Ensemble of Uncoupled Oscillators

  • Claus F. Klingshirn
Chapter
Part of the Graduate Texts in Physics book series (GTP)

Abstract

The optical properties of matter are determined by the coupling of various types of oscillators in matter to the electromagnetic radiation field. In other words, an incident electromagnetic field will cause these oscillators to perform driven or forced oscillations. The amplitude of these driven oscillations depends on the angular frequency of the incident field, on the eigenfrequency0 of the oscillators, on the coupling strength f between electromagnetic field and oscillator, and on its damping. In semiconductors the main intrinsic oscillators or resonances are optical phonons, excitons including their ionisation continuum and higher band-to-band transitions or plasmons.

Keywords

Oscillator Strength Dielectric Function Transition Matrix Element High Resonance Linear Optic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. [63H1.]
    J.J. Hopfield, D.G. Thomas, Phys. Rev. 132, 563 (1963)ADSCrossRefGoogle Scholar
  2. [67K1.]
    R. Kubo, Dynamical Processes in Solid State Optics (Syokabo, Tokyo, 1967) and further textbooks by this author.Google Scholar
  3. [72W1.]
    F. Wooten, Optical Properties of Solids (Academic, New York, 1972)Google Scholar
  4. [74G1.]
    F. Gervais, B. Piriou, J. Phys. C 7, 2374 (1974); Phys. Rev. B 10, 1642 (1974); ibid. 11, 3944 (1975)Google Scholar
  5. [77L1.]
    J. Lagois, Phys. Rev. B 16, 1699 (1977)ADSCrossRefGoogle Scholar
  6. [81K1.]
    R. Kuhnert, R. Helbig, K. Hümmer, Phys. Status Solidi (b) 107, 83 (1981)Google Scholar
  7. [85C1.]
    H.B. Callen, Thermodynamics and an Introduction to Thermostatistics, 2nd edn. (Wiley, New York, 1985)MATHGoogle Scholar
  8. [93F1.]
    M. Fiebig, D. Fröhlich, Ch. Pahlke-Lerch, Phys. Status Solidi (b) 177, 187 (1993)Google Scholar
  9. [01G1.]
    B. Gil, Phys. Rev. B 64, 201310 (R) (2001)Google Scholar
  10. [01W1.]
    M. Wegener, in Advances in Energy Transfer Processes (1999) (World Scientific, Hongkong, 2001), p. 215 (2001)Google Scholar
  11. [02B1.]
    F. Kremer, A. Schönhals (eds.), Broadband Dielectric Spectroscopy (Springer, Berlin, 2002)Google Scholar
  12. [02S1.]
    W. Schäfer, M. Wegener, Semiconductor Optics and Transport Phenomena (Springer, Berlin, 2002)Google Scholar
  13. [06A1.]
    K.C. Agarwal et al., Phys. Rev. B 73, 045211 (2006); Phys. Status Solidi B 243, 914 (2006)Google Scholar
  14. [07K1.]
    C. Klingshirn, Chem. Phys. Chem. 8, 782 (2002); Phys. Status Solidi B 244, 3027 (2007)Google Scholar
  15. [10K1.]
    C. Klingshire et al., Phys. Status Solidi B 247, 1424 (2010)ADSCrossRefGoogle Scholar
  16. [10K2.]
    C.F. Klingshirn, B.K. Mayer, A. Waag, A. Hoffman, J. Geurts, Zinc Oide: from Fundamental Properties Towards Novel Applications (Springer, Heidelberg, 2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Claus F. Klingshirn
    • 1
  1. 1.Institut für Angewandte PhysikKarlsruher Institut für Technologie (KIT)KarlsruheGermany

Personalised recommendations