From Cavity Polaritons to Photonic Crystals

  • Claus F. Klingshirn
Chapter
Part of the Graduate Texts in Physics book series (GTP)

Abstract

In this chapter we return briefly to the concept of a Fabry–Perot resonatorin the form of a (micro) cavityand then proceed to the cavity polaritons as a mixed state between a resonance in a solid (these are generally exciton resonances in quantum wells, wires or dots) and a cavity resonance. From there we reach, via different paths, the presently very active and potentially application-relevant field of photonic crystals with a subspecies known as photonic band gap materials.

Keywords

Photonic Crystal Cavity Mode Wave Guide Strong Coupling Limit Whisper Gallery Mode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. [22O1.]
    C.W. Oseen, Ann. der Phys. 69, 202 (1922)ADSGoogle Scholar
  2. [46P1.]
    E.M. Purcell, Phys. Rev. 69, 681 (1946)Google Scholar
  3. [68V1.]
    U.G. Veselago, Sov. Phys. Usp. 10, 509 (1968)ADSGoogle Scholar
  4. [72B1.]
    V. Bykov, JETP 35, 269 (1972); Quantum Electron. 4, 861 (1975)Google Scholar
  5. [86R1.]
    P.St.J. Russell, Appl. Phys. B 39, 231 (1986)Google Scholar
  6. [87J1.]
    S. John, Phys. Rev. Lett. 58, 2486 (1987)ADSGoogle Scholar
  7. [87Y1.]
    E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987)ADSGoogle Scholar
  8. [88R1.]
    J.W.S. Rayleigh, Philos. Mag. 26, 256 (1888)MATHGoogle Scholar
  9. [89T1.]
    A. Thelen, The Design of Optical Interference Coatings (Mc Graw Hill, New York, 1989)Google Scholar
  10. [91Y1.]
    E. Yablonovitch, T.J. Gnütter, K.M. Leung, Phys. Rev. Lett. 67, 2295 (1991)ADSGoogle Scholar
  11. [92J1.]
    C. Janot, Quasicrystals (Clarendon Press, Oxford, 1992)Google Scholar
  12. [92W1.]
    C. Weisbuch et al., Phys. Rev. Lett. 69, 3314 (1992)ADSGoogle Scholar
  13. [94H1.]
    R. Houdré et al., Phys. Rev. Lett. 73, 2043 (1994)ADSGoogle Scholar
  14. [95J1.]
    J.D. Joannopoulos, R.D. Meade, J.N. Winn, Photonic Crystals (Princeton University Press, Princeton, 1995)MATHGoogle Scholar
  15. [95K1.]
    P. Kelkar et al., Phys. Rev. B 52, R5491 (1995)ADSGoogle Scholar
  16. [95S1.]
    V. Savona et al., Solid State Commun. 93, 733 (1995)ADSGoogle Scholar
  17. [95Ü1.]
    H. Übbing et al., Il Nuovo Cimento 17D, 1753 (1995)ADSGoogle Scholar
  18. [96M1.]
    J. Rarity, C. Weinsbuch (eds.), Microcavities and Photonic Band gaps: Physics and Applications. NATO ASI Series E, vol. 324 (Kluwer, Amsterdam, 1996)Google Scholar
  19. [96P1.]
    C.M. Soukoulis (ed.), Photonic Bandgap Materials. NATO ASI Series E, vol. 315 (Kluwer, Amsterdam, 1996)Google Scholar
  20. [97F1.]
    J.S. Faresi et al., Nature 390, 143 (1997)ADSGoogle Scholar
  21. [97R1.]
    J.P. Reithmaier et al., Phys. Rev. Lett. 78, 378 (1997)ADSGoogle Scholar
  22. [98B1.]
    K. Busch, S. John, Phys. Rev. E 58, 3896 (1998)ADSGoogle Scholar
  23. [98B2.]
    A. Birner et al., Phys. Status Solidi (a) 165, 111 (1998)Google Scholar
  24. [98B3.]
    M. Bayer et al., Phys. Rev. Lett. 81, 2582 (1998)ADSGoogle Scholar
  25. [98B4.]
    S. Bidnyk et al., Appl. Phys. Lett. 73, 2242 (1998)ADSGoogle Scholar
  26. [98G1.]
    T. Gutbrod et al., Phys. Rev. B 57, 9950 (1998)ADSGoogle Scholar
  27. [98G2.]
    J.M. Gerard et al., Phys. Rev. Lett. 81, 1110 (1998)ADSGoogle Scholar
  28. [98L1.]
    D. Labilloy et al., Appl. Phys. Lett. 73, 1314 (1998)ADSGoogle Scholar
  29. [98N1.]
    U. Neukirch et al., Phys. Rev. B 57, 9208 (1998)MathSciNetADSGoogle Scholar
  30. [98Q1.]
    F. Quochi et al., J. Cryst. Growth 184/185, 754 (1998)Google Scholar
  31. [98S1.]
    V. Savona, J. Cryst. Growth 184/185, 737 (1998)Google Scholar
  32. [99A1.]
    L.C. Andreani, G. Panzarini, Phys. Rev. B 60, 13276 (1999)ADSGoogle Scholar
  33. [99B1.]
    A. Birner, K. Busch, F. Müller, Phys. Bl. 55(1), 27 (1999)Google Scholar
  34. [99B2.]
    K. Busch, Phys. Bl 55(4), 27 (1999)Google Scholar
  35. [99B3.]
    M. Bayer et al., Phys. Rev. Lett. 83, 5374 (1999)ADSGoogle Scholar
  36. [99C1.]
    C. Constantin et al., Phys. Rev. B 59, R7809 (1999); Mater. Sci. Eng. B 74, 158 (2000)Google Scholar
  37. [99G1.]
    T. Gutbrod et al., Phys. Rev. B 59, 2223 (1999)ADSGoogle Scholar
  38. [99G2.]
    B. Gayral et al., Appl. Phys. Lett. 75, 1908 (1999)ADSGoogle Scholar
  39. [99J1.]
    S. John, K. Busch, J. Lightwave Technol. IEEE 17, 1931 (1999)ADSGoogle Scholar
  40. [99J2.]
    H.X. Jiang, J.Y. Lin, K.C. Zeng, Appl. Phys. Lett. 75, 763 (1999)ADSGoogle Scholar
  41. [99K1.]
    G. Khitrova et al., Rev. Mod. Phys. 71, 1591 (1999)ADSGoogle Scholar
  42. [99R1.]
    S. Rudin, T.L. Reinecke, Phys. Rev. B 59, 13276 (1999)Google Scholar
  43. [00C1.]
    C. Constantin et al., Mater. Sci. Eng. B 74, 158 (2000)Google Scholar
  44. [00P1.]
    Physics of Light Matter Coupling in Nanostructures (PLMCN) Intern. Conf. Series starting (2001) in Rome and reaching the 13th Conf. in Hangzhou (2012)Google Scholar
  45. [00V1.]
    Yu. Vlasov, J. Appl. Phys. 76, 1627 (2000)Google Scholar
  46. [00Z1.]
    M.E. Zoorob et. al., Nature 404, 740 (2000)Google Scholar
  47. [01A1.]
    S. Arnold, American Scientist 89, 414 (2001)ADSGoogle Scholar
  48. [01A2.]
    M.V. Artemyev, U. Woggon, R. Wannemacher, Appl. Phys. Lett. 78, 1032 (2001)ADSGoogle Scholar
  49. [01B1.]
    M. Bayer, Phys. Bl. 57(7/8), 75 (2001)Google Scholar
  50. [01B2.]
    A. Blanco et al., Appl. Phys. Lett. 78, 3181 (2001)ADSGoogle Scholar
  51. [01B3.]
    M. Bayer et al., Phys. Rev. Lett. 86, 3168 (2001)ADSGoogle Scholar
  52. [01G1.]
    G. Guttroff et al., Phys. Rev. E 63, 36611 (2001)ADSGoogle Scholar
  53. [01K1.]
    C. Klingshirn, in Advances in Energy Transfer Processes, ed. by B. Di Bartolo, X. Chen (World Scientific, Singapore, 2001), p. 165Google Scholar
  54. [01M1.]
    E. Moreau et al., Appl. Phys. Lett. 79, 2865 (2001)ADSGoogle Scholar
  55. [01R1.]
    S.G. Ramanov et al., Appl. Phys. Lett. 79, 731 (2001)ADSGoogle Scholar
  56. [01S1.]
    K. Sakoda, Optical Properties of Phontic Crystals (Springer, Berlin, 2001)Google Scholar
  57. [01S2.]
    R.A. Shelby, D.R. Smith, S. Schultz, Science 292, 77 (2001)ADSGoogle Scholar
  58. [02A1.]
    M. Artemyev, U. Woggon, W. Langbein, Phys. Status Solidi B 229, 423 (2002)ADSGoogle Scholar
  59. [02G1.]
    V.G. Golubev et al., J. Non-Cryst. Solids 299-302, 1062 (2002)Google Scholar
  60. [02G2.]
    G. Guttroff et al., Phys. Rev. B 64, 155313 (2002)ADSGoogle Scholar
  61. [02H1.]
    C. Herrmann, O. Hess, JOSA B 19, 3013 (2002)ADSGoogle Scholar
  62. [02K1.]
    M. Kazes et al., Adv. Mater. 14, 317 (2002)ADSGoogle Scholar
  63. [02M1.]
    B. Möller et al., Appl. Phys. Lett. 80, 3253 (2002) and to be published (2004)Google Scholar
  64. [02S1.]
    C. Santori et al., Nature 419, 594 (2002)ADSGoogle Scholar
  65. [02U1.]
    A. Ueta et al. Phys. Status Solidi B 229, 971 (2002)ADSGoogle Scholar
  66. [03B1.]
    R. v. Baltz, NATO Sci. Ser. II 90, 91 (2003)Google Scholar
  67. [03B2.]
    V. Babin et al., Appl. Phys. Lett. 82, 1553 (2003)ADSGoogle Scholar
  68. [03C1.]
    A. Chxist et al., Phys. Rev. Lett. 91, 183901 (2003)ADSGoogle Scholar
  69. [03H1.]
    A. Huynh et al., Phys. Rev. B 68, 165340 (2003)ADSGoogle Scholar
  70. [03K1.]
    A. Kakovin, G. Malpuech, Cavity Polaritons (Elsevier, Amsterdam, 2003)Google Scholar
  71. [03M1.]
    Yu.V. Miklayev et al., Appl. Phys. Lett. 82, 12846 (2003)Google Scholar
  72. [03M2.]
    B. Möller et al., Appl. Phys. Lett. 83, 2686 (2003)ADSGoogle Scholar
  73. [03P1.]
    K. Busch, R. Wehrspohn (eds.), Photonic crystals: optical materials for the 21th century. Phys. Status Solidi A 197(3) (2003)Google Scholar
  74. [03P2.]
    V.V. Popov, T.V. Teperik, N.J.M. Horning, Sol. State Commun. 127, 589 (2003) and J. Lumin. 112, 225 (2005)Google Scholar
  75. [03S1.]
    R.E. Slusher, B.J. Eggleton, Nonlinear Photonic Crystals (Springer, Berlin/Heidelberg, 2003)Google Scholar
  76. [03W1.]
    Z.L. Wang et al., Phys. Rev. E 67, 16612 (2003)ADSGoogle Scholar
  77. [04A1.]
    V.M. Agranovich, Y.R. Shen, R.H. Baughman, Phys. Rev. B 69, 165112 (2004); J. Lumin 110, 167 (2004)Google Scholar
  78. [04D1.]
    M. Deubel et al., Nat. Mater. 3, 444 (2004)ADSGoogle Scholar
  79. [04G1.]
    H.M. Gibbs in Optics of Semiconductors and Their Nanostructures, H. Kalt, M. Hetterich eds., Springer Series in Solid-State Science, vol. 146 (2004), p. 189Google Scholar
  80. [04L1.]
    S. Linden et al., Science 306, 1351 (2004)ADSGoogle Scholar
  81. [04S1.]
    D.R. Smith, J.B. Pendry, M.C.K. Wiltshire, Science 305, 788 (2004)ADSGoogle Scholar
  82. [04S2.]
    A. Schuster, An Introduction to the Theory of Optics (Edward Arnold, London, 1904)MATHGoogle Scholar
  83. [04S3.]
    K. Sirinivasan et al., Phys. Rev. B 70, 081306 (2004) Science 325, 297 (2009)Google Scholar
  84. [04R1.]
    J.P. Reithmaier et al., Nature 432, 197 (2004)ADSGoogle Scholar
  85. [04R2.]
    H.Y. Ryu et al., Appl. Phys. Lett. 84, 1067 (2004)ADSGoogle Scholar
  86. [04W1.]
    J. Wiersig et al., IEEE Proc. IQEC 3, (2004); QELS 543 (2005)Google Scholar
  87. [04Y1.]
    T. Yoshie et al., Nature 432, 200 (2004)ADSGoogle Scholar
  88. [05E1.]
    T.G. Euser, W.L. Vos, J. Appl. Phys. 97, 043102 (2005)ADSGoogle Scholar
  89. [05K1.]
    A.F. Koenderink, A. Lagendijk, W.L. Vos, Phys. Rev. B 72, 153102 (2005)ADSGoogle Scholar
  90. [05L1.]
    A. Löffler et al., Appl. Phys. Lett. 86, 111105 (2005)ADSGoogle Scholar
  91. [05P1.]
    E. Peter et al., Phys. Rev. Lett. 95, 067401 (2005)ADSGoogle Scholar
  92. [05R1.]
    I.C. Robin et al., Appl. Phys. Lett. 87, 233114 (2005)ADSGoogle Scholar
  93. [05S1.]
    O. Sydoruk et al., Appl. Phys. Lett. 87, 72501 (2005); Phys. Rev. B 73, 224406 (2006)Google Scholar
  94. [05T1.]
    V.V. Temnov, U. Woggon, Phys. Rev. Lett. 95, 243602 (2005)ADSGoogle Scholar
  95. [05V1.]
    S. Varoutsis Opt. Express, et al., Phys. Rev. B 72, 041303R (2005)Google Scholar
  96. [06A1.]
    A. Arseault et al., Adv. Mater. 18, 2779 (2006)Google Scholar
  97. [06A2.]
    S. Arnold, O. Gaathon, NATO ASI Ser. II 231, 1 (2006)Google Scholar
  98. [06B1.]
    P. Bermel et al., Phys. Rev. A 74, 043818 (2006)ADSGoogle Scholar
  99. [06D1.]
    G. Dolling et al., Science 312, 892 (2006)ADSGoogle Scholar
  100. [06F1.]
    B. Freedman et al., Nature 440, 1166 (2006)ADSGoogle Scholar
  101. [06F2.]
    E. Feltin et al., Appl. Phys. Lett. 89, 071107 (2006)ADSGoogle Scholar
  102. [06H1.]
    R. Hauschild, H. Kalt, Appl. Phys. Lett. 89, 123107 (2006)ADSGoogle Scholar
  103. [06L1.]
    S. Linden and M. Wegener, Priv. Commun. (2006) and Phys. J. 5(12), 29 (2006) and T. Ergine, M. Wegener ibid. 11(5), 31 (2012)Google Scholar
  104. [06K1.]
    J.E. Kielbasa et al., in EXCON 06, Winston-Salem (2006)Google Scholar
  105. [06K2.]
    G. Khitrova et al., Nat. Phys. 2, 81 (2006)Google Scholar
  106. [06L2.]
    H. Lohmeyer et al., Appl. Phys. Lett. 88, 051101 (2006)ADSGoogle Scholar
  107. [06L3.]
    H. Lohmeyer et al., Phys. Status. Solidi B 243, 844 (2006)ADSGoogle Scholar
  108. [06L4.]
    N. Le Thomas et al., Nano Lett. 6, 557 (2006)ADSGoogle Scholar
  109. [06L6.]
    A. Ledermann et al., Nat. Mater. 5, 942 (2006)ADSGoogle Scholar
  110. [06P1.]
    J.B. Pendry, D.R. Smith, Sci. Am. 295(1), 60 (2006)ADSGoogle Scholar
  111. [06S1.]
    I.R. Sellers et al., Phys. Rev. B 74, 193206 (2006)Google Scholar
  112. [06S2.]
    M.Y. Su, R.P. Mirin, Appl. Phys. Lett. 89, 033105 (2006)ADSGoogle Scholar
  113. [06S3.]
    D. Schurig, Science, 314, 977 (2006)MathSciNetADSGoogle Scholar
  114. [06S4.]
    E. Shamonina, Phys. J. 5(8/9), 51 (2006)Google Scholar
  115. [07B1.]
    K. Busch et al., Phys. Rep. 444, 101 (2007)ADSGoogle Scholar
  116. [07D1.]
    G. Dolling, M. Wegener, S. Linden, Phys. Unserer Zeit 38, 24 (2007)ADSGoogle Scholar
  117. [07H1.]
    M. Hetterich et al., AIP Conf. Proc. 893, 1133 (2007)ADSGoogle Scholar
  118. [07K1.]
    M. Karl et al., Opt. Express 15, 8191 (2007); AIP Conf. Ser. 893, 1133 (2007)Google Scholar
  119. [07L1.]
    W. Löffler et al., Appl. Phys. Lett. 90, 232105 (2007)ADSGoogle Scholar
  120. [07N1.]
    I.S. Nikolaev et al., Phys. Rev. B 75, 115302 (2007)ADSGoogle Scholar
  121. [07R1.]
    S. Reitzenstein et al., Appl. Phys. Lett. 90, 251109 (2007)ADSGoogle Scholar
  122. [07R2.]
    J. Renner et al., Phys. Status Solidi C 4, 3289 (2007)ADSGoogle Scholar
  123. [07S1.]
    C.M. Soukoulis, S. Linden, M. Wegener, Science 315, 43 (2007)Google Scholar
  124. [07T1.]
    B. Deveaud (ed.), The Physics of Semiconductor Microcavities (Wiley-VCH, Weinheim, 2007)Google Scholar
  125. [07T2.]
    M. Thiel et al., Appl. Phys. Lett. 91, 123515 (2007); Adv. Mater. 19, 207 (2007); ibid. 21, 4680 (2009); Opt. Lett. 35, 166 (2010)Google Scholar
  126. [07W1.]
    F.M. Weber et al., Appl. Phys. Lett. 90, 161104 (2007)ADSGoogle Scholar
  127. [08G1.]
    M. Grochal, C. Piermarocchi, Phys. Rev. B 78, 035323 (2008)ADSGoogle Scholar
  128. [08K1.]
    C. Kistner et al., Opt. Express 16, 15006 (2008)ADSGoogle Scholar
  129. [08R1.]
    J.P. Reithmaier, Semicond. Sci. Technol. 23, 123001 (2008)ADSGoogle Scholar
  130. [08S1.]
    L. Schneebeli, M. Kira, S.W. Koch, Phys. Rev. Lett. 101, 097401 (2008)ADSGoogle Scholar
  131. [08T1.]
    T. Thomay et al., Opt. Express 16, 9791 (2008)ADSGoogle Scholar
  132. [09A1.]
    M. Aßmann et al., Science 325, 297 (2009)ADSGoogle Scholar
  133. [09N1.]
    Na Liu et al., Nat. Photon. 3, 157 (2009); Nat. Mater. 7, 31 (2008); ibid. 8, 758 (2009)Google Scholar
  134. [09O1.]
    G. Oohata et al., Phys. Status Solidi C 6, 280 (2009)ADSGoogle Scholar
  135. [09P1.]
    K. Pradeesh, J.J. Baumbreg, G.V. Prakash, Opt. Express 17, 22171 (2009)ADSGoogle Scholar
  136. [10B1.]
    R. Bratschitsch, A. Leitenstorfer, Phys. Unserer Zeit 41, 191 (2010)ADSGoogle Scholar
  137. [10E1.]
    T. Ergin et al., Science 328, 337 (2010)ADSGoogle Scholar
  138. [10H1.]
    J.C. Halimeh et al., Phys. Unserer Zeit 41, 170 (2010)ADSGoogle Scholar
  139. [10K1.]
    C.F Klingshirn, B.K. Meyer, A. Waag, A. Hoffmann, J. Geurts, Zinc Oxide: From Fundamental Properties Towards Novel Applications, Springer Series in Material Science, vol. 120. (Springer, Heidelberg, 2010)Google Scholar
  140. [10K2.]
    T. Kawese et al., Physica E 42, 2567 (2011)ADSGoogle Scholar
  141. [10K3.]
    C. Klingshirn et al., Phys. Status Solidi B 247, 1424 (2010)ADSGoogle Scholar
  142. [10L1.]
    U. Leonhardt et al., Phys. Unserer Zeit 41, 14 (2010)ADSGoogle Scholar
  143. [10P1.]
    I. Chremmos, O. Schwelb, N. Uzunoglu (Eds.), Photonic Miroresonator Research and Applications. Springer Series in Optical Sciences, vol. 156 (2010)Google Scholar
  144. [10S1.]
    C.M. Soukoulis, M. Wegener, Science 330, 1633 (2010)ADSGoogle Scholar
  145. [10S2.]
    I. Staude et al., Opt. Lett. 35, 1094 (2010)Google Scholar
  146. [11A1.]
    Advances in Metamaterials and Photonics. Appl. Phys. A 103(3), (2011)Google Scholar
  147. [11G1.]
    T. Guillet et al., Appl. Phys. Lett. 98, 211105 (2011)ADSGoogle Scholar
  148. [11Y1.]
    S. Yoshino et al., Phys. Status Solidi C, 8, 221 (2011)ADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Claus F. Klingshirn
    • 1
  1. 1.Institut für Angewandte PhysikKarlsruher Institut für Technologie (KIT)KarlsruheGermany

Personalised recommendations