Scholar
  54. 54.
    H. Wallrabe, G. Bonamy, A. Periasamy, M. Barroso, Receptor complexes cotransported via polarized endocytic pathways form clusters with distinct organizations. Mol. Biol. Cell 18(6), 2226–2243 (2007)Google Scholar
  55. 55.
    J. Pawley, Handbook of Biological Confocal Microscopy (Springer, New York, 2006)Google Scholar
  56. 56.
    W. Denk, J.H. Strickler, W.W. Webb, Two-photon laser scanning fluorescence microscopy. Science 248(4951), 73–76 (1990)Google Scholar
  57. 57.
    C. Xu, J. Guild, W. Webb, W. Denk, Determination of absolute two-photon excitation cross sections by in situ second-order autocorrelation. Opt. Lett. 20(23), 2372 (1995)Google Scholar
  58. 58.
    H. Szmacinski, I. Gryczynski, J.R. Lakowicz, Three-photon induced fluorescence of the calcium probe indo-1. Biophys. J. 70(1), 547–555 (1996)Google Scholar
  59. 59.
    K. Svoboda, W. Denk, D. Kleinfeld, D.W. Tank, In vivo dendritic calcium dynamics in neocortical pyramidal neurons. Nature 385(6612), 161–165 (1997)Google Scholar
  60. 60.
    D.W. Piston, Imaging living cells and tissues by two-photon excitation microscopy. Trends Cell Biol. 9(2), 66–69 (1999)Google Scholar
  61. 61.
    P.T. So, C.Y. Dong, B.R. Masters, K.M. Berland, Two-photon excitation fluorescence microscopy. Annu. Rev. Biomed. Eng. 2, 399–429 (2000)Google Scholar
  62. 62.
    M. Rubart, Two-photon microscopy of cells and tissue. Circ. Res. 95(12), 1154–1166 (2004)Google Scholar
  63. 63.
    F. Helmchen, W. Denk, Deep tissue two-photon microscopy. Nat. Methods 2(12), 932–940 (2005)Google Scholar
  64. 64.
    A. Diaspro, G. Chirico, M. Collini, Two-photon fluorescence excitation and related techniques in biological microscopy. Q. Rev. Biophys. 38(2), 97–166 (2005)Google Scholar
  65. 65.
    K. Svoboda, R. Yasuda, Principles of two-photon excitation microscopy and its applications to neuroscience. Neuron 50(6), 823–839 (2006)Google Scholar
  66. 66.
    B.G. Wang, K. Konig, K.J. Halbhuber, Two-photon microscopy of deep intravital tissues and its merits in clinical research. J. Microsc. 238(1), 1–20 (2010)Google Scholar
  67. 67.
    T. Förster, Energy transport and fluorescence [in German]. Naturwissenschafien 6, 166–175 (1946)Google Scholar
  68. 68.
    T. Förster, Zwischenmolekulare energiewanderung und fluoreszenz. Annalen Der Physik 437(1–2), 55–75 (1948)Google Scholar
  69. 69.
    T. Förster, Delocalized excitation and excitation transfer. In In Modern Quantum Chemistry, O. Sinanoglu, editor, pp. 93–137 (Academic Press Inc., 1965)Google Scholar
  70. 70.
    R.M. Clegg, Fluorescence resonance energy transfer. In Fluorescence Imaging Spectroscopy and Microscopy, X.F. Wang, B. Herman, editors, pp. 179–251 (Wiley, New York, 1996)Google Scholar
  71. 71.
    R.M. Clegg, The history of FRET: From conception through the labors of birth. In Reviews in Fluorescence, C.D. Geddes, J.R. Lakowicz, editors, pp. 1–45 (Springer, New York, 2006)Google Scholar
  72. 72.
    E.A. Jares-Erijman, T.M. Jovin, FRET imaging. Nat. Biotechnol. 21(11), 1387–1395 (2003)Google Scholar
  73. 73.
    R.B. Sekar, A. Periasamy, Fluorescence resonance energy transfer (FRET) microscopy imaging of live cell protein localizations. J. Cell Biol. 160(5), 629–633 (2003)Google Scholar
  74. 74.
    A. Periasamy, R.N. Day, editors, MolecularImaging: FRET Microscopy and Spectroscopy (Oxford University Press, New York, 2005)Google Scholar
  75. 75.
    S.S. Vogel, C. Thaler, S.V. Koushik, Fanciful FRET. Sci. STKE 2006(331), re2 (2006)Google Scholar
  76. 76.
    D.W. Piston, G.J. Kremers, Fluorescent protein FRET: The good, the bad and the ugly. Trends Biochem. Sci. 32(9), 407–414 (2007)Google Scholar
  77. 77.
    A.K. Kenworthy, Imaging protein-protein interactions using fluorescence resonance energy transfer microscopy. Methods 24(3), 289–296 (2001)Google Scholar
  78. 78.
    R.N. Day, T.C. Voss, J.F. Enwright, C.F. Booker, A. Periasamy, F. Schaufele, Imaging the localized protein interactions between pit-1 and the CCAAT/enhancer binding protein alpha in the living pituitary cell nucleus. Mol. Endocrinol. 17(3), 333–345 (2003)Google Scholar
  79. 79.
    I.A. Demarco, A. Periasamy, C.F. Booker, R.N. Day, Monitoring dynamic protein interactions with photoquenching FRET. Nat. Methods 3(7), 519–524 (2006)Google Scholar
  80. 80.
    M.D. Allen, L.M. DiPilato, M. Rahdar, Y.R. Ren, C. Chong, J.O. Liu, J. Zhang, Reading dynamic kinase activity in living cells for high-throughput screening. ACS Chem. Biol. 1(6), 371–376 (2006)Google Scholar
  81. 81.
    X. Gao, J. Zhang, Spatiotemporal analysis of differential akt regulation in plasma membrane microdomains. Mol. Biol. Cell 19(10), 4366–4373 (2008)Google Scholar
  82. 82.
    J.L. Vinkenborg, T.J. Nicolson, E.A. Bellomo, M.S. Koay, G.A. Rutter, M. Merkx, Genetically encoded FRET sensors to monitor intracellular Zn2+ homeostasis. Nat. Methods 6(10), 737–740 (2009)Google Scholar
  83. 83.
    L. Tron, J. Szollosi, S. Damjanovich, S.H. Helliwell, D.J. Arndt-Jovin, T.M. Jovin, Flow cytometric measurement of fluorescence resonance energy transfer on cell surfaces. quantitative evaluation of the transfer efficiency on a cell-by-cell basis. Biophys. J. 45(5), 939–946 (1984)Google Scholar
  84. 84.
    L. Matyus, Fluorescence resonance energy transfer measurements on cell surfaces. A spectroscopic tool for determining protein interactions. J. Photochem. Photobiol. B 12(4), 323–337 (1992)Google Scholar
  85. 85.
    Z. Kam, T. Volberg, B. Geiger, Mapping of adherens junction components using microscopic resonance energy transfer imaging. J. Cell Sci. 108 (Pt 3) (Pt 3), 1051–1062 (1995)Google Scholar
  86. 86.
    D.C. Youvan, C.M. Silva, E.J. Bylina, W.J. Coleman, M.R. Dilworth, M.M. Yang, Calibration of fluorescence resonance energy transfer in microscopy using genetically engineered GFP derivatives on nickel chelating beads. Biotechnol. Et Alia(3), 1–18 (1997)Google Scholar
  87. 87.
    G.W. Gordon, G. Berry, X.H. Liang, B. Levine, B. Herman, Quantitative fluorescence resonance energy transfer measurements using fluorescence microscopy. Biophys. J. 74(5), 2702–2713 (1998)Google Scholar
  88. 88.
    A. Sorkin, M. McClure, F. Huang, R. Carter, Interaction of EGF receptor and grb2 in living cells visualized by fluorescence resonance energy transfer (FRET) microscopy. Curr. Biol. 10(21), 1395–1398 (2000)Google Scholar
  89. 89.
    Z. Xia, Y. Liu, Reliable and global measurement of fluorescence resonance energy transfer using fluorescence microscopes. Biophys. J. 81(4), 2395–2402 (2001)Google Scholar
  90. 90.
    A. Hoppe, K. Christensen, J.A. Swanson, Fluorescence resonance energy transfer-based stoichiometry in living cells. Biophys. J. 83(6), 3652–3664 (2002)Google Scholar
  91. 91.
    D.W. Hailey, T.N. Davis, E.G. Muller, Fluorescence resonance energy transfer using color variants of green fluorescent protein. Methods Enzymol. 351, 34–49 (2002)Google Scholar
  92. 92.
    C. Berney, G. Danuser, FRET or no FRET: A quantitative comparison. Biophys. J. 84(6), 3992–4010 (2003)Google Scholar
  93. 93.
    M. Elangovan, H. Wallrabe, Y. Chen, R.N. Day, M. Barroso, A. Periasamy, Characterization of one- and two-photon excitation fluorescence resonance energy transfer microscopy. Methods 29(1), 58–73 (2003)Google Scholar
  94. 94.
    J. van Rheenen, M. Langeslag, K. Jalink, Correcting confocal acquisition to optimize imaging of fluorescence resonance energy transfer by sensitized emission. Biophys. J. 86(4), 2517–2529 (2004)Google Scholar
  95. 95.
    T. Zal, N.R. Gascoigne, Photobleaching-corrected FRET efficiency imaging of live cells. Biophys. J. 86(6), 3923–3939 (2004)Google Scholar
  96. 96.
    C. Thaler, S.V. Koushik, P.S. Blank, S.S. Vogel, Quantitative multiphoton spectral imaging and its use for measuring resonance energy transfer. Biophys. J. 89(4), 2736–2749 (2005)Google Scholar
  97. 97.
    Y. Chen, J.P. Mauldin, R.N. Day, A. Periasamy, Characterization of spectral FRET imaging microscopy for monitoring nuclear protein interactions. J. Microsc. 228(Pt 2), 139–152 (2007)Google Scholar
  98. 98.
    D. Megias, R. Marrero, B. Martinez Del Peso, M.A. Garcia, J.J. Bravo-Cordero, A. Garcia-Grande, A. Santos, M.C. Montoya, Novel lambda FRET spectral confocal microscopy imaging method. Microsc. Res. Technol. 72(1), 1–11 (2009)Google Scholar
  99. 99.
    V. Raicu, M.R. Stoneman, R. Fung, M. Melnichuk, D.B. Jansma, L.F. Pisterzi, S. Rath, M. Fox, J.W. Wells, D.K. Saldin, Determination of supramolecular structure and spatial distribution of protein complexes in living cells. Nat. Photon 3(2), 107–113 (2009)Google Scholar
  100. 100.
    Y. Sun, A. Periasamy, Additional correction for energy transfer efficiency calculation in filter-based forster resonance energy transfer microscopy for more accurate results. J. Biomed. Opt. 15(2), 020513 (2010)Google Scholar
  101. 101.
    Y. Chen, A. Periasamy, Intensity range based quantitative FRET data analysis to localize protein molecules in live cell nuclei. J. Fluoresc. 16(1), 95–104 (2006)Google Scholar
  102. 102.
    M.E. Dickinson, G. Bearman, S. Tille, R. Lansford, S.E. Fraser, Multi-spectral imaging and linear unmixing add a whole new dimension to laser scanning fluorescence microscopy. BioTechniques 31(6), 1272, 1274,6, 1278 (2001)Google Scholar
  103. 103.
    T. Zimmermann, J. Rietdorf, A. Girod, V. Georget, R. Pepperkok, Spectral imaging and linear un-mixing enables improved FRET efficiency with a novel GFP2–YFP FRET pair. FEBS Lett. 531(2), 245–249 (2002)Google Scholar
  104. 104.
    T. Zimmermann, J. Rietdorf, R. Pepperkok, Spectral imaging and its applications in live cell microscopy. FEBS Lett. 546(1), 87–92 (2003)Google Scholar
  105. 105.
    T. Zimmermann, Spectral imaging and linear unmixing in light microscopy. Adv. Biochem. Eng. Biotechnol. 95, 245–265 (2005)Google Scholar
  106. 106.
    Y. Sun, H. Wallrabe, C.F. Booker, R.N. Day, A. Periasamy, Three-color spectral FRET microscopy localizes three interacting proteins in living cells. Biophys. J. 99(4), 1274–1283 (2010)Google Scholar
  107. 107.
    S.V. Koushik, H. Chen, C. Thaler, H.L. Puhl, S.S. Vogel, Cerulean, venus, and VenusY67C FRET reference standards. Biophys. J. 91(12), L99-L101 (2006)Google Scholar
  108. 108.
    R.N. Day, C.F. Booker, A. Periasamy, Characterization of an improved donor fluorescent protein for forster resonance energy transfer microscopy. J. Biomed. Opt. 13(3), 031203 (2008)Google Scholar
  109. 109.
    D. Toomre, D.J. Manstein, Lighting up the cell surface with evanescent wave microscopy. Trends Cell Biol. 11(7), 298–303 (2001)Google Scholar
  110. 110.
    D. Axelrod, Total internal reflection fluorescence microscopy in cell biology. Traffic 2(11), 764–774 (2001)Google Scholar
  111. 111.
    H. Schneckenburger, Total internal reflection fluorescence microscopy: Technical innovations and novel applications. Curr. Opin. Biotechnol. 16(1), 13–18 (2005)Google Scholar
  112. 112.
    J. Lippincott-Schwartz, E. Snapp, A. Kenworthy, Studying protein dynamics in living cells. Nat. Rev. Mol. Cell Biol. 2(6), 444–456 (2001)Google Scholar
  113. 113.
    E.A. Reits, J.J. Neefjes, From fixed to FRAP: measuring protein mobility and activity in living cells. Nat. Cell Biol. 3(6), E145-7 (2001)Google Scholar
  114. 114.
    B.L. Sprague, J.G. McNally, FRAP analysis of binding: proper and fitting. Trends Cell Biol. 15(2), 84–91 (2005)Google Scholar
  115. 115.
    D. Magde, E. Elson, W.W. Webb, Thermodynamic fluctuations in a reacting system—measurement by fluorescence correlation spectroscopy. Phys. Rev. Lett. 29(11), 705 (1972)Google Scholar
  116. 116.
    Y. Chen, J.D. Muller, K.M. Berland, E. Gratton, Fluorescence fluctuation spectroscopy. Methods 19(2), 234–252 (1999)Google Scholar
  117. 117.
    O. Krichevsky, G. Bonnet, Fluorescence correlation spectroscopy: The technique and its applications. Rep. Prog. Phys. 65(2), 251–297 (2002)Google Scholar
  118. 118.
    E. Haustein, P. Schwille, Fluorescence correlation spectroscopy: Novel variations of an established technique. Annu. Rev. Biophys. Biomol. Struct. 36, 151–169 (2007)Google Scholar
  119. 119.
    N. Altan-Bonnet, G. Altan-Bonnet, Fluorescence correlation spectroscopy in living cells: a practical approach. Curr. Protoc. Cell Biol. Chapter 4 Unit 4.24 (2009)Google Scholar
  120. 120.
    M.A. Digman, E. Gratton, Fluorescence correlation spectroscopy and fluorescence cross-correlation spectroscopy. Wiley Interdiscip. Rev. Syst. Biol. Med. 1(2), 273–282 (2009)Google Scholar
  121. 121.
    C.M. Brown, R.B. Dalal, B. Hebert, M.A. Digman, A.R. Horwitz, E. Gratton, Raster image correlation spectroscopy (RICS) for measuring fast protein dynamics and concentrations with a commercial laser scanning confocal microscope. J. Microsc. 229(Pt 1), 78–91 (2008)Google Scholar
  122. 122.
    N.O. Petersen, P.L. Hoddelius, P.W. Wiseman, O. Seger, K.E. Magnusson, Quantitation of membrane receptor distributions by image correlation spectroscopy: concept and application. Biophys. J. 65(3), 1135–1146 (1993)Google Scholar
  123. 123.
    P.W. Wiseman, J.A. Squier, M.H. Ellisman, K.R. Wilson, Two-photon image correlation spectroscopy and image cross-correlation spectroscopy. J. Microsc. 200(Pt 1), 14–25 (2000)Google Scholar
  124. 124.
    P.W. Wiseman, C.M. Brown, D.J. Webb, B. Hebert, N.L. Johnson, J.A. Squier, M.H. Ellisman, A.F. Horwitz, Spatial mapping of integrin interactions and dynamics during cell migration by image correlation microscopy. J. Cell Sci. 117(Pt 23), 5521–5534 (2004)Google Scholar
  125. 125.
    A. Nohe, N.O. Petersen, Image correlation spectroscopy. Sci. STKE 2007(417), l7 (2007)Google Scholar
  126. 126.
    M.A. Digman, P.W. Wiseman, A.R. Horwitz, E. Gratton, Detecting protein complexes in living cells from laser scanning confocal image sequences by the cross correlation raster image spectroscopy method. Biophys. J. 96(2), 707–716 (2009)Google Scholar
  127. 127.
    M.J. Rossow, J.M. Sasaki, M.A. Digman, E. Gratton, Raster image correlation spectroscopy in live cells. Nat. Protoc. 5(11), 1761–1774 (2010)Google Scholar
  128. 128.
    S.W. Hell, Far-field optical nanoscopy. Science 316(5828), 1153–1158 (2007)Google Scholar
  129. 129.
    B. Huang, M. Bates, X. Zhuang, Super-resolution fluorescence microscopy. Annu. Rev. Biochem. 78, 993–1016 (2009)Google Scholar
  130. 130.
    G. Patterson, M. Davidson, S. Manley, J. Lippincott-Schwartz, Superresolution imaging using single-molecule localization. Annu. Rev. Phys. Chem. 61, 345–367 (2010)Google Scholar
  131. 131.
    T.A. Klar, S. Jakobs, M. Dyba, A. Egner, S.W. Hell, Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. Proc. Natl. Acad. Sci. USA 97(15), 8206–8210 (2000)Google Scholar
  132. 132.
    K.I. Willig, S.O. Rizzoli, V. Westphal, R. Jahn, S.W. Hell, STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis. Nature 440(7086), 935–939 (2006)Google Scholar
  133. 133.
    L. Meyer, D. Wildanger, R. Medda, A. Punge, S.O. Rizzoli, G. Donnert, S.W. Hell, Dual-color STED microscopy at 30-nm focal-plane resolution. Small 4(8), 1095–1100 (2008)Google Scholar
  134. 134.
    E. Betzig, G.H. Patterson, R. Sougrat, O.W. Lindwasser, S. Olenych, J.S. Bonifacino, M.W. Davidson, J. Lippincott-Schwartz, H.F. Hess, Imaging intracellular fluorescent proteins at nanometer resolution. Science 313(5793), 1642–1645 (2006)Google Scholar
  135. 135.
    S.T. Hess, T.P. Girirajan, M.D. Mason, Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys. J. 91(11), 4258–4272 (2006)Google Scholar
  136. 136.
    M.F. Juette, T.J. Gould, M.D. Lessard, M.J. Mlodzianoski, B.S. Nagpure, B.T. Bennett, S.T. Hess, J. Bewersdorf, Three-dimensional sub-100 nm resolution fluorescence microscopy of thick samples. Nat. Methods 5(6), 527–529 (2008)Google Scholar
  137. 137.
    S. Manley, J.M. Gillette, G.H. Patterson, H. Shroff, H.F. Hess, E. Betzig, J. Lippincott-Schwartz, High-density mapping of single-molecule trajectories with photoactivated localization microscopy. Nat. Methods 5(2), 155–157 (2008)Google Scholar
  138. 138.
    T.J. Gould, V.V. Verkhusha, S.T. Hess, Imaging biological structures with fluorescence photoactivation localization microscopy. Nat. Protoc. 4(3), 291–308 (2009)Google Scholar
  139. 139.
    M.J. Rust, M. Bates, X. Zhuang, Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods 3(10), 793–795 (2006)Google Scholar
  140. 140.
    B. Huang, S.A. Jones, B. Brandenburg, X. Zhuang, Whole-cell 3D STORM reveals interactions between cellular structures with nanometer-scale resolution. Nat. Methods 5(12), 1047–1052 (2008)Google Scholar
  141. 141.
    X. Zhuang, Nano-imaging with storm. Nat. Photonics 3(7), 365–367 (2009)Google Scholar
  142. 142.
    A. Periasamy, R.M. Clegg, FLIM Microscopy in Biology and Medicine (CRC Press, London, 2009)Google Scholar
  143. 143.
    B.D. Venetta, Microscope phase fluorometer for determining the fluorescence lifetimes of fluorochromes. Rev. Sci. Instrum. 30(6), 450–457 (1959)Google Scholar
  144. 144.
    H.C. Gerritsen, M.A. Asselbergs, A.V. Agronskaia, W.G. Van Sark, Fluorescence lifetime imaging in scanning microscopes: Acquisition speed, photon economy and lifetime resolution. J. Microsc. 206(Pt 3), 218–224 (2002)Google Scholar
  145. 145.
    Y. Chen, J.D. Mills, A. Periasamy, Protein localization in living cells and tissues using FRET and FLIM. Differentiation 71(9–10), 528–541 (2003)Google Scholar
  146. 146.
    E. Gratton, S. Breusegem, J. Sutin, Q. Ruan, N. Barry, Fluorescence lifetime imaging for the two-photon microscope: time-domain and frequency-domain methods. J. Biomed. Opt. 8(3), 381–390 (2003)Google Scholar
  147. 147.
    W. Becker, A. Bergmann, M.A. Hink, K. Konig, K. Benndorf, C. Biskup, Fluorescence lifetime imaging by time-correlated single-photon counting. Microsc. Res. Technol. 63(1), 58–66 (2004)Google Scholar
  148. 148.
    Y. Chen, A. Periasamy, Characterization of two-photon excitation fluorescence lifetime imaging microscopy for protein localization. Microsc. Res. Technol. 63(1), 72–80 (2004)Google Scholar
  149. 149.
    W. Becker, A. Bergmann, C. Biskup, Multispectral fluorescence lifetime imaging by TCSPC. Microsc. Res. Technol. 70(5), 403–409 (2007)Google Scholar
  150. 150.
    C. Biskup, T. Zimmer, L. Kelbauskas, B. Hoffmann, N. Klocker, W. Becker, A. Bergmann, K. Benndorf, Multi-dimensional fluorescence lifetime and FRET measurements. Microsc. Res. Technol. 70(5), 442–451 (2007)Google Scholar
  151. 151.
    A. Periasamy, P. Wodnicki, X.F. Wang, S. Kwon, G.W. Gordon, B. Herman, Time-resolved fluorescence lifetime imaging microscopy using a picosecond pulsed tunable dye laser system. Rev. Sci. Instrum. 67(10), 3722–3731 (1996)Google Scholar
  152. 152.
    M. Elangovan, R.N. Day, A. Periasamy, Nanosecond fluorescence resonance energy transfer-fluorescence lifetime imaging microscopy to localize the protein interactions in a single living cell. J. Microsc. 205(Pt 1), 3–14 (2002)Google Scholar
  153. 153.
    A.V. Agronskaia, L. Tertoolen, H.C. Gerritsen, High frame rate fluorescence lifetime imaging. J. Phys. D 36(14), 1655–1662 (2003)Google Scholar
  154. 154.
    D.M. Grant, J. McGinty, E.J. McGhee, T.D. Bunney, D.M. Owen, C.B. Talbot, W. Zhang, S. Kumar, I. Munro, P.M. Lanigan, G.T. Kennedy, C. Dunsby, A.I. Magee, P. Courtney, M. Katan, M.A. Neil, P.M. French, High speed optically sectioned fluorescence lifetime imaging permits study of live cell signaling events. Opt. Express 15(24), 15656–15673 (2007)Google Scholar
  155. 155.
    R.V. Krishnan, A. Masuda, V.E. Centonze, B. Herman, Quantitative imaging of protein-protein interactions by multiphoton fluorescence lifetime imaging microscopy using a streak camera. J. Biomed. Opt. 8(3), 362–367 (2003)Google Scholar
  156. 156.
    C. Biskup, T. Zimmer, K. Benndorf, FRET between cardiac Na+ channel subunits measured with a confocal microscope and a streak camera. Nat. Biotechnol. 22(2), 220–224 (2004)Google Scholar
  157. 157.
    J.R. Lakowicz, H. Szmacinski, K. Nowaczyk, K.W. Berndt, M. Johnson, Fluorescence lifetime imaging. Anal. Biochem. 202(2), 316–330 (1992)Google Scholar
  158. 158.
    T.W.J. Gadella Jr., T.M. Jovin, R.M. Clegg, Fluorescence lifetime imaging microscopy (FLIM): spatial resolution of microstructures on the nanosecond time scale. Biophys. Chem. 48(2), 221–239 (1993)Google Scholar
  159. 159.
    C. Buranachai, D. Kamiyama, A. Chiba, B.D. Williams, R.M. Clegg, Rapid frequency-domain FLIM spinning disk confocal microscope: lifetime resolution, image improvement and wavelet analysis. J. Fluoresc. 18(5), 929–942 (2008)Google Scholar
  160. 160.
    Y.C. Chen, R.M. Clegg, Fluorescence lifetime-resolved imaging. Photosynth. Res. 102(2–3), 143–155 (2009)Google Scholar
  161. 161.
    T.S. Forde, Q.S. Hanley, Spectrally resolved frequency domain analysis of multi-fluorophore systems undergoing energy transfer. Appl. Spectrosc. 60(12), 1442–1452 (2006)Google Scholar
  162. 162.
    R.A. Colyer, C. Lee, E. Gratton, A novel fluorescence lifetime imaging system that optimizes photon efficiency. Microsc. Res. Technol. 71(3), 201–213 (2008)Google Scholar
  163. 163.
    H. Wallrabe, A. Periasamy, Imaging protein molecules using FRET and FLIM microscopy. Curr. Opin. Biotechnol. 16(1), 19–27 (2005)Google Scholar
  164. 164.
    T.W.J. Gadella, FRET and FLIM Techniques (Elsevier, Oxford, 2009)Google Scholar
  165. 165.
    A. Periasamy, M. Elangovan, E. Elliott, D.L. Brautigan, Fluorescence lifetime imaging (FLIM) of green fluorescent fusion proteins in living cells. Methods Mol. Biol. 183, 89–100 (2002)Google Scholar
  166. 166.
    Y. Sun, R.N. Day, A. Periasamy, Investigating protein-protein interactions in living cells using fluorescence lifetime imaging microscopy. Nat. Protoc. (In Press)Google Scholar
  167. 167.
    A.V. Agronskaia, L. Tertoolen, H.C. Gerritsen, Fast fluorescence lifetime imaging of calcium in living cells. J. Biomed. Opt. 9(6), 1230–1237 (2004)Google Scholar
  168. 168.
    D.S. Ushakov, V. Caorsi, D. Ibanez-Garcia, H.B. Manning, A.D. Konitsiotis, T.G. West, C. Dunsby, P.M. French, M.A. Ferenczi, Response of rigor cross-bridges to stretch detected by fluorescence lifetime imaging microscopy of myosin essential light chain in skeletal muscle fibers. J. Biol. Chem. 286(1), 842–850 (2011)Google Scholar
  169. 169.
    K. Konig, H. Schneckenburger, R. Hibst, Time-gated in vivo autofluorescence imaging of dental caries. Cell Mol. Biol. (Noisy-Le-Grand) 45(2), 233–239 (1999)Google Scholar
  170. 170.
    A. Ehlers, I. Riemann, M. Stark, K. Konig, Multiphoton fluorescence lifetime imaging of human hair. Microsc. Res. Technol. 70(2), 154–161 (2007)Google Scholar
  171. 171.
    A. Uchugonova, K. Konig, Two-photon autofluorescence and second-harmonic imaging of adult stem cells. J. Biomed. Opt. 13(5), 054068 (2008)Google Scholar
  172. 172.
    S. Huang, A.A. Heikal, W.W. Webb, Two-photon fluorescence spectroscopy and microscopy of NAD(P)H and flavoprotein. Biophys. J. 82(5), 2811–2825 (2002)Google Scholar
  173. 173.
    V.K. Ramanujan, J.H. Zhang, E. Biener, B. Herman, Multiphoton fluorescence lifetime contrast in deep tissue imaging: prospects in redox imaging and disease diagnosis. J. Biomed. Opt. 10(5), 051407 (2005)Google Scholar
  174. 174.
    M.C. Skala, K.M. Riching, A. Gendron-Fitzpatrick, J. Eickhoff, K.W. Eliceiri, J.G. White, N. Ramanujam, In vivo multiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia. Proc. Natl. Acad. Sci. USA 104(49), 19494–19499 (2007)Google Scholar
  175. 175.
    H.W. Guo, C.T. Chen, Y.H. Wei, O.K. Lee, V. Gukassyan, F.J. Kao, H.W. Wang, Reduced nicotinamide adenine dinucleotide fluorescence lifetime separates human mesenchymal stem cells from differentiated progenies. J. Biomed. Opt. 13(5), 050505 (2008)Google Scholar
  176. 176.
    N.P. Galletly, J. McGinty, C. Dunsby, F. Teixeira, J. Requejo-Isidro, I. Munro, D.S. Elson, M.A. Neil, A.C. Chu, P.M. French, G.W. Stamp, Fluorescence lifetime imaging distinguishes basal cell carcinoma from surrounding uninvolved skin. Br. J. Dermatol. 159(1), 152–161 (2008)Google Scholar
  177. 177.
    W. Becker, Advanced Time-Correlated Single Photon Counting Techniques (Springer, Berlin, 2005)Google Scholar
  178. 178.
    H. Stiel, K. Teuchner, A. Paul, D. Leupold, I.E. Kochevar, Quantitative comparison of excited state properties and intensity-dependent photosensitization by rose bengal. J. Photochem. Photobiol. B 33(3), 245–254 (1996)Google Scholar
  179. 179.
    A. Periasamy, P. So, K. Konig, Comparison of FRET microscopy imaging techniques for studying protein-protein interactions in living cells using FRET standards. Proc. SPIE 7569, 75690Z (2010)Google Scholar
  180. 180.
    Q.Q. Tang, M.D. Lane, Activation and centromeric localization of CCAAT/enhancer-binding proteins during the mitotic clonal expansion of adipocyte differentiation. Genes Dev. 13(17), 2231–2241 (1999)Google Scholar
  181. 181.
    Q.Q. Tang, M.D. Lane, Role of C/EBP homologous protein (CHOP-10) in the programmed activation of CCAAT/enhancer-binding protein-beta during adipogenesis. Proc. Natl. Acad. Sci. 97(23), 12446–12450 (2000)Google Scholar
  182. 182.
    W.H. Landschulz, P.F. Johnson, E.Y. Adashi, B.J. Graves, S.L. McKnight, Isolation of a recombinant copy of the gene encoding C/EBP. Genes Dev. 2(7), 786–800 (1988)Google Scholar
  183. 183.
    R.N. Day, A. Periasamy, F. Schaufele, Fluorescence resonance energy transfer microscopy of localized protein interactions in the living cell nucleus. Methods 25(1), 4–18 (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.W.M. Keck Center for Cellular Imaging, Department of Biology and Biomedical EngineeringUniversity of VirginiaCharlottesvilleUSA

Personalised recommendations