Maxwell’s Equations, Photons and the Density of States

  • Claus F. Klingshirn
Part of the Graduate Texts in Physics book series (GTP)


In this chapter we consider Maxwells equations and what they reveal about the propagation of light in vacuum and in matter. We introduce the concept of photons and present their density of states. Since the density of states is a rather important property in general and not only for photons, we approach this quantity in a rather general way. We will use the density of states later also for other (quasi-) particles including systems of reduced dimensionality. In addition, we introduce the occupation probability of these states for various groups of particles.


Dispersion Relation Plane Wave Electromagnetic Wave Harmonic Oscillator Occupation Probability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 65M1.
    J.C. Maxwell, Philos. Trans. R. Soc. Lond. 155, 459 (1865)CrossRefGoogle Scholar
  2. 02L1.
    Ph. Lenard, Ann. der Physik (Leipzig), 8, 149 (1902)Google Scholar
  3. 05E1.
    A. Einstein, Ann. der Physik (Leipzig), 17, 132 (1905)Google Scholar
  4. 16M1.
    R.A. Millikan, Phys. Rev. 7, 355 (1916)ADSCrossRefGoogle Scholar
  5. 55S1.
    L.I. Schiff, Quantum Mechanics, 2nd edn. Advanced Solid State Physics (McGraw-Hill, New York, 1955)Google Scholar
  6. 69Q1.
    R.J. Glauber (ed.), Quantum Optics (Academic, New York, 1969)Google Scholar
  7. 71F1.
    A.L. Fetter, J.D. Walecka, Quantum Theory of Many Particle Systems (McGraw Hill, New York, 1971)Google Scholar
  8. 73C1.
    L. Mandel, E. Wolf (eds.), Coherence and Quantum Optics (Plenum Press, New York, 1973)Google Scholar
  9. 73H1.
    H. Haken, Quantenfeldtheorie des Festkörpers Teubner (B.G. Teubner, Stuttgart, 1973)CrossRefGoogle Scholar
  10. 73L1.
    R. Loudon, The Quantum Theory of Light (Clarendon Press, Oxford, 1973)Google Scholar
  11. 76H1.
    H. Haken, Quantum Field Theory of Solids (North Holland, Amsterdam, 1976)Google Scholar
  12. 70Q1.
    S.M. Kay, A. Maitland (eds.), Quantum Optics (Academic, New York, 1979)Google Scholar
  13. 80H1.
    H. Haken, H.C. Wolf, Atom- und Quantenphysik (Springer, Berlin/Heidelberg, 1980)CrossRefGoogle Scholar
  14. 82W1.
    P. Würfel, J. Phys. C 15, 3967 (1982)ADSCrossRefGoogle Scholar
  15. 84A1.
    M. Abramowitz, J.A. Stegun (eds.), Pocket Book of Mathematical Functions (Deutsch, Thun, 1984)Google Scholar
  16. 85G1.
    W. Greiner, Theoretische Physik, vol. 1–10 (Deutsch, Frankfurt, 1985)Google Scholar
  17. 88D1.
    J.K. Furdyna, J. Kossut (eds.), Diluted Magnetic Semiconductors. Semiconductors and Semimetals, vol 25 (Academic, Boston, 1988)Google Scholar
  18. 88K1.
    R. Kidd et al., Am. J. Phys. 57, 27 (1988)MathSciNetADSCrossRefGoogle Scholar
  19. 98B3.
    H.A. Bachor, A Guide to Experiments in Quantum Optics (Wiley-VCH, Weinheim, 1989)Google Scholar
  20. 89S1.
    P. Tombesi (ed.), Squeezed and Nonclassical Light. NATO ASI Series B, vol 190 (Plenum Press, New York, 1989)Google Scholar
  21. 91B1.
    I.N. Bronstein, K.A. Semendjajew, Taschenbuch der Mathematik, 25th edn. (Teubner, Stuttgart, 1991)Google Scholar
  22. 91O1.
    M. von Ortenberg, Festkörperprobleme/Adv. Solid State Phys. 31, 261 (1991)CrossRefGoogle Scholar
  23. 92G1.
    O. Goede, W. Heimbrodt, Adv. Solid State Phys. 32, 237 (1992)CrossRefGoogle Scholar
  24. 92M1.
    P. Meystre, M. Sargent III, Elements of Quantum Optics, 2nd edn. (Springer, Berlin/ Heidelberg, 1992)Google Scholar
  25. 92S1.
    H. Stöc ker (ed.), Taschenbuch Mathematischer Formeln und Moderner Verfahren (Deutsch, Frankfurt, 1992)Google Scholar
  26. 92S2.
    K. Schick et al., Appl. Phys. A 54, 109 (1992)ADSCrossRefGoogle Scholar
  27. 92Y1.
    D.R. Yakovlev, Festkörperprobleme/Adv. Solid State Phys. 32, 251 (1992)CrossRefGoogle Scholar
  28. 93R1.
    H.Ruder, M. Ruder, Die spezielle Relativitätstheorie (Vieweg, Braunschweig, 1993)zbMATHCrossRefGoogle Scholar
  29. 93S1.
    W. Stößel, Fourieroptik (Springer, Berlin, 1993)Google Scholar
  30. 94A1.
    I. Abraham, J.A. Levenson, in Nonlinear Spectroscopy of Solids: Advances and Application (1993). NATO ASI Series B, vol. 339 (Plenum Press, New York, 1994), p. 251Google Scholar
  31. 94B1.
    B. Bowlby, in Nonlinear Spectroscopy of Solids: Advances and Application (1993). NATO ASI Series B, vol. 339 (Plenum Press, New York, 1994), p. 385Google Scholar
  32. 94D1.
    T. Dietl, in Diluted Magnetic Semiconductors. Handbook of Semiconductors, vol 38, T.S. Moss (ed.), (North Holland, New York, 1994)Google Scholar
  33. 94G1.
    J.A. Gaj et al., Phys. Rev. B. 50, 5512 (1994)ADSCrossRefGoogle Scholar
  34. 95D1.
    E. Daub, P. Würfel, Phys. Rev. Lett. 74, 1020 (1995)ADSCrossRefGoogle Scholar
  35. 96H1.
    R. Hellmann et al., J. Crystal Growth 159, 976 (1996)ADSCrossRefGoogle Scholar
  36. 96L1.
    Leitfaden für den Gebrauch des Internationalen Einheitensystems, Physikalisch Technische Bundesanstalt (PTB), Braunschweig (1996) or various textbooks on physicsGoogle Scholar
  37. 98B1.
    R.v. Baltz, in Ultrafast Dynamics of Quantum Systems (1997). NATO ASI Series B, vol. 372 (Plenum Press, New York, 1998), p. 303Google Scholar
  38. 98B2.
    R.v. Baltz, C. Klingshirn, in Ultrafast Dynamics of Quantum Systems (1997). NATO ASI Series B, vol. 372 (Plenum Press, New York, 1998), p. 381Google Scholar
  39. 98B4.
    R.v. Baltz, in Ultrafast Dynamics of Quantum Systems (1997). NATO ASI Series B, vol. 372 (Plenum Press, New York, 1998), p. 323Google Scholar
  40. 98D1.
    B. Di Bartolo, in Ultrafast Dynamics of Quantum Systems (1997). NATO ASI Series B, vol. 372 (Plenum Press, New York, 1998), p. 1Google Scholar
  41. 98O1.
    H. Ohno, Science 281, 951 (1998)ADSCrossRefGoogle Scholar
  42. 99P1.
    H. Paul, Photonen: eine Einführung in die Quantenoptik (B.G. Teubner, Stuttgart, 1999)Google Scholar
  43. 99S1.
    M.O. Scully, S.S. Zubairy, Quantum Optics (Cambridge University Press, Cambridge, 1999)Google Scholar
  44. 00P1.
    M. Planck, Verhandl. Deutsch Phys. Gesellschaft, 2, 202, 237 (1900); Ann. der Physik, 4, 553Google Scholar
  45. 01M1.
    G. Messin et al., Optics Lett. 26, 1891 (2001)ADSCrossRefGoogle Scholar
  46. 01T1.
    Tao-Hua et al., Acta Optica Sinica 21, 1486 (2001)Google Scholar
  47. 01T2.
    W. Tittel, W. Martienssen, Physikal. Blätter 57, Heft 7/8, 81 (2001)Google Scholar
  48. 02B1.
    G. Bayer et al., Physica E 12, 900 (2002)ADSCrossRefGoogle Scholar
  49. 02D1.
    G.A. Durkin, C. Simon, D. Bouwmeester, Phys. Rev. Lett. 88, 187902 (2002)ADSCrossRefGoogle Scholar
  50. 02G1.
    O. Gywat, G. Burkard, D. Loss, Phys. Rev. B 65, 205329 (2002)ADSCrossRefGoogle Scholar
  51. 02Y1.
    Ye-Liu, Guo-Guangcan, Acta Optica Sinica 22, 407 (2002)Google Scholar
  52. 03D1.
    T. Dietl, Europhys. News 34, 216 (2003)ADSCrossRefGoogle Scholar
  53. 05G1.
    Ch.C. Gerry, P.L. Knight, Introductory Quantum Optics (Cambridge University Press, Cambridge, 2005)Google Scholar
  54. 06H1.
    S. Haroche, J.-M. Raimond, Exploring the Quantum: Atoms, Cavities and Photons (Oxford University Press, Oxford, 2006)zbMATHGoogle Scholar
  55. 07B1.
    Y.B. Band, Light and Matter: Electromagnetism, Optics, Spectroscopy and Lasers (Wiley, Chchester, 2007)Google Scholar
  56. 08M1.
    D.A.B. Miller, Quantummechanics for Scientists and Engineers (Cambridge University Press, Cambridge, 2008)CrossRefGoogle Scholar
  57. 09A1.
    M. Assmann et al., Science, 325, 297 (2009)ADSCrossRefGoogle Scholar
  58. 09H1.
    K. Henneberger, Phys. Status Solidi B 246, 283 (2009)ADSCrossRefGoogle Scholar
  59. 09S1.
    L. Schneebeli, M. Kira, S.W. Koch, Phys. Rev. A 80, 033843 (2009)ADSCrossRefGoogle Scholar
  60. 09W1.
    J.J. Wiersig et al., Nature, 460, 245 (2009)ADSCrossRefGoogle Scholar
  61. 10C1.
    K. Cho, Reconstruction of Macroscopic Maxwell Equations. Springer Tracts in Modern Physics, vol. 237 (Springer, Berlin/Heidelberg, 2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Claus F. Klingshirn
    • 1
  1. 1.Institut für Angewandte PhysikKarlsruher Institut für Technologie (KIT)KarlsruheGermany

Personalised recommendations