Direct Laser Cladding , Current Status and Future Scope of Application

  • A. Weisheit
  • A. Gasser
  • G. Backes
  • T. Jambor
  • N. Pirch
  • K. Wissenbach
Chapter
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 161)

Abstract

During the last decades Direct Laser Cladding has become an established technique in many industrial fields for applying wear and corrosion protection layers on metallic surfaces as well as for the repair of high value-added components. The most important application fields are die and tool making, turbine components for aero engines and power generation, machine components such as axes and gears, and oil drilling components. Continuous wave (CW) lasers with a power up to 18 kW are used on automated machines with three or more axes, enabling 3D cladding . The outstanding feature of DLC is the high precision which leads to a minimum heat input into the work piece and a very low distortion. Due to the high cooling rates a fine grained microstructure is achieved during solidification. A new development in laser cladding is micro cladding in a size range below \(50\,\upmu\hbox{m}\) especially for electronic and medical applications. Furthermore, additive manufacturing is coming again into focus as a clean and resource-efficient method to manufacture and modify functional prototypes as well as unique and small lot parts.

Keywords

Work Piece Heat Affected Zone Additive Manufacturing Laser Cladding Powder Injection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    A. Gasser, G. Backes, K. Wissenbach, E. Hoffmann, R. Poprawe, Maßgeschneiderte Oberflächen durch Laserstrahl-Oberflächenbehandlung mit Zusatzwerkstoffen-eine Übersicht, Laser und Optoelektronik 3/1997Google Scholar
  2. 2.
    M. Kawasaki et al., The Laser Cladding Application at Automotive Parts in Toyota, in Proceedings ISATA, 1992 (1992).Google Scholar
  3. 3.
    Schutzauftrag, LaserCommunity, Das Laser -Magazin von TRUMPF, 03/2007Google Scholar
  4. 4.
    K. Eimann, M. Drach, Instandsetzung von Werkzeugen mit Laserstrahlung, in Tagungsband Aachener Kolloquium Lasertechnik AKL 2000, Mai 2000, pp. 29–31Google Scholar
  5. 5.
    K. Eimann, M. Drach, K. Wissenbach, A. Gasser, Lasereinsatz im Werkzeug- und Formenbau, in Proceedings Stuttgarter Lasertage, Sept 2003, pp. 25–26Google Scholar
  6. 6.
    J. Nagel, Laserhärten und Laser -Pulver-Auftragschweißen von Umformwerkzeugen, in Tagungsband Aachener Kolloquium Lasertechnik AKL 2004, 2004, pp. 295–305Google Scholar
  7. 7.
    A. Gasser, K. Wissenbach, I. Kelbassa, G. Backes, Aero engine repair , in Industrial Laser Solutions, Sept 2007, pp. 15–20Google Scholar
  8. 8.
    W. Meiners, A. Weisheit, Werkstoff-Kompromisse passé?. Form + Werkzeug 5, 78–81 (2007)Google Scholar
  9. 9.
    O. Meier, P. Stippler, A. Ostendorf, S. Czerner, P. Matteazzi, Direct micro laser cladding with microscale nanophased powders, in ICALEO 2005, 24th International Congress on Applications of Lasers and Electro-Optics, Conference Proceedings, Miami, US, Nov 2005Google Scholar
  10. 10.
    T. Jambor, K. Wissenbach, Micro-Laser -Cladding with High Quality Fibre Lasers; in LIM 2007, Laser in Manufacturing, 17-22 June 2007, MunichGoogle Scholar
  11. 11.
    G. Levy, The role and future of the laser technology in the additive manufacturing environment, 6th International Conference on Laser Assisted Net-Shape Engineering, LANE 2010Google Scholar
  12. 12.
    D.L. Bourell, Sustainability issues in laser-based additive manufacturing , in 6th International Conference on Laser Assisted Net-Shape Engineering, LANE 2010Google Scholar
  13. 13.
    N. Pirch, E.W. Kreutz, B. Ollier, X. He, The modeling of heat and solute transport in surface processing with laser radiation, in NATO Advanced Study Institute, Laser Processing: Surface Treatment and Film Deposition, Sesimbra, Portugal, July 1994, pp. 3–16Google Scholar
  14. 14.
    W. Kurz, D.J. Fisher, Fundamentals of solidification (Trans Tech Publications, Switzerland, 1986)Google Scholar
  15. 15.
    Y. Yan, Y. Yang, C. Zhao, W. Wu, M. Wang, M. Lu, Laser glazing of NI–Nb and Ni–Ni–Cr alloys and corrosion resistance of amorphous layers. Acta Metall. Sin. 6(1), 52 (1993)Google Scholar
  16. 16.
    H.W. Bergman, B.L. Mordike, Laser and electron-beam melted amorphous layers. J. Mater. Sci. 16, 863 (1981)CrossRefADSGoogle Scholar
  17. 17.
    R. Poprawe, Lasertechnik für die Fertigung (Springer, Heidelberg, 2004), ISBN 3-540-21406-2Google Scholar
  18. 18.
    M. Miglierini et al., Laser -induced structural modifications of FeMoCuB metallic glasses before and after transformation into a nanocrystalline state. J. Phys.: Condens. Matter. 13, 10359–10369 (2001)CrossRefADSGoogle Scholar
  19. 19.
    T. Biermann, G. Backes, A. Gasser, A. Weisheit, Adapted powder feed nozzles for different laser cladding applications. Laser User, 57, 27–28 (2009) Google Scholar
  20. 20.
    A. Weisheit, K. Wissenbach, Graded layers for wear and corrosion protection produced by laser cladding . In: A. Fischer, K. Bobzin (eds) Friction Wear and Wear Protection (Wiley-VCH, Weinheim, 2009)Google Scholar
  21. 21.
    S. Ocylok, A. Weisheit, I. Kelbassa, Functionally graded multi-layers by laser cladding for increased wear and corrosion protection, in 6th International Conference on Laser Assisted Net-Shape Engineering, LANE 2010Google Scholar
  22. 22.
    L. Mingxi, H. Yizhu, Y. Xiaomin, Effect on nano \(\hbox{Y}_{2}\hbox{O}_{3}\) on microstructure of laser cladding cobalt-based alloy coatings. Appl. Surf. Sci. 252, 2882–2887 (2006)Google Scholar
  23. 23.
    L. Mingxi, Z. Shihong, Z. Huisheng, H. Yizhu, Y. Jae-Hong, S. Tong-Yul, Effect of nano-\(\hbox{CeO}_{2}\) on cobalt-based alloy laser coatings. J. Mat. Proc. Technol. 202, 107–111 (2008)Google Scholar
  24. 24.
    R. Irving, Taking a powder, Mech. Eng. Mag. http://www.memagazine.org. Sept 1999

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • A. Weisheit
    • 1
  • A. Gasser
    • 1
  • G. Backes
    • 2
  • T. Jambor
    • 2
  • N. Pirch
    • 1
  • K. Wissenbach
    • 1
  1. 1.Fraunhofer-Institut fuer Lasertechnik, ILTAachenGermany
  2. 2.RWTH Aachen UniversityAachenGermany

Personalised recommendations