Plasmons, Magnons and Some Further Elementary Excitations

  • Claus F. Klingshirn
Part of the Graduate Texts in Physics book series (GTP)


Here we will briefly address some other collective excitations in semiconductors and the quasi-particles which result from the quantization of these excitations like plasmons or magnons.


Dielectric Function Optical Phonon Magnetization Cloud Plasmon Mode Collective Excitation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 29T1.
    L. Tonks, I. Langmuir, Phys. Rev. 33, 195 (1927)ADSCrossRefGoogle Scholar
  2. 49B1.
    D. Bohm, E.P. Gross, Phys. Rev. 75, 1851 (1949)ADSzbMATHCrossRefGoogle Scholar
  3. 67S1.
    F. Stern, Phys. Rev. Lett. 18, 546 (1967)ADSCrossRefGoogle Scholar
  4. 82H1.
    R. Höpfel et al., Surf. Sci. 113, 118 (1982)ADSCrossRefGoogle Scholar
  5. 83P1.
    A. Pinczuk, J.M. Worlock, Physica 117/118B, 637 (1983)Google Scholar
  6. 85E1.
    E. Egri, Phys. Rep. 119, 363 (1985)ADSCrossRefGoogle Scholar
  7. 86H1.
    D. Heitmann, Surf. Sci. 170, 332 (1986)ADSCrossRefGoogle Scholar
  8. 89H1.
    M. Helm et al., Phys. Rev. Lett. 63, 74 (1989)ADSCrossRefGoogle Scholar
  9. 90M1.
    U. Merkt, Festkörp./Adv. Solid State Phys. 30, 70 (1990)Google Scholar
  10. 91E1.
    Th. Egeler, Festkörp./Adv. Solid State Phys. 31, 315 (1991)Google Scholar
  11. 97B1.
    R.V. Baltz in Spectroscopy and Dynamics of Collective Excitations in Solids (1995). NATO ASI Series B, vol. 356 (Plenum Press, New York, 1997), p. 303 and textbooks on solid state physics listed also in Chap. 1Google Scholar
  12. 97G1.
    M. Göppert et al., J. Lumin. 72–74, 430 (1997)CrossRefGoogle Scholar
  13. 98P1.
    G.A. Prinz, Science 282, 1660 (1998)CrossRefGoogle Scholar
  14. 99A1.
    D.D. Awschalom, J.M. Kikkawa, Phys. Today 52(6), 33 (1999)CrossRefGoogle Scholar
  15. 99F1.
    R. Fiederling et al., Nature 402, 6783 (1999)Google Scholar
  16. 00J1.
    C. Joachim, J.K. Gimzewski, A. Aviram, Nature 408, 541 (2000)ADSCrossRefGoogle Scholar
  17. 00N1.
    M. Nagai, M. Kuwata-Gonokami, Phys. Status Solidi B 221, 261 (2000); J. Lumin. 100, 233 (2002)Google Scholar
  18. 01O1.
    M. Oestreich et al., Festkörp./Adv. Solid State Phys. 41, 173 (2001)Google Scholar
  19. 02N1.
    M. Nagai, K. Ohkawa, M. Kuwata-Gonokami, Appl. Phys. Lett. 81, 484 (2002)ADSCrossRefGoogle Scholar
  20. 09L1.
    H. Liu et al., Nat. Mater. 8, 758 (2009)ADSCrossRefGoogle Scholar
  21. 10E1.
    T. Ergin et al., Science 327, 337 (2010)ADSCrossRefGoogle Scholar
  22. 10F1.
    N. Feth et al., Opt. Express 18, 6545 (2010)ADSCrossRefGoogle Scholar
  23. 10G1.
    S.V. Gaponenko, Introduction to Nanophotonics (Cambridge Univercity Press, Cambridge, 2010)CrossRefGoogle Scholar
  24. 10K1.
    C. Klingshirn, B.K. Meyer, A. Waag, A. Hoffmann, J. Geurts, Zinc Oxide: from Fundamental Properties Towards Novel Applications. Springer Series in Materials Science, vol. 120 (Springer, Berlin/Heidelberg, 2010)Google Scholar
  25. 10L1.
    H. Liu et al., Phys. Rev. B 81, 241403 (2010)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Claus F. Klingshirn
    • 1
  1. 1.Institut für Angewandte PhysikKarlsruher Institut für Technologie (KIT)KarlsruheGermany

Personalised recommendations