Advanced Spectroscopy Technique for Biomedicine

Chapter
Part of the Biological and Medical Physics, Biomedical Engineering book series (BIOMEDICAL)

Abstract

This chapter presents an overview of the applications of optical spectroscopy in biomedicine. We focus on the optical design aspects of advanced biomedical spectroscopy systems, Raman spectroscopy system in particular. Detailed components and system integration are provided. As examples, two real-time in vivo Raman spectroscopy systems, one for skin cancer detection and the other for endoscopic lung cancer detection, and an in vivo confocal Raman spectroscopy system for skin assessment are presented. The applications of Raman spectroscopy in cancer diagnosis of the skin, lung, colon, oral cavity, gastrointestinal tract, breast, and cervix are summarized.

Keywords

Raman Spectrum Raman Spectroscopy Spectroscopy System Raman Probe Digital Micromirror Device 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

Our Raman spectroscopy work was supported by the Canadian Cancer Society, the Canadian Dermatology Foundation, the Canadian Institutes of Health Research, the BC Hydro Employees’ Community Service Fund, and the VGH and UBC Foundation. The authors wish to thank Dr. Harvey Lui and Dr. David I. McLean for helpful discussions. The authors acknowledge Dr. Zhiwei Huang, Dr. Michael Short, and Ms. Tracy Wang for providing some of the figures.

References

  1. 1.
    N. Kollias, G. Zonios, G.N. Stamatas, Fluorescence spectroscopy of skin. Vibrational Spectrosc. 28, 17–23 (2001)Google Scholar
  2. 2.
    H. Zeng, C. MacAulay, D.I. McLean, B. Palcic, Spectroscopic and microscopic characteristics of human skin autofluorescence emission. Photochem. Phobiol. 61, 639–645 (1995)Google Scholar
  3. 3.
    R. Richards-Kortum, E. Sevick-Muraca, Quantitative optical spectroscopy for tissuediagnosis. Annu. Rev. Phys. Chem. 47, 555–606 (1996)Google Scholar
  4. 4.
    A. Mahadevan-Jansen, R. Richards-Kortum, Raman spectroscopy for the detection of cancers and precancers. J. Biomed. Opt. 1, 31–70 (1996)Google Scholar
  5. 5.
    H. Zeng, H. Lui, D.I. McLean, C. MacAulay, B. Palcic, Optical spectroscopy studies of diseased skin-preliminary results. Proc. SPIE 2628, 281–285 (1995)Google Scholar
  6. 6.
    H. Zeng, H. Lui, D.I. McLean, C. MacAulay, B. Palcic, Update on fluorescence spectroscopy studies of diseased skin. Proc. SPIE 2671, 196–198 (1996)Google Scholar
  7. 7.
    H. Zeng, C. MacAulay, D.I. McLean, B. Palcic, Miniature spectrometer and multispectral imager as a potential diagnostic aid in dermatology. Proc. SPIE 2387, 57–61 (1995)Google Scholar
  8. 8.
    H. Zeng, C. MacAulay, D.I. McLean, B. Palcic, Reconstruction of in vivo skin autofluorescence spectrum from microscopic properties by Monte Carlo simulation. J. Photochem. Photobiol. B 38, 234–240 (1997)Google Scholar
  9. 9.
    H. Zeng, D.I. McLean, C. MacAulay, H. Lui, Autofluorescence properties of skin and applications in dermatology. Proc. SPIE 4224, 366–373 (2000)Google Scholar
  10. 10.
    H. Zeng, D.I. McLean, C. MacAulay, B. Palcic, H. Lui, Autofluorescence of basal cell carcinoma. Proc. SPIE 3245, 5–7 (1998)Google Scholar
  11. 11.
    Z. Huang, H. Zeng, I. Hamzavi, D.I. McLean, H. Lui, Rapid near-infrared Raman spectroscopy system for real-time in vivo skin measurements. Opt. Lett. 26, 1782–1784 (2001)Google Scholar
  12. 12.
    J. Zhao, H. Lui, D.I. McLean, H. Zeng, Integrated real-time Raman system for clinical in vivo skin analysis. Skin Res. Technol. 14, 484–492 (2008)Google Scholar
  13. 13.
    T. Vo-Dinh, Basic instrumentation in photonics, in Biomedical Photonics Handbook, ed. by T. Vo-Dinh (CRC Press, New York, 2003)Google Scholar
  14. 14.
    N. MacKinnon, U. Stange, P. Lane, C. MacAulay, M. Quatrevalet, Spectrally programmable light engine for in vitro and in vivo molecular imaging and spectroscopy. Appl. Opt. 44, 2033–2040 (2005)Google Scholar
  15. 15.
    J.C. Knight, Photonic crystal fibres. Nature 424, 847–851 (2003)Google Scholar
  16. 16.
    K.P. Hansen, R.E. Kristiansen, Supercontinuum generation in photonic crystal fibers. http://www.thorlabs.com/ThorCat/10700/10736-A02.pdf.AccessedJune2010
  17. 17.
    M. Seefeldt, A. Heuer, R. Menzel, Compact white-light source with an average output power of 2.4 W and 900 nm spectral bandwidth. Opt. Commun. 216, 199–202 (2003)Google Scholar
  18. 18.
    J.K. Ranka, R.S. Windeler, A.J. Stentz, Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm. Opt. Lett. 25, 25–27 (2000)Google Scholar
  19. 19.
    H.R. Morris, C.C. Hoyt, P.J. Treado, Imaging spectrometers for fluorescence and Raman microscopy: acousto-optic and liquid crystal tunable filters. Appl. Spectrosc. 48, 857–866 (1994)Google Scholar
  20. 20.
    C.D. Tran, R.J. Furlan, Spectrofluorometer based on acousto-optic tunable filters for rapid scanning and multicomponent sample analyses. Anal. Chem. 65, 1675–1681 (1993)Google Scholar
  21. 21.
    E.N. Lewis, P.J. Treado, I.W. Levin, A miniaturized non-moving-parts Raman spectrometer. Appl. Spectrosc. 47, 539–543 (193)Google Scholar
  22. 22.
    N. Uchida, Optical properties of single-crystal paratellurite (TeO2). Phys. Rev. B 4, 3736 (1971)Google Scholar
  23. 23.
    ST-133 controller operations manual, Princeton Scientific Instruments, Monmouth Junction, N.J. 2004Google Scholar
  24. 24.
    HoloSpec Imaging Spectrograph Operations Manual, Kaiser Optical Systems Inc., Ann Arbor, MI, USA, 2002Google Scholar
  25. 25.
    N.M. Marin, N. MacKinnon, C. MacAulay, S.K. Chang, E.N. Atkinson, D. Cox, D. Serachitopol, B. Pikkula, M. Follen, R. Richards-Kortum, Calibration standard for multicenter clinical trials of fluorescence spectroscopy for in vivo diagnosis. J. Biomed. Opt. 11, 014010 (2006)Google Scholar
  26. 26.
    J. Zhao, H. Lui, D.I. McLean, H. Zeng, Towards instrument independent quantitative measurement of fluorescence intensity in fiber optic spectrometer system. Appl. Opt. 46, 7132–7140 (2007)Google Scholar
  27. 27.
    U. Utzinger, R. Richards-Kortum, Fiber optic probes for biomedical optical spectroscopy. J. Biomed. Opt. 8, 121–147 (2003)Google Scholar
  28. 28.
    J.T. Motz, S.J. Gandhi, O.R. Scepanovic, A.S. Haka, J.R. Kramer, R.R. Dasari, M.S. Feld, Real-time Raman system for in vivo disease diagnosis. J. Biomed. Opt. 10, 031113 (2005)Google Scholar
  29. 29.
    T.C.B. Schut, R. Wolthuis, P.J. Caspers, G.J. Puppels, Real-time tissue characterization on the basis of in vivo Raman spectra. J. Raman Spectrosc. 33, 580–585 (2002)Google Scholar
  30. 30.
    L.F. Santos, R. Wolthuis, S. Koljenovic, R.M. Almeida, F.J. Puppels, Fiberoptic probes for in vivo Raman spectroscopy in the high-wavenumber region. Anal. Chem. 77, 6747–6752 (2005)Google Scholar
  31. 31.
    American National Standard for the Safe Use of Lasers, ANSI Standard Z136.1–2007, American National Standards Institute, Washington, DC 2007Google Scholar
  32. 32.
    H. Owen, D.E. Battey, M.J. Pelletier, J.B. Slater, New spectroscopic instrument based on volume holographic optical elements. Proc. SPIE 2406, 260–267 (1995)Google Scholar
  33. 33.
    C.A. Lieber, A. Mahadevan-Jansen, Automated method for subtraction of fluorescence from biological Raman spectra. Appl. Spectrosc. 57, 1363–1367 (2003)Google Scholar
  34. 34.
    J. Zhao, H. Lui, D.I. McLean, H. Zeng, Automated Autofluorescence Background Subtraction Algorithm for Biomedical Raman Spectroscopy. Appl. Spectrosc. 61, 1225–1232 (2007)Google Scholar
  35. 35.
    H. Zeng, M. Petek, M.T. Zorman, A. McWilliams, B. Palcic, S. Lam, Integrated endoscopy system for simultaneous imaging and spectroscopy for early lung cancer detection. Opt. Lett. 29, 587–589 (2004)Google Scholar
  36. 36.
    H. Zeng, A. McWilliams, S. Lam, Optical spectroscopy and imaging for early lung cancer detection: a review. Photodiagn. Photodyn. Ther. 1, 111–122 (2004)Google Scholar
  37. 37.
    S. Lam, C. MacAulay, J.C. Leriche, N. Ikeda, B. Palcic, Early localization of bronchogenic carcinoma. Diagnostic Therapeut. Endosc. 1, 75–78 (1994)Google Scholar
  38. 38.
    Z. Huang, A. McWilliams, H. Lui, D.I. McLean, S. Lam, H. Zeng, Near-infrared Raman spectroscopy for optical diagnosis of lung cancer. Int. J. Cancer 107, 1047–1052 (2003)Google Scholar
  39. 39.
    M. Short, S. Lam, A. McWilliams, J. Zhao, H. Lui, H. Zeng, Development and preliminary results of an endoscopic Raman probe for potential in-vivo diagnosis of lung cancers. Opt. Lett. 33, 711–713 (2008)Google Scholar
  40. 40.
    M. Short, S. Lam, A. McWilliams, J. Zhao, H. Lui, H. Zeng, Development and preliminary results of an in vivo Raman probe for early lung cancer detection. Proc. SPIE 6853, 68530J (2008)Google Scholar
  41. 41.
    H. Wang, N. Huang, J. Zhao, H. Lui, M. Korbelik, H. Zeng, Depth-resolved in vivo micro-Raman spectroscopy of a murine skin tumor model reveals cancer specific spectral biomarkers. J. Raman Spectrosc. 42. 160–166 (2010)Google Scholar
  42. 42.
    M.L. Myrick, S.M. Angels, Elimination of background in fiber-optic Raman measurements. Appl. Spectrosc. 44, 565–570 (1990)Google Scholar
  43. 43.
    K. Tanaka, M.T.T. Pacheco, J.F. Brennan III, I. Itzkan, A.J. Berger, R.R. Dasari, M.S. Feld, Compound parabolic concentrator probe for efficient light collection in spectroscopy of biological tissue. Appl. Opt. 35, 758–763 (1996)Google Scholar
  44. 44.
    A. Mahadevan-Jansen, M.F. Mitchell, N. Ramanujam, U. Utzinger, R. Richards-Kortum, Development of a fiber optic probe to measure NIR Raman spectra of cervical tissue in vivo. Photochem. Phobiol. 68, 427–431 (1998)Google Scholar
  45. 45.
    J. Mo, W. Zheng, J.J.H. Low, J. Ng, A. Ilancheran, Z. Huang, High wavenumber Raman spectroscopy for in vivo detection of cervical dysplasia. Anal. Chem. 81, 8908–8915 (2009)Google Scholar
  46. 46.
    J.T. Motz, M. Hunter, L.H. Galindo, J.A. Gardecki, J.R. Kramer, R.R. Dasari, M.S. Feld, Optical fiber probe for biomedical Raman spectroscopy. Appl. Opt. 43, 542–554 (2005)Google Scholar
  47. 47.
    M.G. Shim, L.M.W. Song, N.E. Marcon, B. Wilson, In vivo near-infrared Raman spectroscopy: demonstration of feasibility during clinical gastrointestinal endoscopy. Photochem. Phobiol. 72, 146–150 (2000)Google Scholar
  48. 48.
    M. Gniadecka, O.F. Nielsen, D.H. Christensen, H.C. Wulf, Structure of water, proteins, and lipids in intact human skin, hair, and nail. J. Invest. Dermatol. 110, 393–398 (1998)Google Scholar
  49. 49.
    M. Gniadecka, O.F. Nielsen, H.C. Wulf, Water content and structure in malignant and benign skin tumours. J. Mol. Struct. 661–662, 405–410 (2003)Google Scholar
  50. 50.
    M. Gniadecka, P.A. Philipsen, S. Sigurdsson, S. Wessel, O.F. Nielsen, D.H. Christensen, J. Hercogova, K. Rossen, H.K. Thomsen, R. Gniadecki, L.K. Hansen, H.C. Wulf, Melanoma diagnosis by Raman spectroscopy and neural networks: structure alterations in proteins and lipids in intact cancer tissue. J. Invest. Dermatol. 122, 443–449 (2004)Google Scholar
  51. 51.
    M. Gniadecka, H.C. Wulf, N.N. Mortensen, O.F. Nielsen, D.H. Christensen, Diagnosis of basal cell carcinoma by Raman spectroscopy. J. Raman Spectrosc. 28, 125–129 (1997)Google Scholar
  52. 52.
    M. Short, H. Lui, D.I. McLean, H. Zeng, A, Alajlan, X.K. Chen, Changes in nuclei and peritumoral collagen within nodular basal cell carcinomas via confocal micro-Raman spectroscopy. J. Biomed. Opt. 11, 034004 (2006)Google Scholar
  53. 53.
    H.G.M. EdwardsH, A.C. Williams, B.W. Barry, Potential applications of FT-Raman spectroscopy for dermatological diagnostics. J. Mol. Struct. 347, 379–388 (1995)Google Scholar
  54. 54.
    B.W. Barry, H.G.M. Edwards, A.C. Williams, Fourier Transform Raman and infrared vibrational study of human skin: assignment of spectral bands. J. Raman Spectrosc. 23, 641–645 (1992)Google Scholar
  55. 55.
    H. Zeng, J. Zhao, M. Short, D.I. McLean, S. Lam, A. McWilliams, H. Lui, Raman spectroscopy for in vivo tissue analysis and diagnosis, from instrument development to clinical applications. J. Innov. Opt. Health Sci. 1, 95–106 (2008)Google Scholar
  56. 56.
    P.J. Caspers, G.W. Lucassen, E.A. Carter, H.A. Bruining, G.J. Puppels, In vivo confocal Raman Microspectroscopy of the skin: noninvasive determination of molecular concentration profiles. J. Invest. Dermatol. 116, 434–442 (2001)Google Scholar
  57. 57.
    P.J. Caspers, G.W. Lucassen, G.J. Puppels, Combined in vivo confocal Raman spectroscopy and confocal microscopy of human skin. Biophys. J. 85, 572–580 (2003)Google Scholar
  58. 58.
    P.J. Caspers, G.W. Lucassen, R. Wolthuis, H.A. Bruining, G.J. Puppels, In vitro and in vivo Raman spectroscopy of human skin. Biospectroscopy 4, S31–S39 (1998)Google Scholar
  59. 59.
    C.A. Lieber, S.K. Majumder, D.L. Ellis, D. Billheimer, A. Mahadevan-Jansen, In vivo nonmelanoma skin cancer diagnosis using Raman microspectroscopy. Lasers Surg. Med. 40, 461–467 (2008)Google Scholar
  60. 60.
    C.A. Lieber, S.K. Majumder, D. Billheimer, D.L. Ellis, A. Mahadevan-Jansen, Raman microspectroscopy for skin cancer detection in vitro. J. Biomed. Opt. 13, 024013 (2008)Google Scholar
  61. 61.
    J. Zhao, H. Lui, D.I. McLean, H. Zeng, Real-time Raman spectroscopy for non-invasive skin cancer detection – preliminary results. EMBS 2008, 3107–3109 (2008)Google Scholar
  62. 62.
    Z. Huang, H. Lui, X.K. Chen, A. Alajlan, D.I. McLean, H. Zeng, Raman spectroscopy of in vivo cutaneous melanin. J. Biomed. Opt. 9, 1198–1205 (2004)Google Scholar
  63. 63.
    R.S. DaCosta, B.C. Wilson, N.E. Marcon, Light-induced fluorescence endoscopy of the gastrointestinal tract. Gastrointest. Endos. Clin. N. Am. 10, 37–69 (2000)Google Scholar
  64. 64.
    A. Molckovsky, L.M.W. Song, M.G. Shim, N.E. Marcon, B. Wilson, Diagnostic potential of near-infrared Raman spectroscopy in the colon: differentiating adenomatous from hyperplastic polyps. Gastrointest. Endosc. 57, 396–402 (2003)Google Scholar
  65. 65.
    E. Widjaja, W. Zheng, Z. Huang, Classification of colonic tissue using near-infrared Raman spectroscopy and support vector machines. Int. J. Oncol. 32, 653–662 (2008)Google Scholar
  66. 66.
    P.O. Andrade, R.A. Bitar, K. Yassoyama, H. Martinho, A.M.E. Santo, P.M. Bruno, A.A. Martin, Study of normal colorectal tissue by FT-Raman spectroscopy. Anal. Bioanal. Chem. 387, 1643–1648 (2007)Google Scholar
  67. 67.
    C. Krafft, D. Codrich, G. Pelizzo, V. Sergo, Raman and FTIR microscopic imaging of colon tissue: a comparative study. J. Biophoton. 1, 154–169 (2008)Google Scholar
  68. 68.
    T.C.B. Schut, M.J.H. Witjes, H.J.C.M. Sterenborg, O.C. Speelman, J.L.N. Roodenburg, E.T. Marple, H.A. Bruining, F.J. Puppels, In vivo detection of dysplastic tissue by Raman spectroscopy. Anal. Chem. 72, 6010–6018 (2000)Google Scholar
  69. 69.
    R. Malini, K. Venkatakrishna, J. Kurien, K.M. Pai, L. Rao, V.B. Karcha, C.M. Krishna, Discrimination of normal, inflammatory, premalignant, and malignant oral tissue: a Raman spectroscopy study. Biopolymers 81, 179–193 (2006)Google Scholar
  70. 70.
    D.C.G. de Veld, T.C.B. Schut, M. Skurichina, M.J.H. Witjes, J.E. Van der Wal, J.L.N. Roodenburg, H.J.C. M. Sterenborg, Autofluorescence and Raman microspectroscopy of tissue sections of oral lesions. Lasers Med. Sci. 19, 203–209 (2005)Google Scholar
  71. 71.
    K. Guze, M. Short, S. Sonis, N. Karimbux, J. Chan, H. Zeng, Parameters defining the potential applicability of Raman spectroscopy as a diagnostic tool for oral disease. J. Biomed. Opt. 14, 014016 (2009)Google Scholar
  72. 72.
    S.K. Teh, W. Zheng, K.Y. Ho, M. Teh, K.G. Yeoh, Z. Huang, Diagnosis of gastric cancer using near-infrared Raman spectroscopy and classification and regression tree techniques. J. Biomed. Opt. 13, 034013 (2008)Google Scholar
  73. 73.
    S.K. Teh, W. Zheng, K.Y. Ho, M. Teh, K.G. Yeoh, Z. Huang, Diagnostic potential of near infrared Raman spectroscopy in the stomach: differentiating dysplasia from normal tissue. Br. J. Cancer 98, 457–465 (2008)Google Scholar
  74. 74.
    S.K. Teh, W. Zheng, K.Y. Ho, M. Teh, K.G. Yeoh, Z. Huang, Near-infrared Raman spectroscopy for gastric precancer diagnosis. J. Raman Spectrosc. 40, 908–914 (2008)Google Scholar
  75. 75.
    Y. Hu, A. Shen, T. Jiang, Y. Ai, J. Hu, Classification of normal and malignant human gastric mucosa tissue with confocal Raman microspectroscopy and wavelet analysis. Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 69, 378–382 (2008)Google Scholar
  76. 76.
    K. Kalyan, A. Anand, M.V.P. Chowdary, J. Keerthi, C.M. Krishna, S. Mathew, Discrimination of normal and malignant stomach mucosal tissues by Raman spectroscopy: a pilot study. Vibrational Spectrosc. 44, 382–387 (2007)Google Scholar
  77. 77.
    T. Kawabata, T. Mizuno, S. Okazaki, M. Hiramatsu, T. Setoguchi, H. Kikuchi, M. Yamamoto, Y. Hiramatsu, K. Kondo, M. NBaba, M. Ohta, K. Kamiya, T. Tanaka, S. Suzuki, H. Konno, Optical diagnosis of gastric cancer using near-infrared multichannel Raman spectroscopy with a 1064-um excitation wavelength. J. Gastroenterol. 43, 283–290 (2008)Google Scholar
  78. 78.
    Z. Huang, S.K. Teh, W. Zheng, J. Mo, K. Lin, X. Shao, K.Y. Ho, M. Teh, K.G. Yeoh, Integrated Raman spectroscopy and trimodal wide-field imaging techniques for real-time in vivo tissue Raman measurements at endoscopy. Opt. Lett. 34, 758–760 (2009)Google Scholar
  79. 79.
    M.S. Bergholt, W. Zheng, K. Lin, K.Y. Ho, M. Teh, K.G. Yeoh, Z. Huang, In vivo Raman spectroscopy integrated with multimodal endoscopic imaging for early diagnosis of gastric dysplasia. Proc. of SPIE 7560, 756003 (2010)Google Scholar
  80. 80.
    Z. Huang, M.S. Bergholt, W. Zheng, K. Lin, K.Y. Ho, M. The, K.G. Yeoh, In vivo early diagnosis of gastric dysplasia using narrow-band image-guide Raman endoscopy. J. Biomed. Opt. 15, 037017 (2010)Google Scholar
  81. 81.
    S.K. Majumder, M.D. Keller, F.I. Boulos, M.C. Kelley, A. Mahadevan-Jansen, Comparison of autofluorescence, diffuse reflectance, and Raman spectroscopy for breast tissue discrimination. J. Biomed. Opt. 13, 054009 (2008)Google Scholar
  82. 82.
    Y. Yang, A. Katz, E.J. Celmer, M. Zurawska-Szczepaniak, R.R. Alfano, Fundamental differences of excitation spectrum between malignant and benign breast tissues. Photochem. Phobiol. 66, 518–522 (1997)Google Scholar
  83. 83.
    S.K. Majumder, P.K. Gupta, B. Jain, A. Uppal, UV excited autofluorescence spectroscopy of human breast tissues for discriminating cancerous tissue from benign tumor and normal tissue. Lasers Life Sci. 8, 249–264 (1998)Google Scholar
  84. 84.
    R.R. Alfano, C.H. Liu, W.L. Sha, D. Zhu, L. Akins, J. Cleary, R. Prudente, E. Cellmer, Human breast tissues studied by IR Fourier transform Raman spectroscopy. Lasers Life Sci. 4, 23–28 (1991)Google Scholar
  85. 85.
    C.J. Frank, D.C. Redd, T.S. Gansler, R.L. McCreery, Characterization of human breast specimens with near-IR Raman spectroscopy. Anal. Chem. 66, 319–326 (1994)Google Scholar
  86. 86.
    C.J. Frank, R.L. McCreery, D.C. Redd, Raman spectroscopy of normal and diseased human breast tissues. Anal. Chem. 67, 777–783 (1995)Google Scholar
  87. 87.
    C. Yu, E. Gestl, K. Eckert, D. Allara, J. Irudayaraj, Characterization of human breast epithelial cells by confocal Raman microspectroscopy. Cancer Detect. Prevent. 30, 515–522 (2006)Google Scholar
  88. 88.
    R.A. Bitar, H. de Silva Martinho, C.J. Tierra-Criollo, L.N.Z. Ramalho, M.M. Netto, A.A. Martin, Biochemical analysis of human breast tissues using Fourier-transform Raman spectroscopy. J. Biomed. Opt. 11, 054001 (2006)Google Scholar
  89. 89.
    N. Stone, P. Matousek, Advanced transmission Raman spectroscopy: a promising tool for breast disease diagnosis. Cancer Res. 68, 4424–4430 (2008)Google Scholar
  90. 90.
    D.C. Redd, Z.C. Feng, K.T. Yue, T.S. Gansler, Raman spectroscopy characterization of human breast tissues: implications for breast cancer diagnosis. Appl. Spectrosc. 47, 787–791 (1993)Google Scholar
  91. 91.
    A.S. Haka, K.E. Shafer, M. Fitzmaurice, P. Crowe, R.R. Dasari, M.S. Feld, Diagnosing breast cancer by using Raman spectroscopy. PNAS 102, 12371–12376 (2005)Google Scholar
  92. 92.
    A.S. Haka, Z. Volynskaya, J.A. Gardecki, J. Nazemi, J. Lyons, D. Hicks, M. Fitzmaurice, R.R. Dasari, J.P. Crowe, M.S. Feld, In vivo margin assessment during partial mastectomy breast surgery using Raman spectroscopy. Cancer Res. 66, 3317–3322 (2006)Google Scholar
  93. 93.
    A. Mahadevan-Jansen, M.F. Mitchell, N. Ramanujam, A. Malpica, S. Thomsen, U. Utzinger, R. Richards-Kortum, Near-infrared Raman spectroscopy for in vitro detection of cervical precancers. Photochem. Phobiol. 68, 123–132 (1998)Google Scholar
  94. 94.
    U. Utzinger, D.L. Heintzelman, A. Mahadevan-Jansen, A. Malpica, M. Follen, R. Richards-Kortum, Near-infrared Raman spectroscopy for in vivo detection of cervical precancers. Appl. Spectrosc. 55, 955–959 (2001)Google Scholar
  95. 95.
    D.P. Lau, Z. Huang, H. Lui, D.W. Anderson, K. Berean, M.D. Morrison, L. Shen, H. Zeng, Raman spectroscopy for optical diagnosis in the larynx: preliminary findings. Lasers Surg. Med. 37, 192–200 (2005)Google Scholar
  96. 96.
    S.K. Teh, W. Zheng, D.P. Lau, Z. Huang, Spectroscopic diagnosis of laryngeal carcinoma using near-infrared Raman spectroscopy and random recursive partitioning ensemble techniques. Analyst 134, 1232–1239 (2009)Google Scholar
  97. 97.
    D.P. Lau, Z. Huang, H. Lui, C.S. Man, K. Berean, M.D. Morrison, H. Zeng, Raman spectroscopy for optical diagnosis in normal and cancerous tissue of the nasopharynx - preliminary findings. Lasers Surg. Med. 32, 210–214 (2003)Google Scholar
  98. 98.
    A.J. Berger, T.W. Koo, I. Itzkan, G.L. Horowitz, M.S. Feld, Multicomponent blood analysis by near-infrared Raman spectroscopy. Appl. Opt. 38, 2916–2926 (1999)Google Scholar
  99. 99.
    A.J. Berger, I. Itzkan, M.S. Feld, Feasibility of measuring blood glucose concentration by near-infrared Raman spectroscopy. Spectrochim. Acta Part A 53A, 287–292 (1997)Google Scholar
  100. 100.
    A.M.K. Enejder, T.G. Scecina, J. Oh, M. Hunter, W. Shih, S. Sasic, G.L. Horowitz, M.S. Feld, Raman spectroscopy for noninvasive glucose measurements. J. Biomed. Opt. 10, 031114 (2005)Google Scholar
  101. 101.
    J.T. Motz, M. Fitzmaurice, A. Miller, S.J. Gandhi, A.S. Haka, L.H. Galindo, R.R. Dasari, J.R. Kramer, M.S. Feld, In vivo Raman spectral pathology of human atherosclerosis and vulnerable plaque. J. Biomed. Opt. 11, 021003 (2006)Google Scholar
  102. 102.
    H.P. Buschman, G. Deinum, J.T. Motz, M. Fitzmaurice, J.R. Kramer, A. van der Laarse, A.V. Bruschke, M.S. Feld, Raman microspectroscopy of human coronary atherosclerosis: biochemical assessment of cellular and extracellular morphologic structures in situ. Cardiovasc. Pathol. 10, 69–82 (2001)Google Scholar
  103. 103.
    H.P. Buschman, E.T. Marple, M.L. Wash, B. Bennett, T.C. Schut, M. Brochert, H.A. Bruining, A.V. Bruschke, A. van der Laarse, G.J. Puppels, In vivo determination of the molecular composition of artery wall by intravascular Raman spectroscopy. Anal. Chem. 72, 3771–3775 (2000)Google Scholar
  104. 104.
    M.V. Schulmerich, W.F. Finney, V. Popescu, M.D. Morris, T.M. Vanasse, S.A. Goldstein, Transcutaneous Raman spectroscopy of bone tissue using a non-confocal fiber optic array probe. Proc. SPIE 6093, 60930O (2006)Google Scholar
  105. 105.
    C. Krafft, S.B. Sobottka, G. Schackert, R. Salzer, Near infrared Raman spectroscopic mapping of native brain tissue and intracranial tumors. Analyst 130, 1070–1077 (2005)Google Scholar
  106. 106.
    M.C.M. Grimbergen, C.F.P. van Swol, R.J.A. van Moorselaar, J. Uff, A. Mahadevan-Jansen, N. Stone, Raman spectroscopy of bladder tissue in the presence of 5-aminolevulinic acid. J. Photochem. Photobiol. B: Biol. 95, 170–176 (2009)Google Scholar
  107. 107.
    P. Crow, A. Molckovsky, N. Stone, J. Uff, B. Wilson, L.M. WongKeeSong, Assessment of fiber-optic near-infrared Raman spectroscopy for diagnosis of bladder and prostate cancer. Urology 65, 1126–1130 (2005)Google Scholar
  108. 108.
    N. Stone, C. Kendall, N. Shepherd, P. Crow, H. Barr, Near-infrared Raman spectroscopy for the classification of epithelial pre-cancers and cancers. J. Raman Spectrosc. 33, 564–573 (2002)Google Scholar
  109. 109.
    J.X. Cheng, X.S. Xie, Coherent anti-Stokes Raman scattering microscopy: instrumentation, theory and applications. J. Phys. Chem. B 108, 827–840 (2004)Google Scholar
  110. 110.
    K. Kneipp, Y. Wang, H. Kneipp, L.T. Perelman, I. Itzkan, R.R. Dasari, M.S. Feld, Single molecule detection using surface-enhanced Raman scattering (SERS). Phys. Rev. Lett. 78, 1667–1670 (1996)Google Scholar
  111. 111.
    J.J. Laserna, Modern Techniques in Raman Spectroscopy (Wiley, New York, 1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Imaging Unit - Integrative Oncology DepartmentBritish Columbia Cancer Agency Research CenterVancouverCanada
  2. 2.Photomedicine Institute, Department of Dermatology and Skin ScienceUniversity of British Columbia & Vancouver Coastal Health Research InstituteVancouverCanada

Personalised recommendations