Semiconductor Optics pp 457-483 | Cite as
From Cavity Polaritons to Photonic Crystals
Chapter
First Online:
Abstract
In this chapter we return briefly to the concept of a Fabry–Perot resonatorin the form of a (micro) cavityand then proceed to the cavity polaritons as a mixed state between a resonance in a solid (these are generally exciton resonances in quantum wells, wires or dots) and a cavity resonance. From there we reach, via different paths, the presently very active and potentially application-relevant field of photonic crystals with a subspecies known as photonic band gap materials.
Keywords
Photonic Crystal Cavity Mode Wave Guide Strong Coupling Limit Whisper Gallery Mode
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
- [22O1.]C.W. Oseen, Ann. der Phys. 69, 202 (1922)ADSGoogle Scholar
- [46P1.]E.M. Purcell, Phys. Rev. 69, 681 (1946)Google Scholar
- [68V1.]U.G. Veselago, Sov. Phys. Usp. 10, 509 (1968)ADSGoogle Scholar
- [72B1.]V. Bykov, JETP 35, 269 (1972); Quantum Electron. 4, 861 (1975)Google Scholar
- [86R1.]P.St.J. Russell, Appl. Phys. B 39, 231 (1986)Google Scholar
- [87J1.]S. John, Phys. Rev. Lett. 58, 2486 (1987)ADSGoogle Scholar
- [87Y1.]E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987)ADSGoogle Scholar
- [88R1.]J.W.S. Rayleigh, Philos. Mag. 26, 256 (1888)MATHGoogle Scholar
- [89T1.]A. Thelen, The Design of Optical Interference Coatings (Mc Graw Hill, New York, 1989)Google Scholar
- [91Y1.]E. Yablonovitch, T.J. Gnütter, K.M. Leung, Phys. Rev. Lett. 67, 2295 (1991)ADSGoogle Scholar
- [92J1.]C. Janot, Quasicrystals (Clarendon Press, Oxford, 1992)Google Scholar
- [92W1.]C. Weisbuch et al., Phys. Rev. Lett. 69, 3314 (1992)ADSGoogle Scholar
- [94H1.]R. Houdré et al., Phys. Rev. Lett. 73, 2043 (1994)ADSGoogle Scholar
- [95J1.]J.D. Joannopoulos, R.D. Meade, J.N. Winn, Photonic Crystals (Princeton University Press, Princeton, 1995)MATHGoogle Scholar
- [95K1.]P. Kelkar et al., Phys. Rev. B 52, R5491 (1995)ADSGoogle Scholar
- [95S1.]V. Savona et al., Solid State Commun. 93, 733 (1995)ADSGoogle Scholar
- [95Ü1.]H. Übbing et al., Il Nuovo Cimento 17D, 1753 (1995)ADSGoogle Scholar
- [96M1.]J. Rarity, C. Weinsbuch (eds.), Microcavities and Photonic Band gaps: Physics and Applications. NATO ASI Series E, vol. 324 (Kluwer, Amsterdam, 1996)Google Scholar
- [96P1.]C.M. Soukoulis (ed.), Photonic Bandgap Materials. NATO ASI Series E, vol. 315 (Kluwer, Amsterdam, 1996)Google Scholar
- [97F1.]J.S. Faresi et al., Nature 390, 143 (1997)ADSGoogle Scholar
- [97R1.]J.P. Reithmaier et al., Phys. Rev. Lett. 78, 378 (1997)ADSGoogle Scholar
- [98B1.]K. Busch, S. John, Phys. Rev. E 58, 3896 (1998)ADSGoogle Scholar
- [98B2.]A. Birner et al., Phys. Status Solidi (a) 165, 111 (1998)Google Scholar
- [98B3.]M. Bayer et al., Phys. Rev. Lett. 81, 2582 (1998)ADSGoogle Scholar
- [98B4.]S. Bidnyk et al., Appl. Phys. Lett. 73, 2242 (1998)ADSGoogle Scholar
- [98G1.]T. Gutbrod et al., Phys. Rev. B 57, 9950 (1998)ADSGoogle Scholar
- [98G2.]J.M. Gerard et al., Phys. Rev. Lett. 81, 1110 (1998)ADSGoogle Scholar
- [98L1.]D. Labilloy et al., Appl. Phys. Lett. 73, 1314 (1998)ADSGoogle Scholar
- [98N1.]U. Neukirch et al., Phys. Rev. B 57, 9208 (1998)MathSciNetADSGoogle Scholar
- [98Q1.]F. Quochi et al., J. Cryst. Growth 184/185, 754 (1998)Google Scholar
- [98S1.]V. Savona, J. Cryst. Growth 184/185, 737 (1998)Google Scholar
- [99A1.]L.C. Andreani, G. Panzarini, Phys. Rev. B 60, 13276 (1999)ADSGoogle Scholar
- [99B1.]A. Birner, K. Busch, F. Müller, Phys. Bl. 55(1), 27 (1999)Google Scholar
- [99B2.]K. Busch, Phys. Bl 55(4), 27 (1999)Google Scholar
- [99B3.]M. Bayer et al., Phys. Rev. Lett. 83, 5374 (1999)ADSGoogle Scholar
- [99C1.]C. Constantin et al., Phys. Rev. B 59, R7809 (1999); Mater. Sci. Eng. B 74, 158 (2000)Google Scholar
- [99G1.]T. Gutbrod et al., Phys. Rev. B 59, 2223 (1999)ADSGoogle Scholar
- [99G2.]B. Gayral et al., Appl. Phys. Lett. 75, 1908 (1999)ADSGoogle Scholar
- [99J1.]S. John, K. Busch, J. Lightwave Technol. IEEE 17, 1931 (1999)ADSGoogle Scholar
- [99J2.]H.X. Jiang, J.Y. Lin, K.C. Zeng, Appl. Phys. Lett. 75, 763 (1999)ADSGoogle Scholar
- [99K1.]G. Khitrova et al., Rev. Mod. Phys. 71, 1591 (1999)ADSGoogle Scholar
- [99R1.]S. Rudin, T.L. Reinecke, Phys. Rev. B 59, 13276 (1999)Google Scholar
- [00C1.]C. Constantin et al., Mater. Sci. Eng. B 74, 158 (2000)Google Scholar
- [00P1.]Physics of Light Matter Coupling in Nanostructures (PLMCN) Intern. Conf. Series starting (2001) in Rome and reaching the 13th Conf. in Hangzhou (2012)Google Scholar
- [00V1.]Yu. Vlasov, J. Appl. Phys. 76, 1627 (2000)Google Scholar
- [00Z1.]M.E. Zoorob et. al., Nature 404, 740 (2000)Google Scholar
- [01A1.]S. Arnold, American Scientist 89, 414 (2001)ADSGoogle Scholar
- [01A2.]M.V. Artemyev, U. Woggon, R. Wannemacher, Appl. Phys. Lett. 78, 1032 (2001)ADSGoogle Scholar
- [01B1.]M. Bayer, Phys. Bl. 57(7/8), 75 (2001)Google Scholar
- [01B2.]A. Blanco et al., Appl. Phys. Lett. 78, 3181 (2001)ADSGoogle Scholar
- [01B3.]M. Bayer et al., Phys. Rev. Lett. 86, 3168 (2001)ADSGoogle Scholar
- [01G1.]G. Guttroff et al., Phys. Rev. E 63, 36611 (2001)ADSGoogle Scholar
- [01K1.]C. Klingshirn, in Advances in Energy Transfer Processes, ed. by B. Di Bartolo, X. Chen (World Scientific, Singapore, 2001), p. 165Google Scholar
- [01M1.]E. Moreau et al., Appl. Phys. Lett. 79, 2865 (2001)ADSGoogle Scholar
- [01R1.]S.G. Ramanov et al., Appl. Phys. Lett. 79, 731 (2001)ADSGoogle Scholar
- [01S1.]K. Sakoda, Optical Properties of Phontic Crystals (Springer, Berlin, 2001)Google Scholar
- [01S2.]R.A. Shelby, D.R. Smith, S. Schultz, Science 292, 77 (2001)ADSGoogle Scholar
- [02A1.]M. Artemyev, U. Woggon, W. Langbein, Phys. Status Solidi B 229, 423 (2002)ADSGoogle Scholar
- [02G1.]V.G. Golubev et al., J. Non-Cryst. Solids 299-302, 1062 (2002)Google Scholar
- [02G2.]G. Guttroff et al., Phys. Rev. B 64, 155313 (2002)ADSGoogle Scholar
- [02H1.]C. Herrmann, O. Hess, JOSA B 19, 3013 (2002)ADSGoogle Scholar
- [02K1.]M. Kazes et al., Adv. Mater. 14, 317 (2002)ADSGoogle Scholar
- [02M1.]B. Möller et al., Appl. Phys. Lett. 80, 3253 (2002) and to be published (2004)Google Scholar
- [02S1.]C. Santori et al., Nature 419, 594 (2002)ADSGoogle Scholar
- [02U1.]A. Ueta et al. Phys. Status Solidi B 229, 971 (2002)ADSGoogle Scholar
- [03B1.]R. v. Baltz, NATO Sci. Ser. II 90, 91 (2003)Google Scholar
- [03B2.]V. Babin et al., Appl. Phys. Lett. 82, 1553 (2003)ADSGoogle Scholar
- [03C1.]A. Chxist et al., Phys. Rev. Lett. 91, 183901 (2003)ADSGoogle Scholar
- [03H1.]A. Huynh et al., Phys. Rev. B 68, 165340 (2003)ADSGoogle Scholar
- [03K1.]A. Kakovin, G. Malpuech, Cavity Polaritons (Elsevier, Amsterdam, 2003)Google Scholar
- [03M1.]Yu.V. Miklayev et al., Appl. Phys. Lett. 82, 12846 (2003)Google Scholar
- [03M2.]B. Möller et al., Appl. Phys. Lett. 83, 2686 (2003)ADSGoogle Scholar
- [03P1.]K. Busch, R. Wehrspohn (eds.), Photonic crystals: optical materials for the 21th century. Phys. Status Solidi A 197(3) (2003)Google Scholar
- [03P2.]V.V. Popov, T.V. Teperik, N.J.M. Horning, Sol. State Commun. 127, 589 (2003) and J. Lumin. 112, 225 (2005)Google Scholar
- [03S1.]R.E. Slusher, B.J. Eggleton, Nonlinear Photonic Crystals (Springer, Berlin/Heidelberg, 2003)Google Scholar
- [03W1.]Z.L. Wang et al., Phys. Rev. E 67, 16612 (2003)ADSGoogle Scholar
- [04A1.]V.M. Agranovich, Y.R. Shen, R.H. Baughman, Phys. Rev. B 69, 165112 (2004); J. Lumin 110, 167 (2004)Google Scholar
- [04D1.]M. Deubel et al., Nat. Mater. 3, 444 (2004)ADSGoogle Scholar
- [04G1.]H.M. Gibbs in Optics of Semiconductors and Their Nanostructures, H. Kalt, M. Hetterich eds., Springer Series in Solid-State Science, vol. 146 (2004), p. 189Google Scholar
- [04L1.]S. Linden et al., Science 306, 1351 (2004)ADSGoogle Scholar
- [04S1.]D.R. Smith, J.B. Pendry, M.C.K. Wiltshire, Science 305, 788 (2004)ADSGoogle Scholar
- [04S2.]A. Schuster, An Introduction to the Theory of Optics (Edward Arnold, London, 1904)MATHGoogle Scholar
- [04S3.]K. Sirinivasan et al., Phys. Rev. B 70, 081306 (2004) Science 325, 297 (2009)Google Scholar
- [04R1.]J.P. Reithmaier et al., Nature 432, 197 (2004)ADSGoogle Scholar
- [04R2.]H.Y. Ryu et al., Appl. Phys. Lett. 84, 1067 (2004)ADSGoogle Scholar
- [04W1.]J. Wiersig et al., IEEE Proc. IQEC 3, (2004); QELS 543 (2005)Google Scholar
- [04Y1.]T. Yoshie et al., Nature 432, 200 (2004)ADSGoogle Scholar
- [05E1.]T.G. Euser, W.L. Vos, J. Appl. Phys. 97, 043102 (2005)ADSGoogle Scholar
- [05K1.]A.F. Koenderink, A. Lagendijk, W.L. Vos, Phys. Rev. B 72, 153102 (2005)ADSGoogle Scholar
- [05L1.]A. Löffler et al., Appl. Phys. Lett. 86, 111105 (2005)ADSGoogle Scholar
- [05P1.]E. Peter et al., Phys. Rev. Lett. 95, 067401 (2005)ADSGoogle Scholar
- [05R1.]I.C. Robin et al., Appl. Phys. Lett. 87, 233114 (2005)ADSGoogle Scholar
- [05S1.]O. Sydoruk et al., Appl. Phys. Lett. 87, 72501 (2005); Phys. Rev. B 73, 224406 (2006)Google Scholar
- [05T1.]V.V. Temnov, U. Woggon, Phys. Rev. Lett. 95, 243602 (2005)ADSGoogle Scholar
- [05V1.]S. Varoutsis Opt. Express, et al., Phys. Rev. B 72, 041303R (2005)Google Scholar
- [06A1.]A. Arseault et al., Adv. Mater. 18, 2779 (2006)Google Scholar
- [06A2.]S. Arnold, O. Gaathon, NATO ASI Ser. II 231, 1 (2006)Google Scholar
- [06B1.]P. Bermel et al., Phys. Rev. A 74, 043818 (2006)ADSGoogle Scholar
- [06D1.]G. Dolling et al., Science 312, 892 (2006)ADSGoogle Scholar
- [06F1.]B. Freedman et al., Nature 440, 1166 (2006)ADSGoogle Scholar
- [06F2.]E. Feltin et al., Appl. Phys. Lett. 89, 071107 (2006)ADSGoogle Scholar
- [06H1.]R. Hauschild, H. Kalt, Appl. Phys. Lett. 89, 123107 (2006)ADSGoogle Scholar
- [06L1.]S. Linden and M. Wegener, Priv. Commun. (2006) and Phys. J. 5(12), 29 (2006) and T. Ergine, M. Wegener ibid. 11(5), 31 (2012)Google Scholar
- [06K1.]J.E. Kielbasa et al., in EXCON 06, Winston-Salem (2006)Google Scholar
- [06K2.]G. Khitrova et al., Nat. Phys. 2, 81 (2006)Google Scholar
- [06L2.]H. Lohmeyer et al., Appl. Phys. Lett. 88, 051101 (2006)ADSGoogle Scholar
- [06L3.]H. Lohmeyer et al., Phys. Status. Solidi B 243, 844 (2006)ADSGoogle Scholar
- [06L4.]N. Le Thomas et al., Nano Lett. 6, 557 (2006)ADSGoogle Scholar
- [06L6.]A. Ledermann et al., Nat. Mater. 5, 942 (2006)ADSGoogle Scholar
- [06P1.]J.B. Pendry, D.R. Smith, Sci. Am. 295(1), 60 (2006)ADSGoogle Scholar
- [06S1.]I.R. Sellers et al., Phys. Rev. B 74, 193206 (2006)Google Scholar
- [06S2.]M.Y. Su, R.P. Mirin, Appl. Phys. Lett. 89, 033105 (2006)ADSGoogle Scholar
- [06S3.]D. Schurig, Science, 314, 977 (2006)MathSciNetADSGoogle Scholar
- [06S4.]E. Shamonina, Phys. J. 5(8/9), 51 (2006)Google Scholar
- [07B1.]K. Busch et al., Phys. Rep. 444, 101 (2007)ADSGoogle Scholar
- [07D1.]G. Dolling, M. Wegener, S. Linden, Phys. Unserer Zeit 38, 24 (2007)ADSGoogle Scholar
- [07H1.]M. Hetterich et al., AIP Conf. Proc. 893, 1133 (2007)ADSGoogle Scholar
- [07K1.]M. Karl et al., Opt. Express 15, 8191 (2007); AIP Conf. Ser. 893, 1133 (2007)Google Scholar
- [07L1.]W. Löffler et al., Appl. Phys. Lett. 90, 232105 (2007)ADSGoogle Scholar
- [07N1.]I.S. Nikolaev et al., Phys. Rev. B 75, 115302 (2007)ADSGoogle Scholar
- [07R1.]S. Reitzenstein et al., Appl. Phys. Lett. 90, 251109 (2007)ADSGoogle Scholar
- [07R2.]J. Renner et al., Phys. Status Solidi C 4, 3289 (2007)ADSGoogle Scholar
- [07S1.]C.M. Soukoulis, S. Linden, M. Wegener, Science 315, 43 (2007)Google Scholar
- [07T1.]B. Deveaud (ed.), The Physics of Semiconductor Microcavities (Wiley-VCH, Weinheim, 2007)Google Scholar
- [07T2.]M. Thiel et al., Appl. Phys. Lett. 91, 123515 (2007); Adv. Mater. 19, 207 (2007); ibid. 21, 4680 (2009); Opt. Lett. 35, 166 (2010)Google Scholar
- [07W1.]F.M. Weber et al., Appl. Phys. Lett. 90, 161104 (2007)ADSGoogle Scholar
- [08G1.]M. Grochal, C. Piermarocchi, Phys. Rev. B 78, 035323 (2008)ADSGoogle Scholar
- [08K1.]C. Kistner et al., Opt. Express 16, 15006 (2008)ADSGoogle Scholar
- [08R1.]J.P. Reithmaier, Semicond. Sci. Technol. 23, 123001 (2008)ADSGoogle Scholar
- [08S1.]L. Schneebeli, M. Kira, S.W. Koch, Phys. Rev. Lett. 101, 097401 (2008)ADSGoogle Scholar
- [08T1.]T. Thomay et al., Opt. Express 16, 9791 (2008)ADSGoogle Scholar
- [09A1.]M. Aßmann et al., Science 325, 297 (2009)ADSGoogle Scholar
- [09N1.]Na Liu et al., Nat. Photon. 3, 157 (2009); Nat. Mater. 7, 31 (2008); ibid. 8, 758 (2009)Google Scholar
- [09O1.]G. Oohata et al., Phys. Status Solidi C 6, 280 (2009)ADSGoogle Scholar
- [09P1.]K. Pradeesh, J.J. Baumbreg, G.V. Prakash, Opt. Express 17, 22171 (2009)ADSGoogle Scholar
- [10B1.]R. Bratschitsch, A. Leitenstorfer, Phys. Unserer Zeit 41, 191 (2010)ADSGoogle Scholar
- [10E1.]T. Ergin et al., Science 328, 337 (2010)ADSGoogle Scholar
- [10H1.]J.C. Halimeh et al., Phys. Unserer Zeit 41, 170 (2010)ADSGoogle Scholar
- [10K1.]C.F Klingshirn, B.K. Meyer, A. Waag, A. Hoffmann, J. Geurts, Zinc Oxide: From Fundamental Properties Towards Novel Applications, Springer Series in Material Science, vol. 120. (Springer, Heidelberg, 2010)Google Scholar
- [10K2.]T. Kawese et al., Physica E 42, 2567 (2011)ADSGoogle Scholar
- [10K3.]C. Klingshirn et al., Phys. Status Solidi B 247, 1424 (2010)ADSGoogle Scholar
- [10L1.]U. Leonhardt et al., Phys. Unserer Zeit 41, 14 (2010)ADSGoogle Scholar
- [10P1.]I. Chremmos, O. Schwelb, N. Uzunoglu (Eds.), Photonic Miroresonator Research and Applications. Springer Series in Optical Sciences, vol. 156 (2010)Google Scholar
- [10S1.]C.M. Soukoulis, M. Wegener, Science 330, 1633 (2010)ADSGoogle Scholar
- [10S2.]I. Staude et al., Opt. Lett. 35, 1094 (2010)Google Scholar
- [11A1.]Advances in Metamaterials and Photonics. Appl. Phys. A 103(3), (2011)Google Scholar
- [11G1.]T. Guillet et al., Appl. Phys. Lett. 98, 211105 (2011)ADSGoogle Scholar
- [11Y1.]S. Yoshino et al., Phys. Status Solidi C, 8, 221 (2011)ADSGoogle Scholar
Copyright information
© Springer-Verlag Berlin Heidelberg 2012